Precise Design and Application Progress of Nanodelivery Systems in Targeted Therapy for Hepatic Fibrosis
DOI:
https://doi.org/10.71222/shd1ey18Keywords:
nanodelivery system, hepatic fibrosis, targeted therapy, controlled release, Vitamin A modificationAbstract
Hepatic fibrosis is a chronic disease with global prevalence and the development of targeted therapeutic strategies remains essential. This study presents a nanocarrier platform developed through precise engineering, incorporating Vitamin A modification to achieve effective targeting of hepatic stellate cells (HSCs). The carrier utilizes a pH-responsive mechanism to control drug release accurately. In mouse models, the system showed good biocompatibility and significant antifibrotic effects. Experimental results showed a 68.9% reduction in transforming growth factor-beta 1 (TGF-β1) expression and a 40.7% decrease in collagen deposition area. These findings indicate that such responsive nanodelivery systems may offer a practical approach for the targeted treatment of hepatic fibrosis.
References
1. N. Roehlen, E. Crouchet, and T. F. Baumert, “Liver fibrosis: mechanistic concepts and therapeutic perspectives,” Cells, vol. 9, no. 4, p. 875, 2020, doi 10.3390/cells9040875.
2. H. Wang et al., “Rpf-eld: Regional prior fusion using early and late distillation for breast cancer recognition in ultrasound images,” in Proc. 2024 IEEE Int. Conf. Bioinformatics Biomed. (BIBM), Dec. 2024, pp. 2605–2612, doi 10.1109/BIBM62325.2024.10821972.
3. X. Wu, Y. Sun, and X. Liu, "Multi-class classification of breast cancer gene expression using PCA and XGBoost," Preprints, 2024, doi: 10.20944/preprints202410.1775.v1.
4. E. J. Aspinall, G. Hawkins, A. Fraser, S. J. Hutchinson, and D. Goldberg, “Hepatitis B prevention, diagnosis, treatment and care: a review,” Occup. Med., vol. 61, no. 8, pp. 531–540, 2011, doi 10.1093/occmed/kqr136.
5. X. Shi, Y. Tao, and S. C. Lin, “Deep neural network-based prediction of B-cell epitopes for SARS-CoV and SARS-CoV-2: En-hancing vaccine design through machine learning,” in Proc. 2024 4th Int. Signal Process., Commun. Eng. Manage. Conf. (ISPCEM), Nov. 2024, pp. 259–263, doi: 10.1109/ISPCEM64498.2024.00050.
6. M. A. Karsdal et al., “Novel insights into the function and dynamics of extracellular matrix in liver fibrosis,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 308, no. 10, pp. G807–G830, 2015, doi 10.1152/ajpgi.00447.2014.
7. Y. Wang, L. Wang, Y. Wen, X. Wu, and H. Cai, "Precision-engineered nanocarriers for targeted treatment of liver fibrosis and vascular disorders," World J. Innov. Mod. Technol., vol. 8, no. 1, 2025, doi: 10.53469/wjimt.2025.08(01).07.
8. C. Engelmann, J. Clària, G. Szabo, J. Bosch, and M. Bernardi, “Pathophysiology of decompensated cirrhosis: portal hyperten-sion, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction,” J. Hepatol., vol. 75, pp. S49–S66, 2021, doi 10.1016/j.jhep.2021.01.002.
9. Y. Wen, X. Wu, L. Wang, H. Cai, and Y. Wang, “Application of nanocarrier-based targeted drug delivery in the treatment of liver fibrosis and vascular diseases,” J. Med. Life Sci., vol. 1, no. 2, pp. 63–69, 2025, doi: 10.71222/bc9c9s73.
10. W. Z. Mehal and D. Schuppan, “Antifibrotic therapies in the liver,” Semin. Liver Dis., vol. 35, no. 2, pp. 184–198, May 2015, doi: 10.1055/s-0035-1550055.
11. M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine, vol. 3, no. 5, pp. 703–717, 2008, doi: 10.2217/17435889.3.5.703.
12. T. Zhang, B. Zhang, F. Zhao, and S. Zhang, “COVID-19 localization and recognition on chest radiographs based on Yolov5 and EfficientNet,” in Proc. 2022 7th Int. Conf. Intell. Comput. Signal Process. (ICSP), Apr. 2022, pp. 1827–1830, doi: 10.2217/17435889.3.5.703.
13. Y. Wang, Y. Wen, X. Wu, and H. Cai, “Application of ultrasonic treatment to enhance antioxidant activity in leafy vegetables,” Int. J. Adv. Appl. Sci. Res., vol. 3, pp. 49–58, 2024, doi: 10.5281/zenodo.14275691.
14. N. S. El-Mezayen et al., “Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence,” J. Control. Release, vol. 283, pp. 32–44, 2018, doi: 10.1016/j.jconrel.2018.05.021.
15. H. Ziang, J. Zhang, and L. Li, “Framework for lung CT image segmentation based on UNet++,” 2025, arXiv preprint arXiv:2501.02428, doi: 10.48550/arXiv.2501.02428.
16. A. Doustmihan et al., “Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review,” J. Control. Release, vol. 363, pp. 57–83, 2023, doi: 10.1016/j.jconrel.2023.09.029.
17. Y. Wang, Y. Wen, X. Wu, L. Wang, and H. Cai, "Assessing the Role of Adaptive Digital Platforms in Personalized Nutrition and Chronic Disease Management," World Journal of Innovation and Modern Technology, vol. 8, no. 1, 2025, doi: 10.53469/wjimt.2025.08(01).05.
18. Y. Deng, W. Cui, and X. Liu, "Head tumor segmentation and detection based on ResUNet," in Proc. 5th Int. Conf. Signal Process. Machine Learn., 2024, doi: 10.54254/2755-2721/99/20251810.
19. J. B. Qiao et al., “Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis,” J. Control. Release, vol. 283, pp. 113–125, doi: 10.1016/j.jconrel.2018.05.032.
20. Y. Wang, Y. Wen, X. Wu, L. Wang and H. Cai, "Modulation of gut microbiota and glucose homeostasis through high-fiber dietary intervention in type 2 diabetes management," World J. Innov. Mod. Technol., vol. 7, no. 5, Oct. 2024, doi: 10.53469/wjimt.2024.07(06).04.
21. G. Qu et al., “Self-assembled micelles based on N-octyl-N′-phthalyl-O-phosphoryl chitosan derivative as an effective oral car-rier of paclitaxel,” Carbohydr. Polym., vol. 207, pp. 428–439, 2019, doi: 10.1016/j.carbpol.2018.11.099.
22. M. K. Riaz et al., “Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review,” Int. J. Mol. Sci., vol. 19, no. 1, p. 195, 2018, doi: 10.3390/ijms19010195.
23. Y. Wang, M. Shen, L. Wang, Y. Wen, and H. Cai, "Comparative modulation of immune responses and inflammation by n-6 and n-3 polyunsaturated fatty acids in oxylipin-mediated pathways," World J. Innov. Mod. Technol., vol. 7, no. 4, Aug. 2024, doi: 10.53469/wjimt.2024.07(05).17.
24. J. Zhu et al., “Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections,” Nat. Nano-technol., pp. 1–12, 2024, doi: 10.1038/s41565-024-01648-8.
25. I. K. Lee et al., “Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct,” Bioact. Mater., vol. 30, pp. 142–153, 2023, doi: 10.1016/j.bioactmat.2023.07.019.
26. N. Yodsanit et al., “Targeted PERK inhibition with biomimetic nanoclusters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms,” Bioact. Mater., vol. 26, pp. 52–63, 2023, doi: 10.1016/j.bioactmat.2023.02.009.
27. Y. Wang, Y. Wen, X. Wu, and H. Cai, "Comprehensive evaluation of GLP1 receptor agonists in modulating inflammatory pathways and gut microbiota," World J. Innov. Mod. Technol., vol. 7, no. 5, Oct. 2024, doi: 10.53469/wjimt.2024.07(06).23.
28. K. Wang, X. He, X. Yang, and H. Shi, “Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels,” Acc. Chem. Res., vol. 46, no. 7, pp. 1367–1376, 2013, doi: 10.1021/ar3001525.