Research Progress on the Correlation between Obstructive Sleep Apnea Hypopnea Syndrome and Metabolic Related Fatty Liver Disease

Authors

  • Yuanguo Chen Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, China Author
  • Lu Chen Department of the Center of Gerontology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China Author

DOI:

https://doi.org/10.71222/8mp08b76

Keywords:

MAFLD, NAFLD, obstructive sleep apnea, metabolic disorders, treatment strategies

Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD), a newly named term for fatty liver disease, offers clearer diagnostic criteria compared to the traditional non-alcoholic fatty liver disease (NAFLD). This helps identify high-risk individuals earlier and improves diagnostic accuracy. The introduction of MAFLD not only reduces the need to rule out other liver diseases but also decreases the social stigma associated with the disease, making it widely accepted by multiple international societies. Obstructive sleep apnea hypopnea syndrome (OSAHS) is significantly linked to MAFLD. Chronic intermittent hypoxia (CIH), caused by OSAHS, promotes the development and progression of MAFLD through mechanisms such as excessive sympathetic nervous system activity, oxidative stress, and insulin resistance. This review aims to summarize and connect existing research findings to deepen the understanding of the relationship, diagnosis, and management of OSAHS and MAFLD patients.

References

1. M. Eslam, P. N. Newsome, S. K. Sarin, Q. M. Anstee, G. Targher, M. Romero-Gomez, et al., "A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement," J. Hepatol., vol. 73, no. 1, pp. 202–209, 2020, doi: 10.1016/j.jhep.2020.03.039.

2. M. Eslam, A. J. Sanyal, and J. George, "Toward more accurate nomenclature for fatty liver diseases," Gastroenterology, vol. 157, no. 3, pp. 590–593, 2019, doi: 10.1053/j.gastro.2019.05.064.

3. M. Eslam, A. J. Sanyal, J. George, A. Sanyal, B. Neuschwander-Tetri, C. Tiribelli, et al., "MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease," Gastroenterology, vol. 158, no. 7, pp. 1999–2014, 2020, doi: 10.1053/j.gastro.2019.11.312.

4. R. Loomba, S. L. Friedman, and G. I. Shulman, "Mechanisms and disease consequences of nonalcoholic fatty liver disease," Cell, vol. 184, no. 10, pp. 2537–2564, 2021, doi: 10.1016/j.cell.2021.04.015.

5. G. I. Smith, M. Shankaran, M. Yoshino, G. G. Schweitzer, M. Chondronikola, J. W. Beals, et al., "Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease," J. Clin. Invest., vol. 130, no. 3, pp. 1453–1460, 2020, doi: 10.1172/JCI134165.

6. A. Geier, M. E. Rinella, M. M. Balp, S. J. McKenna, C. A. Brass, R. Przybysz, et al., "Real-world burden of nonalcoholic steato-hepatitis," Clin. Gastroenterol. Hepatol., vol. 19, no. 5, pp. 1020–1029, 2021, doi: 10.1016/j.cgh.2020.06.064.

7. Q. M. Anstee, H. L. Reeves, E. Kotsiliti, et al., "From NASH to HCC: current concepts and future challenges," Nat. Rev. Gastro-enterol. Hepatol., vol. 16, pp. 411–428, 2019, doi: 10.1038/s41575-019-0145-7.

8. R. S. Taylor, R. J. Taylor, S. Bayliss, H. Hagström, P. Nasr, J. M. Schattenberg, et al., "Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis," Gastroenterology, vol. 158, no. 6, pp. 1611–1625, 2020, doi: 10.1053/j.gastro.2020.01.043.

9. H. Peng, L. Pan, S. Ran, M. Wang, S. Huang, M. Zhao, Z. Cao, Z. Yao, L. Xu, Q. Yang, and W. Lv, "Prediction of MAFLD and NAFLD using different screening indexes: A cross-sectional study in U.S. adults," Front. Endocrinol., vol. 14, p. 1083032, 2023, doi: 10.3389/fendo.2023.1083032.

10. C. Gofton, Y. Upendran, M. H. Zheng, and J. George, "MAFLD: How is it different from NAFLD?" Clin. Mol. Hepatol., vol. 29, Suppl., pp. S17–S31, Feb. 2023, doi: 10.3350/cmh.2022.0367.

11. C. O. Demirtas and Y. Yilmaz, "Metabolic-associated fatty liver disease: Time to integrate ground-breaking new terminology to our clinical practice?" Hepatol. Forum, vol. 1, no. 3, pp. 79–81, Sep. 2020, doi: 10.14744/hf.2020.2020.0024.

12. S. U. Lin, J. Huang, M. Wang, R. Kumar, Y. Liu, S. Liu, et al., "Comparison of MAFLD and NAFLD diagnostic criteria in real world," Liver Int., vol. 40, no. 9, pp. 2082–2089, 2020, doi: 10.1111/liv.14548.

13. M. El-Shabrawi, I. Memon, D. Attia, and N. M. El-Koofy, "The International Society of Tropical Paediatrics (ISTP) endorses the redefinition of fatty liver disease," J. Hepatol., vol. 76, no. 3, pp. 738–739, 2022, doi: 10.1016/j.jhep.2021.11.016.

14. M. Eslam, S. K. Sarin, V. W. S. Wong, et al., "The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease," Hepatol. Int., vol. 14, pp. 889–919, 2020, doi: 10.1007/s12072-020-10094-2.

15. N. Mendez-Sanchez, M. Arrese, A. Gadano, C. P. Oliveira, E. Fassio, J. P. Arab, et al., "The Latin American Association for the Study of the Liver (ALEH) position statement on the redefinition of fatty liver disease," Lancet Gastroenterol. Hepatol., vol. 6, no. 1, pp. 65–72, 2021, doi: 10.1016/S2468-1253(20)30340-X.

16. N. Chalasani, Z. Younossi, J. E. Lavine, M. Charlton, K. Cusi, M. Rinella, et al., "The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases," Hepatology, vol. 67, no. 1, pp. 328–357, 2018, doi: 10.1002/hep.29367.

17. Y. Xue, J. Xu, M. Li, and Y. Gao, "Potential screening indicators for early diagnosis of NAFLD/MAFLD and liver fibrosis: Tri-glyceride glucose index–related parameters," Front. Endocrinol., vol. 13, Art. no. 951689, 2022, doi: 10.3389/fendo.2022.951689.

18. T. Kawaguchi, T. Tsutsumi, D. Nakano, M. Eslam, J. George, and T. Torimura, "MAFLD enhances clinical practice for liver disease in the Asia-Pacific region," Clin. Mol. Hepatol., vol. 28, no. 2, pp. 150–163, Apr. 2022, doi: 10.3350/cmh.2021.0310.

19. M. A. Niriella, D. S. Ediriweera, A. Kasturiratne, S. T. De Silva, A. S. Dassanayaka, A. P. De Silva, et al., "Outcomes of NAFLD and MAFLD: results from a community-based, prospective cohort study," PLoS One, vol. 16, no. 2, Art. no. e0245762, 2021, doi: 10.1371/journal.pone.0245762.

20. G. T. S. Guerreiro, L. Longo, M. A. Fonseca, et al., "Does the risk of cardiovascular events differ between biopsy-proven NAFLD and MAFLD?," Hepatol. Int., vol. 15, pp. 380–391, 2021, doi: 10.1007/s12072-021-10157-y.

21. T. Miyake, B. Matsuura, S. Furukawa, T. Ishihara, O. Yoshida, M. Miyazaki, et al., "Fatty liver with metabolic disorder, such as metabolic dysfunction‐associated fatty liver disease, indicates high risk for developing diabetes mellitus," J. Diabetes Investig., vol. 13, no. 7, pp. 1245–1252, 2022, doi: 10.1111/jdi.13772.

22. G. Targher, H. Tilg, and C. D. Byrne, "Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach," Lancet Gastroenterol. Hepatol., vol. 6, no. 7, pp. 578–588, 2021, doi: 10.1016/S2468-1253(21)00020-0.

23. M. E. Khamseh, M. Malek, S. Jahangiri, et al., "Insulin resistance/sensitivity measures as screening indicators of metabol-ic-associated fatty liver disease and liver fibrosis," Dig. Dis. Sci., vol. 69, pp. 1430–1443, 2024, doi: 10.1007/s10620-024-08309-9.

24. K. Trochimczyk, M. Flisiak-Jackiewicz, A. Bobrus-Chociej, A. Lebensztejn, M. Wojtkowska, J. Jamiołkowski, and D. M. Le-bensztejn, "Biochemical and anthropometric indices of insulin resistance in obese and overweight children with metabolic dysfunction-associated fatty liver disease," Med. Sci. Monit., vol. 30, p. e943375, Jul. 3, 2024, doi: 10.12659/MSM.943375.

25. S. Suwała and R. Junik, "Metabolic-associated fatty liver disease and the role of hormones in its aetiopathogenesis," Endokrynol. Pol., vol. 75, no. 3, pp. 237–252, 2024, doi: 10.5603/ep.99689.

26. M. V. Machado and H. Cortez-Pinto, "NAFLD, MAFLD and obesity: brothers in arms?," Nat. Rev. Gastroenterol. Hepatol., vol. 20, pp. 67–68, 2023, doi: 10.1038/s41575-022-00717-4.

27. Q. Yu, S. Huang, T. T. Xu, Y. C. Wang and S. Ju, "Measuring brown fat using MRI and implications in the metabolic syndrome," J. Magn. Reson. Imaging, vol. 54, no. 5, pp. 1377–1392, 2021, doi: 10.1002/jmri.27340.

28. M. Blüher, "Metabolically Healthy Obesity," Endocr. Rev., vol. 41, no. 3, bnaa004, Jun. 2020, doi: 10.1210/endrev/bnaa004.

29. Y. Sakurai, N. Kubota, T. Yamauchi and T. Kadowaki, "Role of Insulin Resistance in MAFLD," Int. J. Mol. Sci., vol. 22, no. 8, p. 4156, 2021, doi: 10.3390/ijms22084156.

30. C. Boutari and C. S. Mantzoros, "Adiponectin and leptin in the diagnosis and therapy of NAFLD," Metabolism, vol. 103, 154028, 2020, doi: 10.1016/j.metabol.2019.154028.

31. M. Tang, X.-H. Wei, H. Cao, Q. Zhen, F. Liu, Y.-F. Wang, N.-G. Fan and Y.-D. Peng, "Association between Chinese visceral adiposity index and metabolic-associated fatty liver disease in Chinese adults with type 2 diabetes mellitus," Front. Endocrinol., vol. 13, 935980, 2022, doi: 10.3389/fendo.2022.935980.

32. Z. Niu, J. Chen, H. Wang, R. Wang, H. Peng, S. Duan and S. Yao, "Predictive Value of the Chinese Visceral Adiposity Index for Metabolic Dysfunction-Associated Fatty Liver Disease and Elevated Alanine Aminotransferase Levels in Nonobese Chinese Adults: A Cross-Sectional Study," J. Inflamm. Res., vol. 17, pp. 3893–3913, 2024, doi: 10.2147/JIR.S468093.

33. H. Li, Y. Zhang, H. Luo and R. Lin, "The lipid accumulation product is a powerful tool to diagnose metabolic dysfunc-tion-associated fatty liver disease in the United States adults," Front. Endocrinol., vol. 13, 977625, 2022, doi: 10.3389/fendo.2022.977625.

34. S. A. Hosseini, M. Alipour, S. Sarvandian et al., "Assessment of the appropriate cutoff points for anthropometric indices and their relationship with cardio-metabolic indices to predict the risk of metabolic associated fatty liver disease," BMC Endocr. Disord., vol. 24, p. 79, 2024, doi: 10.1186/s12902-024-01615-3.

35. S. Zhang, T. Du, J. Zhang et al., "The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease," Lipids Health Dis., vol. 16, p. 15, 2017, doi: 10.1186/s12944-017-0409-6.

36. H. Tutunchi, F. Naeini, M. Mobasseri and A. Ostadrahimi, "Triglyceride glucose (TyG) index and the progression of liver fi-brosis: A cross-sectional study," Clin. Nutr. ESPEN, vol. 44, pp. 483–487, 2021, doi: 10.1016/j.clnesp.2021.04.025.

37. J. Alizargar, C.-H. Bai, N.-C. Hsieh et al., "Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients," Car-diovasc. Diabetol., vol. 19, p. 8, 2020, doi: 10.1186/s12933-019-0982-2.

38. L. Wang, H.-L. Cong, J.-X. Zhang et al., "Triglyceride-glucose index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome," Cardiovasc. Diabetol., vol. 19, p. 80, 2020, doi: 10.1186/s12933-020-01054-z.

39. L. Lv, Y. Zhou, X. Chen, L. Gong, J. Wu and W. Luo, "Relationship Between the TyG Index and Diabetic Kidney Disease in Patients with Type-2 Diabetes Mellitus," Diabetes Metab. Syndr. Obes., vol. 14, pp. 3299–3306, 2021, doi: 10.2147/DMSO.S318255.

40. A. Preshy and J. Brown, "A bidirectional association between obstructive sleep apnea and metabolic-associated fatty liver disease," Endocrinol. Metab. Clin. North Am., vol. 52, no. 3, pp. 509–520, 2023, doi: 10.1016/j.ecl.2023.01.006.

41. L. Castera, M. Friedrich-Rust and R. Loomba, "Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease," Gastroenterology, vol. 156, no. 5, pp. 1264–1281, 2019, doi: 10.1053/j.gastro.2018.12.036.

42. J. A. Douglas, C. L. Chai-Coetzer, D. McEvoy et al., "Guidelines for sleep studies in adults—a position statement of the Aus-tralasian Sleep Association," Sleep Med., vol. 36, Suppl. 1, pp. S2–S22, 2017, doi: 10.1016/j.sleep.2017.03.019.

43. E. Vilar-Gomez, R. Vuppalanchi, A. Mladenovic et al., "Prevalence of high-risk nonalcoholic steatohepatitis (NASH) in the United States: results from NHANES 2017–2018," Clin. Gastroenterol. Hepatol., vol. 21, no. 1, pp. 115–124, 2023, doi: 10.1016/j.cgh.2021.12.029.

44. M. S. Siddiqui, R. Vuppalanchi, M. L. Van Natta et al., "Vibration-controlled transient elastography to assess fibrosis and ste-atosis in patients with nonalcoholic fatty liver disease," Clin. Gastroenterol. Hepatol., vol. 17, no. 1, pp. 156–163, 2019, doi: 10.1016/j.cgh.2018.04.043.

45. P. J. Eddowes, M. Sasso, M. Allison et al., "Accuracy of FibroScan controlled attenuation parameter and liver stiffness meas-urement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease," Gastroenterology, vol. 156, no. 6, pp. 1717–1730, 2019, doi: 10.1053/j.gastro.2019.01.042.

46. Y. L. Wu, R. Kumar, M. F. Wang, M. Singh, J. F. Huang, Y. Y. Zhu and S. Lin, "Validation of conventional non-invasive fibrosis scoring systems in patients with metabolic associated fatty liver disease," World J. Gastroenterol., vol. 27, no. 34, pp. 5753–5763, Sep. 2021, doi: 10.3748/wjg.v27.i34.5753.

47. R. Loomba and L. A. Adams, "Advances in non-invasive assessment of hepatic fibrosis," Gut, vol. 69, no. 7, pp. 1343–1352, 2020, doi: 10.1136/gutjnl-2018-317593.

48. V. W. S. Wong, L. A. Adams, V. de Lédinghen et al., "Noninvasive biomarkers in NAFLD and NASH—current progress and future promise," Nat. Rev. Gastroenterol. Hepatol., vol. 15, pp. 461–478, 2018, doi: 10.1038/s41575-018-0014-9.

49. G. Sheng, S. Lu, Q. Xie et al., "The usefulness of obesity and lipid-related indices to predict the presence of non-alcoholic fatty liver disease," Lipids Health Dis., vol. 20, p. 134, 2021, doi: 10.1186/s12944-021-01561-2.

50. M. Shimada, H. Kawahara, K. Ozaki et al., "Usefulness of a combined evaluation of the serum adiponectin level, HOMA-IR, and serum type IV collagen 7S level to predict the early stage of nonalcoholic steatohepatitis," Am. J. Gastroenterol., vol. 102, no. 9, pp. 1931–1938, 2007, doi: 10.1111/j.1572-0241.2007.01322.x.

51. M. Malek, M. E. Khamseh, H. Chehrehgosha et al., "Triglyceride glucose-waist to height ratio: a novel and effective marker for identifying hepatic steatosis in individuals with type 2 diabetes mellitus," Endocrine, vol. 74, pp. 538–545, 2021, doi: 10.1007/s12020-021-02815-w.

52. H. Peng, J. Xiang, L. Pan et al., "METS-IR/HOMA-IR and MAFLD in U.S. adults: dose–response correlation and the effect me-diated by physical activity," BMC Endocr. Disord., vol. 24, p. 132, 2024, doi: 10.1186/s12902-024-01646-w.

53. M. M. Lyons, N. Y. Bhatt, A. I. Pack and U. J. Magalang, "Global burden of sleep‐disordered breathing and its implications," Respirology, vol. 25, no. 7, pp. 690–702, 2020, doi: 10.1111/resp.13838.

54. R. Lv, X. Liu, Y. Zhang et al., "Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syn-drome," Sig. Transduct. Target. Ther., vol. 8, p. 218, 2023, doi: 10.1038/s41392-023-01496-3.

55. M. F. Pengo, S. Bonafini, C. Fava and J. Steier, "Cardiorespiratory interaction with continuous positive airway pressure," J. Thorac. Dis., vol. 10, Suppl. 1, pp. S57–S70, Jan. 2018, doi: 10.21037/jtd.2018.01.39.

56. G. Salzano, F. Maglitto, A. Bisogno et al., "Obstructive sleep apnoea/hypopnoea syndrome: relationship with obesity and management in obese patients," Acta Otorhinolaryngol. Ital., vol. 41, no. 2, pp. 120–130, Apr. 2021, doi: 10.14639/0392-100X-N1100.

57. J. Theorell-Haglöw, C. B. Miller, D. J. Bartlett, B. J. Yee, H. D. Openshaw and R. R. Grunstein, "Gender differences in obstructive sleep apnoea, insomnia and restless legs syndrome in adults–What do we know? A clinical update," Sleep Med. Rev., vol. 38, pp. 28–38, 2018, doi: 10.1016/j.smrv.2017.03.003.

58. S. Laouafa, A. Ribon-Demars, F. Marcouiller et al., "Estradiol protects against cardiorespiratory dysfunctions and oxidative stress in intermittent hypoxia," Sleep, vol. 40, no. 8, zsx104, Aug. 2017, doi: 10.1093/sleep/zsx104.

59. X. Chen, R. Wang, P. Zee et al., "Racial/ethnic differences in sleep disturbances: the Multi-Ethnic Study of Atherosclerosis (MESA)," Sleep, vol. 38, no. 6, pp. 877–888, Jun. 2015, doi: 10.5665/sleep.4732.

60. S. C. Veasey and I. M. Rosen, "Obstructive sleep apnea in adults," N. Engl. J. Med., vol. 380, no. 15, pp. 1442–1449, 2019, doi: 10.1056/NEJMcp1816152.

61. A. S. Gami, S. M. Caples and V. K. Somers, "Obesity and obstructive sleep apnea," Endocrinol. Metab. Clin. North Am., vol. 32, no. 4, pp. 869–894, 2003, doi: 10.1016/S0889-8529(03)00069-0.

62. D. J. Gottlieb and N. M. Punjabi, "Diagnosis and management of obstructive sleep apnea: a review," JAMA, vol. 323, no. 14, pp. 1389–1400, 2020, doi: 10.1001/jama.2020.3514.

63. V. K. Kapur, D. H. Auckley, S. Chowdhuri et al., "Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline," J. Clin. Sleep Med., vol. 13, no. 3, pp. 479–504, 2017, doi: 10.5664/jcsm.6506.

64. A. V. Benjafield, N. T. Ayas, P. R. Eastwood et al., "Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis," Lancet Respir. Med., vol. 7, no. 8, pp. 687–698, 2019, doi: 10.1016/S2213-2600(19)30198-5.

65. M. H. Le, Y. H. Yeo, X. Li et al., "2019 global NAFLD prevalence: a systematic review and meta-analysis," Clin. Gastroenterol. Hepatol., vol. 20, no. 12, pp. 2809–2817, 2022, doi: 10.1016/j.cgh.2021.12.002.

66. P. Sangro, M. de la Torre Aláez, B. Sangro et al., "Metabolic dysfunction–associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment," J. Physiol. Biochem., vol. 79, pp. 869–879, 2023, doi: 10.1007/s13105-023-00954-4.

67. G. Musso, M. Cassader, C. Olivetti, F. Rosina, G. Carbone and R. Gambino, "Association of obstructive sleep apnoea with the presence and severity of non‐alcoholic fatty liver disease: A systematic review and meta‐analysis," Obes. Rev., vol. 14, no. 5, pp. 417–431, 2013, doi: 10.1111/obr.12020.

68. O. A. Mesarwi, R. Loomba and A. Malhotra, "Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease," Am. J. Respir. Crit. Care Med., vol. 199, no. 7, pp. 830–841, 2019, doi: 10.1164/rccm.201806-1109TR.

69. N. Kim, J.-H. Roh, H. Lee, D. Kim and S. J. Heo, "The impact of non-alcoholic fatty liver disease on sleep apnea in healthy adults: A nationwide study of Korea," PLoS ONE, vol. 17, no. 7, e0271021, 2022, doi: 10.1371/journal.pone.0271021.

70. G. E. Chung, E. J. Cho, J. J. Yoo et al., "Nonalcoholic fatty liver disease is associated with the development of obstructive sleep apnea," Sci. Rep., vol. 11, 13473, 2021, doi: 10.1038/s41598-021-92703-0.

71. H. M. Mir, M. Stepanova, H. Afendy, R. Cable and Z. M. Younossi, "Association of sleep disorders with nonalcoholic fatty liver disease (NAFLD): a population-based study," J. Clin. Exp. Hepatol., vol. 3, no. 3, pp. 181–185, 2013, doi: 10.1016/j.jceh.2013.06.004.

72. C. Arnaud, T. Bochaton, J. L. Pépin and E. Belaidi, "Obstructive sleep apnoea and cardiovascular consequences: pathophysi-ological mechanisms," Arch. Cardiovasc. Dis., vol. 113, no. 5, pp. 350–358, 2020, doi: 10.1016/j.acvd.2020.01.003.

73. Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry and M. Wymer, "Global epidemiology of nonalcoholic fatty liver disease—meta‐analytic assessment of prevalence, incidence, and outcomes," Hepatology, vol. 64, no. 1, pp. 73–84, 2016, doi: 10.1002/hep.28431.

74. E. Buzzetti, M. Pinzani and E. A. Tsochatzis, "The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)," Metabolism, vol. 65, no. 8, pp. 1038–1048, 2016, doi: 10.1016/j.metabol.2015.12.012.

75. R. Iturriaga, J. Alcayaga, M. W. Chapleau and V. K. Somers, "Carotid body chemoreceptors: physiology, pathology, and im-plications for health and disease," Physiol. Rev., vol. 101, no. 3, pp. 1177–1235, 2021, doi: 10.1152/physrev.00039.2019.

76. S. Khurana, N. Soda, M. J. A. Shiddiky, R. Nayak and S. Bose, "Current and future strategies for diagnostic and management of obstructive sleep apnea," Expert Rev. Mol. Diagn., vol. 21, no. 12, pp. 1287–1301, 2021, doi: 10.1080/14737159.2021.2002686.

77. J. Cai, M. Hu, Z. Chen et al., "The roles and mechanisms of hypoxia in liver fibrosis," J. Transl. Med., vol. 19, 186, 2021, doi: 10.1186/s12967-021-02854-x.

78. S. C. Pal, M. Eslam and N. Mendez-Sanchez, "Detangling the interrelations between MAFLD, insulin resistance, and key hor-mones," Hormones, vol. 21, pp. 573–589, 2022, doi: 10.1007/s42000-022-00391-w.

79. L. A. Barnes, Y. Xu, A. Sanchez-Azofra, E. A. Moya, M. P. Zhang, L. E. Crotty Alexander, A. Malhotra and O. Mesarwi, "Dura-tion of intermittent hypoxia impacts metabolic outcomes and severity of murine NAFLD," Front. Sleep, vol. 2, 1215944, 2023, doi: 10.3389/frsle.2023.1215944.

80. J. Liu, W. Li, W. Zhu, W. He, H. Zhao, Y. Xiang et al., "Chronic intermittent hypoxia promotes the development of experimental non-alcoholic steatohepatitis by modulating Treg/Th17 differentiation," Acta Biochim. Biophys. Sin., vol. 50, no. 12, pp. 1200–1210, 2018, doi: 10.1093/abbs/gmy131.

81. R. Cao, X. Zhao, S. Li, H. Zhou, W. Chen, L. Ren et al., "Hypoxia induces dysregulation of lipid metabolism in HepG2 cells via activation of HIF-2α," Cell. Physiol. Biochem., vol. 34, no. 5, pp. 1427–1441, 2014, doi: 10.1159/000366348.

82. H. Cai, Z. Bai and R. L. Ge, "Hypoxia-inducible factor-2 promotes liver fibrosis in non-alcoholic steatohepatitis liver disease via the NF-κB signalling pathway," Biochem. Biophys. Res. Commun., vol. 540, pp. 67–74, 2021, doi: 10.1016/j.bbrc.2021.01.002.

83. S.-J. Park, J. Garcia Diaz, E. Um and Y. S. Hahn, "Major roles of kupffer cells and macrophages in NAFLD development," Front. Endocrinol., vol. 14, 1150118, 2023, doi: 10.3389/fendo.2023.1150118.

84. Y. Ji, Y. Liang, J. C. Mak and M. S. Ip, "Obstructive sleep apnea, intermittent hypoxia and non-alcoholic fatty liver disease," Sleep Med., vol. 95, pp. 16–28, 2022, doi: 10.1016/j.sleep.2022.04.006.

85. H. Zhang, L. Zhou, Y. Zhou, L. Wang, W. Jiang, L. Liu, and H. Liu, “Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway,” Life Sci., vol. 285, p. 119963, Sep. 2021, doi: 10.1016/j.lfs.2021.119963.

86. X.-Z. Li, Z.-C. Xiong, S.-L. Zhang, Q.-Y. Hao, M. Gao, J.-F. Wang, J.-W. Gao, and P.-M. Liu, “Potential ferroptosis key genes in calcific aortic valve disease,” Front. Cardiovasc. Med., vol. 9, p. 916841, Jul. 2022, doi: 10.3389/fcvm.2022.916841.

87. C. Antza, G. Kostopoulos, S. Mostafa, K. Nirantharakumar, and A. Tahrani, “The links between sleep duration, obesity and type 2 diabetes mellitus,” J. Endocrinol., vol. 252, no. 2, pp. 125–141, Feb. 2022, doi: 10.1530/JOE-21-0155.

88. M. Mendelson, O. D. Lyons, A. Yadollahi, T. Inami, P. Oh, and T. D. Bradley, “Effects of exercise training on sleep apnoea in patients with coronary artery disease: a randomised trial,” Eur. Respir. J., vol. 48, no. 1, pp. 142–150, Jul. 2016, doi: 10.1183/13993003.01897-2015.

89. J. Iqbal, H. X. Wu, N. Hu, Y. H. Zhou, L. Li, F. Xiao, and H. D. Zhou, “Effect of glucagon‐like peptide‐1 receptor agonists on body weight in adults with obesity without diabetes mellitus—a systematic review and meta‐analysis of randomized control trials,” Obes. Rev., vol. 23, no. 6, p. e13435, Jun. 2022, doi: 10.1111/obr.13435.

90. J. Khoo, J. Hsiang, R. Taneja, N. M. Law, and T. L. Ang, “Comparative effects of liraglutide 3 mg vs structured lifestyle modi-fication on body weight, liver fat and liver function in obese patients with non‐alcoholic fatty liver disease: a pilot randomized trial,” Diabetes Obes. Metab., vol. 19, no. 12, pp. 1814–1817, Dec. 2017, doi: 10.1111/dom.13007.

Downloads

Published

07 June 2025

Issue

Section

Article

How to Cite

[1]
Y. Chen and L. Chen , Trans., “Research Progress on the Correlation between Obstructive Sleep Apnea Hypopnea Syndrome and Metabolic Related Fatty Liver Disease”, J. Med. Life Sci., vol. 1, no. 3, pp. 61–73, Jun. 2025, doi: 10.71222/8mp08b76.