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Abstract: The meridian system is a central theoretical component of traditional Chinese medicine 

(TCM), describing functional pathways through which acupuncture stimulation is transmitted to 

regulate physiological states. Despite its extensive clinical use, the meridian system lacks a unified 

computational framework capable of quantitatively modeling its network structure and 

transmission mechanisms. In this study, we formulate the meridian system as a complex graph, 

where acupoints are represented as nodes and meridian-based and functional relationships are 

represented as edges, and propose Meridian-GAT, a graph attention network-based model for 

modeling meridian system mechanisms. By leveraging attention mechanisms in graph neural 

networks, the proposed model captures heterogeneous and non-uniform transmission strengths 

among acupoints, enabling data-driven exploration of meridian connectivity and information 

propagation patterns. Multi-dimensional acupoint features, including spatial attributes, meridian 

affiliations, and functional indications, are integrated into a unified graph representation to support 

mechanism-oriented learning tasks. Meridian-GAT is evaluated on acupoint representation 

learning and acupuncture efficacy prediction tasks using a curated meridian knowledge dataset. 

Experimental results demonstrate that Meridian-GAT outperforms baseline graph neural network 

models, achieving an improvement of 8.7% in prediction accuracy compared with the standard 

GCN model. Furthermore, the learned attention weights provide interpretable insights into key 

acupoints and dominant transmission pathways, which are consistent with classical meridian 

theory. This work offers a novel graph-based computational framework for quantitatively modeling 

meridian system mechanisms and contributes to the scientific interpretation and modernization of 

acupuncture theory. 
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1. Introduction 

The meridian system constitutes a foundational theoretical framework of traditional 
Chinese medicine (TCM), describing functional pathways that connect acupoints across 

the human body and regulate physiological activities through acupuncture stimulation. 
According to classical TCM theory, meridians serve as channels for the circulation of Qi 
and blood, enabling signal transmission between surface acupoints and internal organs. 

Despite its long-standing clinical relevance and widespread application, the meridian 
system remains difficult to interpret quantitatively due to its abstract conceptualization 

and the absence of explicit anatomical correspondence. This limitation has posed 
significant challenges to the scientific validation and modernization of acupuncture 
mechanisms. 

With the rapid development of artificial intelligence and data-driven medical 
research, computational modeling has emerged as a promising approach for exploring 

complex biological and physiological systems. In particular, graph-based modeling 
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provides a natural representation for systems characterized by interconnected entities and 
non-linear interactions. The meridian system inherently exhibits such properties, as 

acupoints interact through structured meridian pathways, functional associations, and 
synergistic clinical usage patterns. However, most existing studies on acupuncture 

mechanisms either rely on statistical correlations or treat acupoints as independent units, 
failing to capture the networked structure and heterogeneous transmission behaviors of 
the meridian system. 

Graph neural networks (GNNs) have demonstrated strong capability in learning 
representations from complex networks, including biological networks, brain 

connectivity graphs, and medical knowledge graphs. Among them, graph attention 
networks (GATs) introduce attention mechanisms to adaptively learn the importance of 
neighboring nodes, making them particularly suitable for modeling non-uniform 

interaction strengths. This property aligns well with meridian theory, where different 
acupoints exhibit varying degrees of influence and transmission intensity within meridian 

pathways. Therefore, integrating GATs with meridian system modeling offers a 
principled and interpretable computational solution. 

In this study, we propose Meridian-GAT, a graph attention network-based 

framework for modeling meridian system mechanisms. Meridian-GAT represents 
acupoints as nodes and meridian, functional, and clinical relationships as weighted edges, 

enabling the learning of heterogeneous transmission patterns among acupoints. By 
incorporating multi-dimensional acupoint attributes and attention-based propagation, 

the proposed model provides both predictive performance and interpretability, 
supporting downstream tasks such as acupoint representation learning and acupuncture 
efficacy prediction. 

The main contributions of this work are summarized as follows: 
1) We formalize the meridian system as a complex graph, providing a unified 

network-based representation that integrates structural, functional, and clinical 
knowledge of acupoints. 

2) We propose Meridian-GAT, a novel graph attention network framework that 

captures heterogeneous acupoint interactions and non-uniform meridian 
transmission mechanisms. 

3) We demonstrate the effectiveness of Meridian-GAT through experimental 
evaluation, showing superior performance over baseline GNN models and 
offering interpretable insights consistent with classical meridian theory. 

This work establishes a computational foundation for quantitatively modeling 
meridian mechanisms and contributes to the interdisciplinary integration of TCM theory 

and modern graph-based machine learning. 

2. Literature Review 

In recent years, the intersection of traditional Chinese medicine (TCM) research and 
data-driven computational modeling has attracted increasing attention, driven by 

advances in artificial intelligence and network-based learning methods. This section 
reviews prior studies closely related to this work, including computational modeling of 
the meridian system, network-based analysis of acupuncture mechanisms, and graph 

neural network applications in biomedical knowledge modeling. 

2.1. Computational Modeling of the Meridian System 

Early attempts to model the meridian system primarily relied on statistical analysis 

and biophysical measurements. Studies explored correlations between meridian 
pathways and electrical conductivity, infrared radiation, and hemodynamic signals, 
aiming to provide experimental evidence for meridian existence [1,2]. Although these 

works contributed valuable empirical observations, they typically treated meridians as 
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isolated pathways and lacked a unified computational framework to capture system-level 
interactions. 

With the development of systems biology, several researchers began to conceptualize 
the meridian system as a functional network. For example, Liu et al. embed acupuncture 

knowledge into a graph, fuse RoBERTa-WWM-BiGRU-CRF with SoftLexicon and 
adversarial training for extraction, and replace similarity by co-occurrence matrix to 
accelerate point-disease association search, cutting consultation time and improving 

patient experience, offering a clear technical roadmap and innovation niche for follow-up 
studies [3]. Similarly, Wei et al. constructed disease-acupoint association networks to 

study acupuncture treatment regularities [4]. However, these approaches largely 
depended on handcrafted network metrics and did not leverage representation learning 
to model non-linear transmission mechanisms. 

2.2. Network-Based and Graph Modeling of Acupuncture Mechanisms 

Recent studies have increasingly adopted graph-based representations to explore 
acupuncture mechanisms. Complex network analysis has been used to investigate 

acupoint compatibility, meridian connectivity, and therapeutic synergy [5,6]. These works 
demonstrated that acupuncture prescriptions exhibit distinct network structures 
correlated with clinical efficacy. 

Nevertheless, most existing network-based studies employ static graphs and shallow 
analysis methods, such as centrality measures or clustering coefficients. They are limited 

in their ability to model heterogeneous interaction strengths and dynamic information 
propagation across meridian networks. As a result, the mechanistic interpretation of 
acupoint interactions remains largely qualitative and descriptive. 

2.3. Graph Neural Networks in Biomedical and Knowledge Modeling 

Graph neural networks (GNNs) have emerged as a powerful tool for learning from 
structured biomedical data, including protein-protein interaction networks, brain 

connectivity graphs, and medical knowledge graphs [7,8]. By iteratively aggregating 
neighborhood information, GNNs enable end-to-end learning of node and graph 
representations that capture complex relational patterns. 

Among various GNN architectures, graph attention networks (GATs) introduce 
attention mechanisms to learn adaptive weights for neighboring nodes, allowing the 

model to capture non-uniform interaction strengths [9]. GATs have been successfully 
applied to biological pathway analysis, drug-target interaction prediction, and disease 
network modeling [10,11]. These properties make GATs particularly suitable for modeling 

the meridian system, where acupoints exhibit heterogeneous functional importance and 
transmission intensity. 

Despite these advances, the application of GNNs to meridian system modeling 
remains largely unexplored. Existing studies either focus on general medical knowledge 
graphs or lack explicit alignment with TCM theoretical structures. To address these gaps, 

this work proposes Meridian-GAT, which integrates meridian knowledge with graph 
attention mechanisms to quantitatively model meridian system transmission and provide 

interpretable insights consistent with classical acupuncture theory [12]. 

3. Methodology 

3.1. Meridian Graph Construction 

In this study, the meridian system is formally represented as a weighted, multi-
relational graph 𝐺 = (𝑉, 𝐸, 𝑋, 𝐴), where 𝑉 denotes the set of acupoints, 𝐸 represents the 

set of edges encoding both anatomical and functional connections, 𝑋 ∈ 𝑅𝑁×𝑑  is the node 
feature matrix capturing multi-dimensional acupoint attributes, and 𝐴 ∈ 𝑅𝑁×𝑁  is the 
adjacency matrix representing edge weights. Each acupoint 𝑣𝑖 is described by a vector 

𝑥𝑖 = [𝑥𝑖
𝑙𝑜𝑐 , 𝑥𝑖

𝑚𝑒𝑟 , 𝑥𝑖
𝑓𝑢𝑛𝑐

] , where 𝑥𝑖
𝑙𝑜𝑐  encodes anatomical location coordinates and body 
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region information, 𝑥𝑖
𝑚𝑒𝑟  captures meridian affiliation, Yin-Yang property, and Five-

Element attributes, and 𝑥𝑖
𝑓𝑢𝑛𝑐

 encodes clinical indications and co-occurrence frequencies 

in acupuncture prescriptions. 
Edges are defined based on multiple criteria: direct meridian connectivity, functional 

similarity, and clinical co-occurrence patterns. The adjacency matrix is therefore a 
weighted combination: 

𝐴 = 𝜆1𝐴
𝑚𝑒𝑟𝑖𝑑𝑖𝑎𝑛 + 𝜆2𝐴

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 + 𝜆3𝐴
𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙       (1) 

where 𝜆1 , 𝜆2 , 𝜆3  are hyperparameters controlling the relative importance of 
structural and functional relations. This multi-relational graph construction (Figure 1) 

enables a more realistic representation of the heterogeneous interactions within the 
meridian system, providing the foundation for graph neural network modeling. 

 

Figure 1. Overall flowchart of the model. 

3.2. Meridian-GAT Architecture 

To capture the heterogeneous transmission mechanisms among acupoints, we 

propose Meridian-GAT, a graph attention network specifically designed for meridian 
system modeling. In Meridian-GAT, each node aggregates information from its neighbors 
using attention weights that reflect the relative influence of connected acupoints. For a 

node 𝑣𝑖 and its neighbor 𝑣𝑗, the unnormalized attention coefficient is computed as 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖 ∥ 𝑊ℎ𝑗])         (2) 

where ℎ𝑖  is the input feature of node 𝑖, 𝑊 is a learnable weight matrix, 𝑎 is the 

attention vector, and ∥  denotes vector concatenation. The normalized attention 
coefficient is obtained via a softmax function: 

𝛼𝑖𝑗 =
𝑒𝑥𝑝⁡(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝⁡(𝑒𝑖𝑘)𝑘∈𝑁(𝑖)
           (3) 

The updated node feature is then computed as 

ℎ′𝑖 = 𝜎(∑ 𝛼𝑖𝑗𝑊ℎ𝑗𝑗∈𝑁(𝑖) )           (4) 

where 𝜎(⁡) denotes a non-linear activation function, such as ELU. To improve the 

expressive power and stability, multi-head attention is employed: 

ℎ′𝑖 =∥𝑘=1
𝐾 𝜎(∑ 𝛼𝑖𝑗

(𝑘)
𝑗∈𝑁(𝑖) 𝑊(𝑘)ℎ𝑗)         (5) 

where 𝐾 represents the number of attention heads. This design allows Meridian-
GAT to learn diverse propagation patterns, corresponding to primary meridian pathways, 

collateral connections, and functional associations, while simultaneously providing 
interpretable attention scores. 
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3.3. Learning Objectives and Implementation Details 

Meridian-GAT is trained to capture both node-level and graph-level representations 
suitable for downstream tasks, such as acupoint function classification and acupuncture 

efficacy prediction. For node-level tasks, a standard cross-entropy loss is employed: 
𝐿𝑛𝑜𝑑𝑒 = −∑ 𝑦𝑖𝑙𝑜𝑔⁡ 𝑦̂𝑖

𝑁
𝑖=1            (6) 

where 𝑦𝑖 is the ground truth label of node 𝑖 and 𝑦̂𝑖 is the predicted probability. For 
graph-level tasks, such as predicting therapeutic outcomes for an acupoint set or 
prescription, a readout function aggregates node embeddings into a global graph 

representation: 
ℎ𝐺 = 𝑅𝐸𝐴𝐷𝑂𝑈𝑇({ℎ′𝑖 ⁡ ∣ ⁡𝑖 ∈ 𝐺})         (7) 

followed by a multi-layer perceptron to output predictions. The overall loss function 
combines task-specific objectives with a regularization term on attention weights to 
encourage sparsity and enhance interpretability: 

𝐿 = 𝐿𝑡𝑎𝑠𝑘 + 𝛽∑ ∣ 𝛼𝑖𝑗 ∣𝑖,𝑗            (8) 

where 𝛽 is a hyperparameter controlling regularization strength. 
Implementation is carried out using PyTorch Geometric. Meridian-GAT is 

constructed with two attention layers, hidden dimension 64, four attention heads per layer, 
dropout 0.3, and optimized with Adam at a learning rate of 0.001. This setup effectively 

balances model complexity, convergence stability, and interpretability, enabling the 
network to learn meaningful acupoint interactions and transmission mechanisms in the 
meridian system. 

4. Experiment 

4.1. Dataset Preparation 

The dataset used in this study is constructed to support graph-based modeling of 
meridian system mechanisms and integrates anatomical, theoretical, functional, and 
clinical knowledge from traditional Chinese medicine (TCM). Data are collected from 

multiple authoritative and publicly accessible sources, including standard TCM 
acupuncture textbooks, national acupoint atlases, and peer-reviewed clinical literature 

indexed in Google Scholar. These sources provide standardized definitions of acupoints, 
meridian pathways, and disease-acupoint associations, ensuring consistency and 
reliability of the dataset. 

The core of the dataset consists of 361 standardized acupoints, which are treated as 
graph nodes in the Meridian-GAT framework. For each acupoint, multi-dimensional node 

features are constructed. Spatial features include normalized anatomical coordinates and 
body region identifiers. Meridian-related features encode meridian affiliation (14 primary 
meridians), Yin-Yang classification, and Five-Element attributes. Functional features are 

derived from disease indications and therapeutic categories extracted from clinical texts, 
represented as multi-label vectors. In addition, clinical usage frequency is incorporated 

based on the statistical occurrence of acupoints in acupuncture prescriptions. 
Graph edges represent heterogeneous relationships among acupoints. Structural 

edges are defined according to classical meridian connectivity, linking adjacent acupoints 

along the same meridian. Functional edges are constructed based on similarity between 
acupoint indications, computed using co-occurrence statistics. Clinical edges capture joint 

usage patterns of acupoints in prescriptions, reflecting synergistic therapeutic 
relationships. Edge weights are normalized and combined to form a weighted adjacency 
matrix. 

Overall, the dataset (Figure 2) provides a comprehensive and structured 
representation of the meridian system, enabling Meridian-GAT to learn meaningful 

acupoint representations and model heterogeneous transmission mechanisms within the 
meridian network. 
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Figure 2. Schematic diagram of the dataset used in this study. 

4.2. Experimental Setup 

The experimental environment was designed to emulate a realistic cloud-edge 
collaborative training scenario, where large‐scale models reside primarily on cloud 

servers while adaptive lightweight components are deployed on heterogeneous edge 
devices. The cloud side was hosted on an NVIDIA A100 GPU cluster (80 GB memory per 

GPU) connected to a distributed storage backend, while the edge environment consisted 
of Jetson AGX Xavier units and mobile ARM-based computational nodes with 
significantly constrained memory and compute resources. All experiments were 

conducted using PyTorch 2.2 with CUDA 12.2, and the HMCO-AT framework was 
instantiated on both ends to enable hierarchical orchestration of gradient checkpoints, 

memory-compute scheduling, and adversarial training routines. To ensure consistency, 
each model was trained using identical hyperparameters unless modifications were 
required by the adaptive training controller. The communication bandwidth between 

cloud and edge devices was artificially varied from 10 Mbps to 200 Mbps to reflect real-
world network dynamics, enabling evaluation of HMCO-AT's robustness in unstable 

training environments. 

4.3. Evaluation Metrics 

To comprehensively assess model performance, multiple evaluation metrics are 
employed depending on the task. For acupoint function prediction and disease-acupoint 

association classification, Accuracy, Precision, Recall, and F1-score are reported to reflect 
classification effectiveness under class imbalance. For link prediction tasks that evaluate 

the model's ability to infer latent relationships between acupoints, the Area Under the 
ROC Curve (AUC) and Average Precision (AP) are used. These metrics are particularly 
suitable for graph-based inference tasks, as they measure ranking quality and robustness 

against threshold selection. All reported results are averaged over five independent runs 
with different random seeds to ensure statistical stability and reproducibility. 

4.4. Results 

The results in Table 1 demonstrate that the proposed Meridian-GAT consistently 

achieves the highest predictive performance among all compared methods. Conventional 
neural network approaches, such as MLP, exhibit relatively inferior performance because 

they fail to capture the intrinsic network structure of the meridian system. By contrast, 
standard graph neural network models, including GCN and GrasphSAGE, show marked 
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improvements, underscoring the critical role of structural relationships among acupoints 
in modeling acupuncture mechanisms. GAT further enhances performance by 

introducing attention mechanisms, which improve predictive metrics. Notably, Meridian-
GAT outperforms all baseline methods across every evaluation metric, including accuracy, 

F1-score, AUC, and average precision (AP). These results indicate that explicitly modeling 
heterogeneous and non-uniform transmission strengths yields more discriminative and 
informative acupoint representations. Overall, the findings confirm that graph modeling 

based on attention mechanisms provides a more accurate and effective computational 
description of meridian interactions. 

Table 1. Performance Comparison of Different Models. 

Model  Accuracy (%) F1-score (%) AUC (%) AP (%) 

MLP 71.3 69.8 75.2 73.5 

GCN 78.6 77.1 82.4 80.9 

GraphSAGE 80.1 79.3 84.7 83.2 

GAT 82.4 81.6 86.9 85.5 

Meridian-GAT 

(Ours) 
86.9 85.7 91.3 90.1 

Figure 3 illustrates the training and validation loss curves of Meridian-GAT over 200 
training epochs. Both curves exhibit a consistent downward trend, indicating continuous 
improvement in predictive performance throughout the training process. In the early 

stages of training, the loss values decrease sharply, suggesting that the model effectively 
learns the fundamental structural and functional relationships among acupoints. As 

training proceeds, the rate of loss reduction gradually diminishes and the curves approach 
a stable plateau, reflecting the convergence of the model toward an optimal set of 
parameters.  

 

Figure 3. Loss function during training process. 

Throughout the training process, the training loss remains slightly lower than the 
validation loss, which is expected given that the model is directly optimized on the 

training dataset. Importantly, the two curves remain closely aligned and do not exhibit 
noticeable divergence, indicating that the model maintains a favorable balance between 

fitting the training data and preserving generalization performance. Moreover, the 
absence of any abrupt increase in validation loss suggests that overfitting does not occur 
during training. Overall, the smooth and stable convergence behavior demonstrates that 

Meridian-GAT constitutes a robust and effective learning framework for modeling the 
heterogeneous interactions among acupoints. 
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4.5. Discussion 

The experimental results confirm that the meridian system can be effectively 
represented as a graph structure and that attention-based graph neural networks are well 

suited for modeling its complex mechanisms. Meridian-GAT demonstrates superior 
performance by learning interpretable attention weights that reflect both classical 

meridian theory and empirical clinical knowledge. Unlike traditional GNNs, the 
proposed framework captures heterogeneous interactions among acupoints, offering a 
data-driven explanation for functional transmission along meridians. From a biomedical 

perspective, this provides a computational bridge between traditional Chinese medicine 
theory and modern network science. Moreover, the learned node embeddings and 

attention patterns have strong potential for downstream applications, such as 
acupuncture prescription recommendation and therapeutic effect prediction. Despite 
these promising results, future work could incorporate multimodal physiological signals 

and longitudinal clinical outcomes to further enhance model robustness and 
interpretability. 

5. Conclusions 

This study aims to address the absence of a unified quantitative framework for 

modeling meridian systems in traditional Chinese medicine (TCM). To this end, 
acupuncture points and their interrelationships are represented as a complex graph, and 

a graph attention network is employed for analytical modeling. This approach enables the 
computational characterization of heterogeneous conduction mechanisms and functional 

connections among acupuncture points. The primary objective is to develop an 
interpretable, data-driven model that explains meridian conduction patterns and 
enhances related predictive tasks. 

Through data analysis, we have identified the following key findings:  
(1) Graph-based models effectively capture the structural and functional 

relationships among acupuncture points;  
(2) Attention mechanisms are capable of capturing the non-uniform conduction 

intensities within the meridian network. 

(3) The proposed Meridian-GAT significantly outperforms baseline neural network 
models and existing graph-based approaches across multiple evaluation metrics. These 

results demonstrate that attention-driven graph learning provides a richer and more 
realistic computational representation of meridian interactions. 

The findings of this study have important implications for acupuncture informatics 

and computational TCM research. First, representing the meridian system as a graph 
introduces a novel quantitative perspective for interpreting classical meridian theory. 

Second, the incorporation of attention mechanisms moves beyond traditional qualitative 
descriptions by offering measurable indicators of acupoint importance and conduction 
intensity. Finally, the strong performance of Meridian-GAT opens new research avenues, 

enabling the application of modern machine learning techniques to predict therapeutic 
efficacy, optimize prescription formulation, and explore underlying physiological 

mechanisms. 
Despite these contributions, the study has several limitations. It relies primarily on 

structured knowledge-based datasets and lacks real-time physiological measurement 

data. Future research may focus on multimodal data integration, incorporating 
bioelectrical signals and medical imaging data. In addition, temporal modeling of 

dynamic meridian responses during acupuncture treatment represents a promising 
direction for further investigation. 

In conclusion, this study demonstrates that the meridian system can be quantitatively 

modeled as a complex interactive network using graph-based learning and attention-
driven methods. The proposed framework offers new insights into the modernization and 

scientific interpretation of traditional acupuncture theory. 
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