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Abstract: Accurate prediction of protein-ligand binding affinity is a fundamental step in drug and 
vaccine development, particularly for pediatric gastrointestinal diseases such as peptic ulcers, 
Crohn's disease, and ulcerative colitis. Traditional computational methods, including molecular 
docking and physics-based simulations, often suffer from limited accuracy and high computational 
costs. To address these limitations, this study proposes a prediction framework based on Graph 
Neural Networks (GNNs), which naturally represent the structural and relational characteristics of 
protein-ligand complexes. Using publicly available datasets derived from PDBbind and BindingDB, 
a subset of protein targets highly relevant to pediatric gastrointestinal disorders was curated. 
Protein-ligand complexes were preprocessed to construct heterogeneous molecular graphs, with 
atoms as nodes and bonds or intermolecular interactions as edges. Multiple GNN architectures-
including Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Graph 
Isomorphism Networks (GIN)-were compared to evaluate prediction performance. Experimental 
results demonstrate that the GIN-based model achieved the best performance, with a mean squared 
error (MSE) of 2.05 and a Mean Absolute Error (MAE) of 1.05, outperforming traditional baselines 
such as RNN-based methods. These findings highlight the potential of graph-based deep learning 
approaches for accelerating drug discovery in pediatric gastroenterology by providing accurate, 
scalable, and generalizable predictions of binding affinity. 
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1. Introduction 
Pediatric gastrointestinal (GI) diseases—such as peptic ulcers, Crohn’s disease, and 

ulcerative colitis—rank among the leading disorders compromising children’s health 
worldwide [1]. These conditions not only cause severe abdominal pain, diarrhea, and 
malnutrition but also lead to long-term complications including immune dysregulation, 
developmental delay, and increased susceptibility to secondary infections. In many low- 
and middle-income regions, delayed diagnosis and insufficient therapeutic precision 
exacerbate morbidity and mortality, underscoring the urgent need for effective, child-
specific treatment strategies. Recent advances in molecular biology and medicinal 
chemistry have identified several key molecular drivers, including H⁺/K⁺-ATPase, COX-
2, TNF-α, and the IL-10 receptor, which are now considered critical targets for drug and 
vaccine development in pediatric gastroenterology. 

A fundamental step in this process is the accurate prediction of protein–ligand 
binding affinity, which determines the strength and specificity of molecular interactions. 
Reliable affinity prediction facilitates early triage of potential drug candidates and 

Received: 11 September 2025 

Revised: 19 September 2025 

Accepted: 15 October 2025 

Published: 20 October 2025 

 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

https://doi.org/10.71222/cqdej148


Journal of Medicine and Life Sciences https://www.gbspress.com/index.php/JMLS 
 

Vol. 1 No. 3 (2025) 137 https://doi.org/10.71222/cqdej148 

significantly reduces the cost and time associated with high-throughput experimental 
screening. However, traditional computational approaches such as molecular docking 
and molecular dynamics (MD) simulations often suffer from high computational 
overhead, limited predictive accuracy, and poor scalability to large compound libraries 
[2]. These limitations motivate the adoption of more data-driven, scalable, and 
generalizable predictive frameworks. 

Recent breakthroughs in artificial intelligence, particularly deep learning, have 
demonstrated remarkable potential in molecular modeling. Among these, graph neural 
networks (GNNs) have gained increasing attention due to their ability to represent 
molecular structures as graphs—where atoms serve as nodes and chemical bonds or non-
bonded interactions as edges—thus naturally capturing complex topological and 
chemical relationships [3]. GNN-based models, including graph convolutional networks 
(GCN), graph attention networks (GAT), and graph isomorphism networks (GIN), have 
shown superior performance in binding-affinity prediction compared with conventional 
methods. 

In this study, we propose a GNN-based framework specifically tailored to pediatric 
GI disease targets. We curate a high-quality dataset of protein–ligand complexes 
encompassing the major pediatric GI biomarkers and perform standardized 
preprocessing and feature extraction. Our contributions are threefold: (1) a systematic 
evaluation and comparison of multiple GNN architectures (GCN, GAT, GIN) for binding-
affinity prediction; (2) an optimized model pipeline that enhances both prediction 
accuracy and computational efficiency for virtual screening; and (3) empirical evidence 
that deep graph learning provides a robust foundation for accelerating drug and vaccine 
discovery against pediatric gastrointestinal diseases. 

2. Related Work 
Protein-ligand binding-affinity prediction has long been a central task in drug 

discovery and virtual screening. Traditional approaches rely primarily on molecular 
docking, molecular-dynamics simulation and empirical scoring functions to estimate 
binding free energy, yet they suffer from high computational cost and efficiency 
bottlenecks when handling large-scale complexes. Recently, the rapid development of 
deep learning has prompted numerous studies to learn binding-energy patterns directly 
from molecular structures and topological features, markedly improving both prediction 
accuracy and computational efficiency. 

Wang Y et al. systematically reviewed deep-learning affinity predictors, categorizing 
them into CNN, GNN and Transformer families, benchmarked representative models on 
PDBbind v2016, and achieved a 1.6 % RMSE reduction and 2.9 % R improvement via 
ensemble, thereby offering a clear methodological map and performance baseline that 
positions our subsequent research [4]. Wang H et al. systematically survey DL-driven 
protein-ligand affinity predictors, summarizing databases, featurisation and architectures 
while identifying quality, representation and design bottlenecks, thus furnishing a clear 
roadmap that anchors our study amid rapidly expanding binding-affinity literature and 
highlights where methodological innovation is still required [5]. 

Wang K et al. present DeepDTAF, a sequence-only deep model that couples local 
pocket descriptors with dilated-convolution-based global context to predict protein-
ligand affinity, attaining superior accuracy over structure-dependent baselines and 
demonstrating the feasibility of low-cost, structure-free screening for drug discovery [6]. 
Li et al. present DeepAtom, a 3D-CNN framework that automatically extracts atomic-
interaction patterns from voxelised complexes, achieving R=0.83 and RMSE=1.23 on 
PDBbind v.2016 and Astex sets, outperforming existing scoring functions and offering a 
lightweight, accurate binding-affinity predictor for docking and virtual screening [7]. 

Liu et al. pioneer Dowker-complex representations of protein–ligand interactions, 
generating multiscale complexes via filtration and extracting Hodge-Laplacian spectra 
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plus Riemann ζ functions as descriptors. Their DC-GBT model surpasses all traditional-
descriptor SOTA on PDBbind-2007/2013/2016, offering a novel topological paradigm for 
AI-driven drug design [8]. 

Cang et al. introduce element-specific persistent homology (ESPH) to embed 
geometric–biological detail into topological invariants, bridging high-dimensional 
complexity and abstract topology. Coupled with machine learning, ESPH surpasses 
existing affinity predictors on two large datasets, uncovering hydrophobic interactions up 
to 40 Å from the binding site and offering a powerful paradigm for rational drug and 
protein design [9]. 

Target-oriented prediction for pediatric gastrointestinal disorders-such as Crohn's 
disease, ulcerative colitis, and gastric ulcer-remains underexplored despite key protein 
targets (TNF-α, IL-6, integrins, EGFR, GPCRs) being central to inflammation and immune 
regulation. Existing affinity models trained on PDBbind, BindingDB, and ChEMBL 
seldom address pediatric indications. Recent advances show GNN-based binding-affinity 
prediction expanding from general DTI tasks to oncology, autoimmune, and infectious 
diseases. However, no pipeline specifically serves pediatric GI contexts. We propose a 
tailored GNN framework integrating structural and interactional features of protein-
ligand complexes to accelerate drug/vaccine discovery and advance precision medicine 
for childhood gastrointestinal diseases [10]. 

3. Methodology 
This study proposes a Graph Neural Network (GNN)-based framework to model 

and optimize the binding affinity between target proteins associated with pediatric 
gastrointestinal diseases and their ligands. The overall idea is to represent the protein-
ligand complex as a graph, where graph convolutions and message-passing mechanisms 
learn high-order features of nodes and edges, thereby enabling accurate estimation of 
binding energy. 

3.1. Data Representation and Graph Construction 
In modeling protein-ligand binding, molecules are naturally suited to a graph 

representation. Specifically, the protein-ligand complex is modeled as a heterogeneous 
graph G = (V, E), where the node set V denotes atoms and the edge set E denotes chemical 
bonds or spatial interactions. Each node vi ∈ V is endowed with a feature vector hi 
containing atom type, charge state, hybridization, amino-acid residue position, etc. Each 
edge eij ∈ E is encoded by a feature vector eij capturing bond information (single, double, 
aromatic) or 3-D interactions (hydrogen bonds, hydrophobic contacts, van der Waals 
forces, etc.). 

Mathematically, the initial node features are written as 
𝑋𝑋 = {𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑  | 𝑖𝑖 = 1,2, . . . , |𝑉𝑉|},         (1) 
where d is the atom-feature dimension. The edge features are expressed as 
𝐸𝐸 = {𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑘𝑘 | (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 },          (2) 
where k is the edge-feature dimension. 

3.2. Graph Neural Network Framework 
Under the canonical Message-Passing Neural Network (MPNN) paradigm, node 

features are refined at each layer by incorporating information from neighboring nodes 
and edges. Concretely, at layer t, node 𝑣𝑣𝑖𝑖 first gathers messages from its neighbors: 

𝑚𝑚𝑖𝑖
(𝑡𝑡) = ∑ 𝑀𝑀𝑗𝑗∈𝑁𝑁(𝑖𝑖) (ℎ𝑖𝑖

(𝑡𝑡),ℎ𝑗𝑗
(𝑡𝑡), 𝑒𝑒𝑖𝑖𝑖𝑖),         (3) 

Where ℎ𝑖𝑖
(𝑡𝑡)denotes the representation of node i at layer t, N(i) is the set of neighboring 

nodes, and M(·) is a message function-typically a multi-layer perceptron (MLP). 
The node state is then updated via: 
ℎ𝑖𝑖

(𝑡𝑡+1) = 𝑈𝑈(ℎ𝑖𝑖
(𝑡𝑡),𝑚𝑚𝑖𝑖

(𝑡𝑡)),           (4) 
where U(·) is an update function implemented by a GRU or MLP. 
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After T iterations, the final node embeddings are aggregated into a graph-level 
representation: 

ℎ𝐺𝐺 = READOUT({hi
(T)|i ∈ V}),          (5) 

with READOUT being a global pooling operation such as average pooling, max 
pooling, or attention-weighted pooling. 

3.3. Binding-Energy Prediction Module 

After obtaining the graph-level representationℎ𝐺𝐺, a regression head is used to predict 
the protein-ligand binding energy. Let the true binding free energy be y and the predicted 
value be 𝑦𝑦�; the model output is defined as 

𝑦𝑦� = 𝑓𝑓(ℎ𝐺𝐺;𝜃𝜃),             (6) 
where f(·) denotes a fully-connected regression function and θ represents the 

trainable parameters. The loss function is the mean-squared error (MSE): 
𝐿𝐿 = 1

𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖−1             (7) 

with N being the number of samples. 

3.4. Implementation Details for Pediatric Gastrointestinal Diseases 
In this study we selected representative target proteins closely related to pediatric 

gastrointestinal diseases e.g., TNF-α, IL-6 receptor, EGFR and specific GPCR family 
members-and extracted their complex structures with small-molecule ligands from public 
databases such as PDBbind and BindingDB. For each protein-ligand pair we obtained 3-
D coordinates and constructed the corresponding graph input, while physicochemical 
descriptors (number of H-bond donors/acceptors, polar surface area, molecular weight, 
etc.) were incorporated as complementary features.(The overall structure of the model is 
shown in Figure 1). 

 
Figure 1. Overall flowchart of the model. 

Through this design the proposed approach not only captures local chemical 
interaction patterns between proteins and ligands, but also leverages the global 
information-aggregation mechanism within the GNN to extract holistic interaction 
features, thereby enhancing both the accuracy and generalization capability of binding-
energy prediction for drug/vaccine development against pediatric gastrointestinal 
diseases. 

4. Experiment 
4.1. Dataset Preparation 

Protein-ligand complexes were collected from PDBbind (version 2020) and 
BindingDB (As shown in Figure 2). We specifically extracted targets known to play a role 
in pediatric gastrointestinal diseases, such as TNF-α, IL-10 receptor, COX-2, and H+/K+-
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ATPase. Each complex was labeled with experimentally determined binding affinities (Kd, 
Ki, or IC50 values), which were standardized into binding free energy (ΔG). 

To ensure data quality, complexes with missing structural information or ambiguous 
affinity measurements were removed. Molecular structures were processed using RDKit 
to standardize protonation states and remove duplicate entries. Finally, approximately 
3,200 high-quality complexes were retained for model training, validation, and testing 
(split ratio: 70%/15%/15%). 

 
Figure 2. Schematic diagram of protein ligand binding. 

4.2. Experimental Setup 
The experiments were conducted on a high-performance server equipped with an 

NVIDIA Tesla V100 GPU (32 GB memory) running Ubuntu 20.04. The deep learning 
framework used was PyTorch 1.12. The models were trained using the Adam optimizer 
with an initial learning rate of 1e-4, which was dynamically adjusted based on validation 
performance. To prevent overfitting, dropout (p = 0.2) and early stopping (patience = 10) 
were applied during training. The dataset was split into training, validation, and test sets 
with a ratio of 8:1:1, and all features were normalized before splitting to ensure consistent 
value distributions. Each experiment was repeated five times, and the average 
performance was reported to mitigate the effects of randomness. 

4.3. Results 
Table 1 presents the performance of different models on the protein-ligand binding 

affinity prediction task related to pediatric gastrointestinal diseases. The results indicate 
that GNN-based models generally outperform traditional deep learning approaches, with 
GAT and GIN demonstrating superior ability to capture the topological structures of 
molecular graphs, leading to better performance in RMSE and MAE. In contrast, 
sequence-based models such as the RNN baseline show limitations when applied to 
molecular graph prediction. 

Table 1. Forecasting results across models (average of 5 furniture categories). 

Model MSE RMSE MAE  
RNN 2.87 1.69 1.34 
GCN 2.45 1.56 1.21 
GAT 2.18 1.48 1.15 
GIN 2.05 1.43 1.05 

Table 1 compares four models on the protein-ligand binding affinity prediction task 
using MSE, RMSE, and MAE. The Informer baseline records MSE 2.87, RMSE 1.69, and 
MAE 1.34, showing limits in modeling molecular graphs. GCN improves performance 
(MSE 2.45, RMSE 1.56, MAE 1.21), reflecting its ability to capture local topologies. GAT 
achieves further gains (MSE 2.18, RMSE 1.48, MAE 1.15) by weighting neighbor node 
importance via attention. GIN yields the best results (MSE 2.05, RMSE 1.43, MAE 1.08), 
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highlighting its strength in learning molecular substructures. Overall, GIN demonstrates 
superior accuracy, underscoring its potential in molecular modeling and drug discovery. 

The figure 3 illustrates the convergence behavior of the GNN model. The figure 
presents a graph illustrating the loss function behavior during the training process of a 
Graph Neural Network (GNN). The x-axis represents the training epochs, denoting how 
many times the model has iterated over the dataset. The y-axis represents the loss value, 
which measures the prediction error of the model. The blue curve, labeled training loss, 
and the orange curve, labeled validation loss, both show a consistent downward trend as 
training progresses. This indicates that the model not only reduces its error on the training 
data but also generalizes well to the validation set. The figure highlights that the GNN 
achieves stable convergence without significant signs of overfitting, demonstrating the 
effectiveness of the training strategy. 

 
Figure 3. Loss function during training process. 

5. Conclusion 
This study aims to address the potential application of predicting protein–ligand 

binding affinity in pediatric gastrointestinal diseases with graph neural network (GNN) 
methods on model protein–ligand complexes. The results demonstrate that GNNs have 
more potential to surpass traditional approaches, such as molecular docking and 
sequence-based deep learning, in accuracy and scalability. The primary object of this 
research is to build a precise and efficient computational framework to accelerate drug 
discovery in pediatric gastroenterology. 

Through data analysis, the results demonstrate the following key findings: 1. GNN-
based models presented better binding-affinity prediction compared to traditional RNN 
baselines. 2. Attention mechanisms can largely improve the recognition of critical protein–
ligand interactions. 3. Graph Isomorphism Network (GIN) achieves better predictive 
performance than traditional RNN-based baselines, with an MSE of 2.05 and MAE of 1.05. 
These findings suggest that GNNs have better results compared to the traditional model. 
Also, Graph-based architectures provide a robust application for molecular modeling. 

The results of this study have significant implications for the field of computational 
drug discovery. Firstly, the significant advantages of GNNs provide a new perspective 
for binding affinity modeling. Secondly, GAT and GIN demonstrate exceptional ability to 
capture molecular graph topology with limited limitations. challenges the existing 
traditional networks. Finally, those graph-based frameworks with reliable experimental 
results open new avenues for pediatric-specific drug and vaccine design as well as 
precision medicine in pediatric gastrointestinal diseases.  

Despite the important findings, this study has some limitations, such as the current 
public dataset may limit coverage of pediatric-specific protein targets. Future research 
could combine molecular dynamics with GNNs and multimodal data such as biomarkers 
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and gene expression to improve specificity and generalization. It could enhance the 
application of GNNs in drug and vaccine discovery and development by providing more 
accurate and efficient computational tools in the treatment of pediatric gastrointestinal 
diseases. 

In conclusion, this study, through a comparative evaluation of GNN architectures 
with graph-based models, reveals significantly enhanced protein-ligand binding-affinity 
prediction compared to traditional models. The results provide new insights for the 
development of drugs and vaccines in pediatric gastroenterology. 
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