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Abstract: Accurate prediction of protein-ligand binding affinity is a fundamental step in drug and
vaccine development, particularly for pediatric gastrointestinal diseases such as peptic ulcers,
Crohn's disease, and ulcerative colitis. Traditional computational methods, including molecular
docking and physics-based simulations, often suffer from limited accuracy and high computational
costs. To address these limitations, this study proposes a prediction framework based on Graph
Neural Networks (GNNs), which naturally represent the structural and relational characteristics of
protein-ligand complexes. Using publicly available datasets derived from PDBbind and BindingDB,
a subset of protein targets highly relevant to pediatric gastrointestinal disorders was curated.
Protein-ligand complexes were preprocessed to construct heterogeneous molecular graphs, with
atoms as nodes and bonds or intermolecular interactions as edges. Multiple GNN architectures-
including Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Graph
Isomorphism Networks (GIN)-were compared to evaluate prediction performance. Experimental
results demonstrate that the GIN-based model achieved the best performance, with a mean squared
error (MSE) of 2.05 and a Mean Absolute Error (MAE) of 1.05, outperforming traditional baselines
such as RNN-based methods. These findings highlight the potential of graph-based deep learning
approaches for accelerating drug discovery in pediatric gastroenterology by providing accurate,
scalable, and generalizable predictions of binding affinity.

Keywords: protein ligand binding affinity; graph neural networks; pediatric gastrointestinal
diseases; drug discovery; vaccine development

1. Introduction

Pediatric gastrointestinal (GI) diseases—such as peptic ulcers, Crohn’s disease, and
ulcerative colitis—rank among the leading disorders compromising children’s health
worldwide [1]. These conditions not only cause severe abdominal pain, diarrhea, and
malnutrition but also lead to long-term complications including immune dysregulation,
developmental delay, and increased susceptibility to secondary infections. In many low-
and middle-income regions, delayed diagnosis and insufficient therapeutic precision
exacerbate morbidity and mortality, underscoring the urgent need for effective, child-
specific treatment strategies. Recent advances in molecular biology and medicinal
chemistry have identified several key molecular drivers, including H*/K*-ATPase, COX-
2, TNF-a, and the IL-10 receptor, which are now considered critical targets for drug and
vaccine development in pediatric gastroenterology.

A fundamental step in this process is the accurate prediction of protein-ligand
binding affinity, which determines the strength and specificity of molecular interactions.
Reliable affinity prediction facilitates early triage of potential drug candidates and
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significantly reduces the cost and time associated with high-throughput experimental
screening. However, traditional computational approaches such as molecular docking
and molecular dynamics (MD) simulations often suffer from high computational
overhead, limited predictive accuracy, and poor scalability to large compound libraries
[2]. These limitations motivate the adoption of more data-driven, scalable, and
generalizable predictive frameworks.

Recent breakthroughs in artificial intelligence, particularly deep learning, have
demonstrated remarkable potential in molecular modeling. Among these, graph neural
networks (GNNs) have gained increasing attention due to their ability to represent
molecular structures as graphs—where atoms serve as nodes and chemical bonds or non-
bonded interactions as edges—thus naturally capturing complex topological and
chemical relationships [3]. GNN-based models, including graph convolutional networks
(GCN), graph attention networks (GAT), and graph isomorphism networks (GIN), have
shown superior performance in binding-affinity prediction compared with conventional
methods.

In this study, we propose a GNN-based framework specifically tailored to pediatric
GI disease targets. We curate a high-quality dataset of protein-ligand complexes
encompassing the major pediatric GI biomarkers and perform standardized
preprocessing and feature extraction. Our contributions are threefold: (1) a systematic
evaluation and comparison of multiple GNN architectures (GCN, GAT, GIN) for binding-
affinity prediction; (2) an optimized model pipeline that enhances both prediction
accuracy and computational efficiency for virtual screening; and (3) empirical evidence
that deep graph learning provides a robust foundation for accelerating drug and vaccine
discovery against pediatric gastrointestinal diseases.

2. Related Work

Protein-ligand binding-affinity prediction has long been a central task in drug
discovery and virtual screening. Traditional approaches rely primarily on molecular
docking, molecular-dynamics simulation and empirical scoring functions to estimate
binding free energy, yet they suffer from high computational cost and efficiency
bottlenecks when handling large-scale complexes. Recently, the rapid development of
deep learning has prompted numerous studies to learn binding-energy patterns directly
from molecular structures and topological features, markedly improving both prediction
accuracy and computational efficiency.

Wang Y et al. systematically reviewed deep-learning affinity predictors, categorizing
them into CNN, GNN and Transformer families, benchmarked representative models on
PDBbind v2016, and achieved a 1.6 % RMSE reduction and 2.9 % R improvement via
ensemble, thereby offering a clear methodological map and performance baseline that
positions our subsequent research [4]. Wang H et al. systematically survey DL-driven
protein-ligand affinity predictors, summarizing databases, featurisation and architectures
while identifying quality, representation and design bottlenecks, thus furnishing a clear
roadmap that anchors our study amid rapidly expanding binding-affinity literature and
highlights where methodological innovation is still required [5].

Wang K et al. present DeepDTAF, a sequence-only deep model that couples local
pocket descriptors with dilated-convolution-based global context to predict protein-
ligand affinity, attaining superior accuracy over structure-dependent baselines and
demonstrating the feasibility of low-cost, structure-free screening for drug discovery [6].
Li et al. present DeepAtom, a 3D-CNN framework that automatically extracts atomic-
interaction patterns from voxelised complexes, achieving R=0.83 and RMSE=1.23 on
PDBbind v.2016 and Astex sets, outperforming existing scoring functions and offering a
lightweight, accurate binding-affinity predictor for docking and virtual screening [7].

Liu et al. pioneer Dowker-complex representations of protein-ligand interactions,
generating multiscale complexes via filtration and extracting Hodge-Laplacian spectra
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plus Riemann C functions as descriptors. Their DC-GBT model surpasses all traditional-
descriptor SOTA on PDBbind-2007/2013/2016, offering a novel topological paradigm for
Al-driven drug design [8].

Cang et al. introduce element-specific persistent homology (ESPH) to embed
geometric-biological detail into topological invariants, bridging high-dimensional
complexity and abstract topology. Coupled with machine learning, ESPH surpasses
existing affinity predictors on two large datasets, uncovering hydrophobic interactions up
to 40 A from the binding site and offering a powerful paradigm for rational drug and
protein design [9].

Target-oriented prediction for pediatric gastrointestinal disorders-such as Crohn's
disease, ulcerative colitis, and gastric ulcer-remains underexplored despite key protein
targets (TNF-a, IL-6, integrins, EGFR, GPCRs) being central to inflammation and immune
regulation. Existing affinity models trained on PDBbind, BindingDB, and ChEMBL
seldom address pediatric indications. Recent advances show GNN-based binding-affinity
prediction expanding from general DTI tasks to oncology, autoimmune, and infectious
diseases. However, no pipeline specifically serves pediatric GI contexts. We propose a
tailored GNN framework integrating structural and interactional features of protein-
ligand complexes to accelerate drug/vaccine discovery and advance precision medicine
for childhood gastrointestinal diseases [10].

3. Methodology

This study proposes a Graph Neural Network (GNN)-based framework to model
and optimize the binding affinity between target proteins associated with pediatric
gastrointestinal diseases and their ligands. The overall idea is to represent the protein-
ligand complex as a graph, where graph convolutions and message-passing mechanisms
learn high-order features of nodes and edges, thereby enabling accurate estimation of
binding energy.

3.1. Data Representation and Graph Construction

In modeling protein-ligand binding, molecules are naturally suited to a graph
representation. Specifically, the protein-ligand complex is modeled as a heterogeneous
graph G = (V, E), where the node set V denotes atoms and the edge set E denotes chemical
bonds or spatial interactions. Each node vi € V is endowed with a feature vector hi
containing atom type, charge state, hybridization, amino-acid residue position, etc. Each
edgeeij € Eisencoded by a feature vector eij capturing bond information (single, double,
aromatic) or 3-D interactions (hydrogen bonds, hydrophobic contacts, van der Waals
forces, etc.).

Mathematically, the initial node features are written as

X={q€R | i=12,..]|V|} 1)
where d is the atom-feature dimension. The edge features are expressed as
E={e;€R" | (,j))EE }, (2)

where k is the edge-feature dimension.

3.2. Graph Neural Network Framework

Under the canonical Message-Passing Neural Network (MPNN) paradigm, node
features are refined at each layer by incorporating information from neighboring nodes
and edges. Concretely, at layer ¢, node v; first gathers messages from its neighbors:

m? = Tjeny M (1, eip), ©

Where hgt)denotes the representation of node i at layer t, N(i) is the set of neighboring
nodes, and M(*) is a message function-typically a multi-layer perceptron (MLP).

The node state is then updated via:

KD = y(h®,m®), 4)

where U() is an update function implemented by a GRU or MLP.
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After T iterations, the final node embeddings are aggregated into a graph-level
representation:

h; = READOUT({h\"|i € V}), )

with READOUT being a global pooling operation such as average pooling, max
pooling, or attention-weighted pooling.

3.3. Binding-Energy Prediction Module

After obtaining the graph-level representationh;, a regression head is used to predict
the protein-ligand binding energy. Let the true binding free energy be y and the predicted
value be y; the model output is defined as

y = f(he; ), (©)

where f(-) denotes a fully-connected regression function and © represents the
trainable parameters. The loss function is the mean-squared error (MSE):

L=-3N i = 90)? )

with N being the number of samples.

3.4. Implementation Details for Pediatric Gastrointestinal Diseases

In this study we selected representative target proteins closely related to pediatric
gastrointestinal diseases e.g., TNF-a, IL-6 receptor, EGFR and specific GPCR family
members-and extracted their complex structures with small-molecule ligands from public
databases such as PDBbind and BindingDB. For each protein-ligand pair we obtained 3-
D coordinates and constructed the corresponding graph input, while physicochemical
descriptors (number of H-bond donors/acceptors, polar surface area, molecular weight,
etc.) were incorporated as complementary features.(The overall structure of the model is
shown in Figure 1).

Framework of GNN-Based Protein-Ligand Binding Affinity Prediction
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Figure 1. Overall flowchart of the model.

Through this design the proposed approach not only captures local chemical
interaction patterns between proteins and ligands, but also leverages the global
information-aggregation mechanism within the GNN to extract holistic interaction
features, thereby enhancing both the accuracy and generalization capability of binding-
energy prediction for drug/vaccine development against pediatric gastrointestinal
diseases.

4. Experiment
4.1. Dataset Preparation

Protein-ligand complexes were collected from PDBbind (version 2020) and
BindingDB (As shown in Figure 2). We specifically extracted targets known to play a role
in pediatric gastrointestinal diseases, such as TNF-a, IL-10 receptor, COX-2, and H+/K+-

Vol. 1 No. 3 (2025)

139 https://doi.org/10.71222/cqdej148


https://www.gbspress.com/index.php/JMLS
https://doi.org/10.71222/cqdej148

Journal of Medicine and Life Sciences

https://www.gbspress.com/index.php/JMLS

ATPase. Each complex was labeled with experimentally determined binding affinities (Kd,
Ki, or IC50 values), which were standardized into binding free energy (AG).

To ensure data quality, complexes with missing structural information or ambiguous
affinity measurements were removed. Molecular structures were processed using RDKit
to standardize protonation states and remove duplicate entries. Finally, approximately
3,200 high-quality complexes were retained for model training, validation, and testing
(split ratio: 70%/15%/15%).

ety Profen « oroll molaoskes gond

Figure 2. Schematic diagram of protein ligand binding.

4.2. Experimental Setup

The experiments were conducted on a high-performance server equipped with an
NVIDIA Tesla V100 GPU (32 GB memory) running Ubuntu 20.04. The deep learning
framework used was PyTorch 1.12. The models were trained using the Adam optimizer
with an initial learning rate of 1le-4, which was dynamically adjusted based on validation
performance. To prevent overfitting, dropout (p = 0.2) and early stopping (patience = 10)
were applied during training. The dataset was split into training, validation, and test sets
with a ratio of 8:1:1, and all features were normalized before splitting to ensure consistent
value distributions. Each experiment was repeated five times, and the average
performance was reported to mitigate the effects of randomness.

4.3. Results

Table 1 presents the performance of different models on the protein-ligand binding
affinity prediction task related to pediatric gastrointestinal diseases. The results indicate
that GNN-based models generally outperform traditional deep learning approaches, with
GAT and GIN demonstrating superior ability to capture the topological structures of
molecular graphs, leading to better performance in RMSE and MAE. In contrast,
sequence-based models such as the RNN baseline show limitations when applied to
molecular graph prediction.

Table 1. Forecasting results across models (average of 5 furniture categories).

Model MSE RMSE MAE
RNN 2.87 1.69 1.34
GCN 2.45 1.56 1.21
GAT 2.18 1.48 1.15
GIN 2.05 1.43 1.05

Table 1 compares four models on the protein-ligand binding affinity prediction task
using MSE, RMSE, and MAE. The Informer baseline records MSE 2.87, RMSE 1.69, and
MAE 1.34, showing limits in modeling molecular graphs. GCN improves performance
(MSE 2.45, RMSE 1.56, MAE 1.21), reflecting its ability to capture local topologies. GAT
achieves further gains (MSE 2.18, RMSE 1.48, MAE 1.15) by weighting neighbor node
importance via attention. GIN yields the best results (MSE 2.05, RMSE 1.43, MAE 1.08),
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highlighting its strength in learning molecular substructures. Overall, GIN demonstrates
superior accuracy, underscoring its potential in molecular modeling and drug discovery.

The figure 3 illustrates the convergence behavior of the GNN model. The figure
presents a graph illustrating the loss function behavior during the training process of a
Graph Neural Network (GNN). The x-axis represents the training epochs, denoting how
many times the model has iterated over the dataset. The y-axis represents the loss value,
which measures the prediction error of the model. The blue curve, labeled training loss,
and the orange curve, labeled validation loss, both show a consistent downward trend as
training progresses. This indicates that the model not only reduces its error on the training
data but also generalizes well to the validation set. The figure highlights that the GNN
achieves stable convergence without significant signs of overfitting, demonstrating the
effectiveness of the training strategy.

Training Loss
Validation Loss

0.8

0%

0.z

' L . : L .
[+] 10 20 30 40 £
Epochs

Figure 3. Loss function during training process.

5. Conclusion

This study aims to address the potential application of predicting protein-ligand
binding affinity in pediatric gastrointestinal diseases with graph neural network (GNN)
methods on model protein-ligand complexes. The results demonstrate that GNNs have
more potential to surpass traditional approaches, such as molecular docking and
sequence-based deep learning, in accuracy and scalability. The primary object of this
research is to build a precise and efficient computational framework to accelerate drug
discovery in pediatric gastroenterology.

Through data analysis, the results demonstrate the following key findings: 1. GNN-
based models presented better binding-affinity prediction compared to traditional RNN
baselines. 2. Attention mechanisms can largely improve the recognition of critical protein—
ligand interactions. 3. Graph Isomorphism Network (GIN) achieves better predictive
performance than traditional RNN-based baselines, with an MSE of 2.05 and MAE of 1.05.
These findings suggest that GNNs have better results compared to the traditional model.
Also, Graph-based architectures provide a robust application for molecular modeling.

The results of this study have significant implications for the field of computational
drug discovery. Firstly, the significant advantages of GNNs provide a new perspective
for binding affinity modeling. Secondly, GAT and GIN demonstrate exceptional ability to
capture molecular graph topology with limited limitations. challenges the existing
traditional networks. Finally, those graph-based frameworks with reliable experimental
results open new avenues for pediatric-specific drug and vaccine design as well as
precision medicine in pediatric gastrointestinal diseases.

Despite the important findings, this study has some limitations, such as the current
public dataset may limit coverage of pediatric-specific protein targets. Future research
could combine molecular dynamics with GNNs and multimodal data such as biomarkers
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and gene expression to improve specificity and generalization. It could enhance the
application of GNNs in drug and vaccine discovery and development by providing more
accurate and efficient computational tools in the treatment of pediatric gastrointestinal
diseases.

In conclusion, this study, through a comparative evaluation of GNN architectures
with graph-based models, reveals significantly enhanced protein-ligand binding-affinity
prediction compared to traditional models. The results provide new insights for the
development of drugs and vaccines in pediatric gastroenterology.
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