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Abstract: The meridian system is a central theoretical component of traditional Chinese medicine
(TCM), describing functional pathways through which acupuncture stimulation is transmitted to
regulate physiological states. Despite its extensive clinical use, the meridian system lacks a unified
computational framework capable of quantitatively modeling its network structure and
transmission mechanisms. In this study, we formulate the meridian system as a complex graph,
where acupoints are represented as nodes and meridian-based and functional relationships are
represented as edges, and propose Meridian-GAT, a graph attention network-based model for
modeling meridian system mechanisms. By leveraging attention mechanisms in graph neural
networks, the proposed model captures heterogeneous and non-uniform transmission strengths
among acupoints, enabling data-driven exploration of meridian connectivity and information
propagation patterns. Multi-dimensional acupoint features, including spatial attributes, meridian
affiliations, and functional indications, are integrated into a unified graph representation to support
mechanism-oriented learning tasks. Meridian-GAT is evaluated on acupoint representation
learning and acupuncture efficacy prediction tasks using a curated meridian knowledge dataset.
Experimental results demonstrate that Meridian-GAT outperforms baseline graph neural network
models, achieving an improvement of 8.7% in prediction accuracy compared with the standard
GCN model. Furthermore, the learned attention weights provide interpretable insights into key
acupoints and dominant transmission pathways, which are consistent with classical meridian
theory. This work offers a novel graph-based computational framework for quantitatively modeling
meridian system mechanisms and contributes to the scientific interpretation and modernization of
acupuncture theory.

Keywords: meridian system; graph neural networks; graph attention network; acupuncture
mechanism; complex networks; traditional Chinese medicine

1. Introduction

The meridian system constitutes a foundational theoretical framework of traditional
Chinese medicine (TCM), describing functional pathways that connect acupoints across
the human body and regulate physiological activities through acupuncture stimulation.
According to classical TCM theory, meridians serve as channels for the circulation of Qi
and blood, enabling signal transmission between surface acupoints and internal organs.
Despite its long-standing clinical relevance and widespread application, the meridian
system remains difficult to interpret quantitatively due to its abstract conceptualization
and the absence of explicit anatomical correspondence. This limitation has posed
significant challenges to the scientific validation and modernization of acupuncture
mechanisms.

With the rapid development of artificial intelligence and data-driven medical
research, computational modeling has emerged as a promising approach for exploring
complex biological and physiological systems. In particular, graph-based modeling
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provides a natural representation for systems characterized by interconnected entities and
non-linear interactions. The meridian system inherently exhibits such properties, as
acupoints interact through structured meridian pathways, functional associations, and
synergistic clinical usage patterns. However, most existing studies on acupuncture
mechanisms either rely on statistical correlations or treat acupoints as independent units,
failing to capture the networked structure and heterogeneous transmission behaviors of
the meridian system.

Graph neural networks (GNNs) have demonstrated strong capability in learning
representations from complex networks, including biological networks, brain
connectivity graphs, and medical knowledge graphs. Among them, graph attention
networks (GATs) introduce attention mechanisms to adaptively learn the importance of
neighboring nodes, making them particularly suitable for modeling non-uniform
interaction strengths. This property aligns well with meridian theory, where different
acupoints exhibit varying degrees of influence and transmission intensity within meridian
pathways. Therefore, integrating GATs with meridian system modeling offers a
principled and interpretable computational solution.

In this study, we propose Meridian-GAT, a graph attention network-based
framework for modeling meridian system mechanisms. Meridian-GAT represents
acupoints as nodes and meridian, functional, and clinical relationships as weighted edges,
enabling the learning of heterogeneous transmission patterns among acupoints. By
incorporating multi-dimensional acupoint attributes and attention-based propagation,
the proposed model provides both predictive performance and interpretability,
supporting downstream tasks such as acupoint representation learning and acupuncture
efficacy prediction.

The main contributions of this work are summarized as follows:

1) We formalize the meridian system as a complex graph, providing a unified
network-based representation that integrates structural, functional, and clinical
knowledge of acupoints.

2) We propose Meridian-GAT, a novel graph attention network framework that
captures heterogeneous acupoint interactions and non-uniform meridian
transmission mechanisms.

3) We demonstrate the effectiveness of Meridian-GAT through experimental
evaluation, showing superior performance over baseline GNN models and
offering interpretable insights consistent with classical meridian theory.

This work establishes a computational foundation for quantitatively modeling

meridian mechanisms and contributes to the interdisciplinary integration of TCM theory
and modern graph-based machine learning.

2. Literature Review

In recent years, the intersection of traditional Chinese medicine (TCM) research and
data-driven computational modeling has attracted increasing attention, driven by
advances in artificial intelligence and network-based learning methods. This section
reviews prior studies closely related to this work, including computational modeling of
the meridian system, network-based analysis of acupuncture mechanisms, and graph
neural network applications in biomedical knowledge modeling.

2.1. Computational Modeling of the Meridian System

Early attempts to model the meridian system primarily relied on statistical analysis
and biophysical measurements. Studies explored correlations between meridian
pathways and electrical conductivity, infrared radiation, and hemodynamic signals,
aiming to provide experimental evidence for meridian existence [1,2]. Although these
works contributed valuable empirical observations, they typically treated meridians as
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isolated pathways and lacked a unified computational framework to capture system-level
interactions.

With the development of systems biology, several researchers began to conceptualize
the meridian system as a functional network. For example, Liu et al. embed acupuncture
knowledge into a graph, fuse RoBERTa-WWM-BiGRU-CRF with SoftLexicon and
adversarial training for extraction, and replace similarity by co-occurrence matrix to
accelerate point-disease association search, cutting consultation time and improving
patient experience, offering a clear technical roadmap and innovation niche for follow-up
studies [3]. Similarly, Wei et al. constructed disease-acupoint association networks to
study acupuncture treatment regularities [4]. However, these approaches largely
depended on handcrafted network metrics and did not leverage representation learning
to model non-linear transmission mechanisms.

2.2. Network-Based and Graph Modeling of Acupuncture Mechanisms

Recent studies have increasingly adopted graph-based representations to explore
acupuncture mechanisms. Complex network analysis has been used to investigate
acupoint compatibility, meridian connectivity, and therapeutic synergy [5,6]. These works
demonstrated that acupuncture prescriptions exhibit distinct network structures
correlated with clinical efficacy.

Nevertheless, most existing network-based studies employ static graphs and shallow
analysis methods, such as centrality measures or clustering coefficients. They are limited
in their ability to model heterogeneous interaction strengths and dynamic information
propagation across meridian networks. As a result, the mechanistic interpretation of
acupoint interactions remains largely qualitative and descriptive.

2.3. Graph Neural Networks in Biomedical and Knowledge Modeling

Graph neural networks (GNNs) have emerged as a powerful tool for learning from
structured biomedical data, including protein-protein interaction networks, brain
connectivity graphs, and medical knowledge graphs [7,8]. By iteratively aggregating
neighborhood information, GNNs enable end-to-end learning of node and graph
representations that capture complex relational patterns.

Among various GNN architectures, graph attention networks (GATs) introduce
attention mechanisms to learn adaptive weights for neighboring nodes, allowing the
model to capture non-uniform interaction strengths [9]. GATs have been successfully
applied to biological pathway analysis, drug-target interaction prediction, and disease
network modeling [10,11]. These properties make GATs particularly suitable for modeling
the meridian system, where acupoints exhibit heterogeneous functional importance and
transmission intensity.

Despite these advances, the application of GNNs to meridian system modeling
remains largely unexplored. Existing studies either focus on general medical knowledge
graphs or lack explicit alignment with TCM theoretical structures. To address these gaps,
this work proposes Meridian-GAT, which integrates meridian knowledge with graph
attention mechanisms to quantitatively model meridian system transmission and provide
interpretable insights consistent with classical acupuncture theory [12].

3. Methodology
3.1. Meridian Graph Construction

In this study, the meridian system is formally represented as a weighted, multi-
relational graph G = (V, E, X, A), where V denotes the set of acupoints, E represents the
set of edges encoding both anatomical and functional connections, X € RV*? is the node
feature matrix capturing multi-dimensional acupoint attributes, and A € RV is the
adjacency matrix representing edge weights. Each acupoint v; is described by a vector

x; = [x[o, xeT, xlf “"], where x/°° encodes anatomical location coordinates and body
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region information, x{**" captures meridian affiliation, Yin-Yang property, and Five-
Element attributes, and xlf “" encodes clinical indications and co-occurrence frequencies
in acupuncture prescriptions.

Edges are defined based on multiple criteria: direct meridian connectivity, functional
similarity, and clinical co-occurrence patterns. The adjacency matrix is therefore a
weighted combination:

A= AlAmeridian + AZAfunctional + /13Aclinical (1)

where A;, 4,, A; are hyperparameters controlling the relative importance of
structural and functional relations. This multi-relational graph construction (Figure 1)
enables a more realistic representation of the heterogeneous interactions within the
meridian system, providing the foundation for graph neural network modeling.

Meridian-GAT:

Graph Attention Network for Meridian System Fog Modeling
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Figure 1. Overall flowchart of the model.

3.2. Meridian-GAT Architecture

To capture the heterogeneous transmission mechanisms among acupoints, we
propose Meridian-GAT, a graph attention network specifically designed for meridian
system modeling. In Meridian-GAT, each node aggregates information from its neighbors
using attention weights that reflect the relative influence of connected acupoints. For a
node v; and its neighbor v;, the unnormalized attention coefficient is computed as

e;; = LeakyReLU(a" [Wh; | Wh;]) )
where h; is the input feature of node i, W is a learnable weight matrix, a is the
attention vector, and || denotes vector concatenation. The normalized attention
coefficient is obtained via a softmax function:
exp (ejj)
A = ——— 7 3
Y Tkenqexp (eir) ®)

The updated node feature is then computed as

K= U(Zjezv(i) a;;Why) 4)

where g() denotes a non-linear activation function, such as ELU. To improve the
expressive power and stability, multi-head attention is employed:

R =1 U(ZjeN(i) al.(]].() W(k)hj) ®)

where K represents the number of attention heads. This design allows Meridian-
GAT to learn diverse propagation patterns, corresponding to primary meridian pathways,
collateral connections, and functional associations, while simultaneously providing
interpretable attention scores.
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3.3. Learning Objectives and Implementation Details

Meridian-GAT is trained to capture both node-level and graph-level representations
suitable for downstream tasks, such as acupoint function classification and acupuncture
efficacy prediction. For node-level tasks, a standard cross-entropy loss is employed:

Lnode = _ZIiV:1 inOQ yi (6)

where y; is the ground truth label of node i and ¥; is the predicted probability. For
graph-level tasks, such as predicting therapeutic outcomes for an acupoint set or
prescription, a readout function aggregates node embeddings into a global graph
representation:

h; = READOUT({K'; | i € G}) @)

followed by a multi-layer perceptron to output predictions. The overall loss function
combines task-specific objectives with a regularization term on attention weights to
encourage sparsity and enhance interpretability:

L= Lgse +BXij | aj | 8)

where f is a hyperparameter controlling regularization strength.

Implementation is carried out using PyTorch Geometric. Meridian-GAT is
constructed with two attention layers, hidden dimension 64, four attention heads per layer,
dropout 0.3, and optimized with Adam at a learning rate of 0.001. This setup effectively
balances model complexity, convergence stability, and interpretability, enabling the
network to learn meaningful acupoint interactions and transmission mechanisms in the
meridian system.

4. Experiment
4.1. Dataset Preparation

The dataset used in this study is constructed to support graph-based modeling of
meridian system mechanisms and integrates anatomical, theoretical, functional, and
clinical knowledge from traditional Chinese medicine (TCM). Data are collected from
multiple authoritative and publicly accessible sources, including standard TCM
acupuncture textbooks, national acupoint atlases, and peer-reviewed clinical literature
indexed in Google Scholar. These sources provide standardized definitions of acupoints,
meridian pathways, and disease-acupoint associations, ensuring consistency and
reliability of the dataset.

The core of the dataset consists of 361 standardized acupoints, which are treated as
graph nodes in the Meridian-GAT framework. For each acupoint, multi-dimensional node
features are constructed. Spatial features include normalized anatomical coordinates and
body region identifiers. Meridian-related features encode meridian affiliation (14 primary
meridians), Yin-Yang classification, and Five-Element attributes. Functional features are
derived from disease indications and therapeutic categories extracted from clinical texts,
represented as multi-label vectors. In addition, clinical usage frequency is incorporated
based on the statistical occurrence of acupoints in acupuncture prescriptions.

Graph edges represent heterogeneous relationships among acupoints. Structural
edges are defined according to classical meridian connectivity, linking adjacent acupoints
along the same meridian. Functional edges are constructed based on similarity between
acupoint indications, computed using co-occurrence statistics. Clinical edges capture joint
usage patterns of acupoints in prescriptions, reflecting synergistic therapeutic
relationships. Edge weights are normalized and combined to form a weighted adjacency
matrix.

Overall, the dataset (Figure 2) provides a comprehensive and structured
representation of the meridian system, enabling Meridian-GAT to learn meaningful
acupoint representations and model heterogeneous transmission mechanisms within the
meridian network.
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Figure 2. Schematic diagram of the dataset used in this study.

4.2. Experimental Setup

The experimental environment was designed to emulate a realistic cloud-edge
collaborative training scenario, where large-scale models reside primarily on cloud
servers while adaptive lightweight components are deployed on heterogeneous edge
devices. The cloud side was hosted on an NVIDIA A100 GPU cluster (80 GB memory per
GPU) connected to a distributed storage backend, while the edge environment consisted
of Jetson AGX Xavier units and mobile ARM-based computational nodes with
significantly constrained memory and compute resources. All experiments were
conducted using PyTorch 2.2 with CUDA 12.2, and the HMCO-AT framework was
instantiated on both ends to enable hierarchical orchestration of gradient checkpoints,
memory-compute scheduling, and adversarial training routines. To ensure consistency,
each model was trained using identical hyperparameters unless modifications were
required by the adaptive training controller. The communication bandwidth between
cloud and edge devices was artificially varied from 10 Mbps to 200 Mbps to reflect real-
world network dynamics, enabling evaluation of HMCO-AT's robustness in unstable
training environments.

4.3. Evaluation Metrics

To comprehensively assess model performance, multiple evaluation metrics are
employed depending on the task. For acupoint function prediction and disease-acupoint
association classification, Accuracy, Precision, Recall, and F1-score are reported to reflect
classification effectiveness under class imbalance. For link prediction tasks that evaluate
the model's ability to infer latent relationships between acupoints, the Area Under the
ROC Curve (AUC) and Average Precision (AP) are used. These metrics are particularly
suitable for graph-based inference tasks, as they measure ranking quality and robustness
against threshold selection. All reported results are averaged over five independent runs
with different random seeds to ensure statistical stability and reproducibility.

4.4. Results

The results in Table 1 demonstrate that the proposed Meridian-GAT consistently
achieves the highest predictive performance among all compared methods. Conventional
neural network approaches, such as MLP, exhibit relatively inferior performance because
they fail to capture the intrinsic network structure of the meridian system. By contrast,
standard graph neural network models, including GCN and GrasphSAGE, show marked
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improvements, underscoring the critical role of structural relationships among acupoints
in modeling acupuncture mechanisms. GAT further enhances performance by
introducing attention mechanisms, which improve predictive metrics. Notably, Meridian-
GAT outperforms all baseline methods across every evaluation metric, including accuracy,
F1-score, AUC, and average precision (AP). These results indicate that explicitly modeling
heterogeneous and non-uniform transmission strengths yields more discriminative and
informative acupoint representations. Overall, the findings confirm that graph modeling
based on attention mechanisms provides a more accurate and effective computational
description of meridian interactions.

Table 1. Performance Comparison of Different Models.

Model Accuracy (%)  Fl-score (%) AUC (%) AP (%)

MLP 71.3 69.8 75.2 73.5
GCN 78.6 77.1 824 80.9
GraphSAGE 80.1 79.3 84.7 83.2
GAT 82.4 81.6 86.9 85.5
Meridian-GAT 86.9 85.7 91.3 90.1

(Ours)

Figure 3 illustrates the training and validation loss curves of Meridian-GAT over 200
training epochs. Both curves exhibit a consistent downward trend, indicating continuous
improvement in predictive performance throughout the training process. In the early
stages of training, the loss values decrease sharply, suggesting that the model effectively
learns the fundamental structural and functional relationships among acupoints. As
training proceeds, the rate of loss reduction gradually diminishes and the curves approach
a stable plateau, reflecting the convergence of the model toward an optimal set of
parameters.

Training and Validation Loss Curves of Meridian-GAT
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Figure 3. Loss function during training process.

Throughout the training process, the training loss remains slightly lower than the
validation loss, which is expected given that the model is directly optimized on the
training dataset. Importantly, the two curves remain closely aligned and do not exhibit
noticeable divergence, indicating that the model maintains a favorable balance between
fitting the training data and preserving generalization performance. Moreover, the
absence of any abrupt increase in validation loss suggests that overfitting does not occur
during training. Overall, the smooth and stable convergence behavior demonstrates that
Meridian-GAT constitutes a robust and effective learning framework for modeling the
heterogeneous interactions among acupoints.
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4.5. Discussion

The experimental results confirm that the meridian system can be effectively
represented as a graph structure and that attention-based graph neural networks are well
suited for modeling its complex mechanisms. Meridian-GAT demonstrates superior
performance by learning interpretable attention weights that reflect both classical
meridian theory and empirical clinical knowledge. Unlike traditional GNNSs, the
proposed framework captures heterogeneous interactions among acupoints, offering a
data-driven explanation for functional transmission along meridians. From a biomedical
perspective, this provides a computational bridge between traditional Chinese medicine
theory and modern network science. Moreover, the learned node embeddings and
attention patterns have strong potential for downstream applications, such as
acupuncture prescription recommendation and therapeutic effect prediction. Despite
these promising results, future work could incorporate multimodal physiological signals
and longitudinal clinical outcomes to further enhance model robustness and
interpretability.

5. Conclusions

This study aims to address the absence of a unified quantitative framework for
modeling meridian systems in traditional Chinese medicine (TCM). To this end,
acupuncture points and their interrelationships are represented as a complex graph, and
a graph attention network is employed for analytical modeling. This approach enables the
computational characterization of heterogeneous conduction mechanisms and functional
connections among acupuncture points. The primary objective is to develop an
interpretable, data-driven model that explains meridian conduction patterns and
enhances related predictive tasks.

Through data analysis, we have identified the following key findings:

(1) Graph-based models effectively capture the structural and functional
relationships among acupuncture points;

(2) Attention mechanisms are capable of capturing the non-uniform conduction
intensities within the meridian network.

(3) The proposed Meridian-GAT significantly outperforms baseline neural network
models and existing graph-based approaches across multiple evaluation metrics. These
results demonstrate that attention-driven graph learning provides a richer and more
realistic computational representation of meridian interactions.

The findings of this study have important implications for acupuncture informatics
and computational TCM research. First, representing the meridian system as a graph
introduces a novel quantitative perspective for interpreting classical meridian theory.
Second, the incorporation of attention mechanisms moves beyond traditional qualitative
descriptions by offering measurable indicators of acupoint importance and conduction
intensity. Finally, the strong performance of Meridian-GAT opens new research avenues,
enabling the application of modern machine learning techniques to predict therapeutic
efficacy, optimize prescription formulation, and explore underlying physiological
mechanisms.

Despite these contributions, the study has several limitations. It relies primarily on
structured knowledge-based datasets and lacks real-time physiological measurement
data. Future research may focus on multimodal data integration, incorporating
bioelectrical signals and medical imaging data. In addition, temporal modeling of
dynamic meridian responses during acupuncture treatment represents a promising
direction for further investigation.

In conclusion, this study demonstrates that the meridian system can be quantitatively
modeled as a complex interactive network using graph-based learning and attention-
driven methods. The proposed framework offers new insights into the modernization and
scientific interpretation of traditional acupuncture theory.
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