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Abstract: The study proposed the EGNN-CMutPred, Equivariant Graph Neural Network based 
Comprehensive Protein Mutational Effect Predictor, a novel approach for predicting the effects of 
protein mutations by integrating both primary and tertiary protein structures. By combining Evo-
lutionary Scale Modeling 2 (ESM-2) for semantic embedding with Equivariant Graph Neural Net-
work (EGNN) for structural encoding, the model improves its accuracy in predicting how mutations 
impact protein function and stability. The study aims to address the limitations of traditional se-
quence and structure-based prediction methods by incorporating both semantic and topological 
embeddings of proteins, allowing the model to capture a comprehensive understanding of each 
protein. EGNN-CMutPred was trained on non-redundant protein sequences from the CATH v4.3.0 
database and evaluated against benchmarks, including ProteinGym (DMS) and the ProThermDB 
database, which measure changes in melting temperature (△Tm) and change in the variation of 
Gibbs free energy (△△G). The model effectively simulates mutations and predicts changes in pro-
tein stability, as demonstrated by strong performance in metrics such as Spearman’s Correlation 
and True Positive Rate. These results suggest that EGNN-CMutPred is a valuable tool for precision 
medicine and protein engineering, offering enhanced prediction capabilities over existing methods. 
Future research will refine the model’s computational techniques and expand its applicability to 
larger, more diverse datasets, furthering its potential in understanding protein mutations and their 
implications for disease and therapeutic development. 
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1. Introduction 
Proteins are responsible for providing structural support, catalyzing biochemical re-

actions as enzymes, and participating in signal transduction pathways. However, muta-
tions in protein-coding genes can lead to the production of dysfunctional proteins, which 
may have severe consequences for cellular function and organism health. Figure 1 illus-
trates how a normal gene differs from a mutant gene, where the former generates a work-
ing protein, while the latter may produce either no protein or a dysfunctional one. There-
fore, predicting the effects of genetic mutations on protein function and stability is of par-
amount importance for advancing our understanding of disease mechanisms and facili-
tating the development of precision medicine and protein engineering. 
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Figure 1. Comparison between a normal and mutated gene [1,2]. 

Initially, the effects of protein mutations were primarily studied through experi-
mental methods such as microarray analysis and affinity purification mass spectrometry 
(AP-MS) [3,4]. However, these traditional approaches are often time-consuming and la-
bor-intensive. The advent of bioinformatics and next-generation sequencing technologies 
has led to an explosion of available protein sequence data, with databases like UniProt 
now containing over 60 million protein sequences [5]. Concurrently, the Protein Data 
Bank (PDB) has amassed over 180,000 protein structures [6]. These vast repositories of 
data have enabled the development of computational models for predicting protein func-
tion and the effects of mutations. 

Existing protein function prediction models can be broadly categorized into se-
quence-based and structure-based approaches [7]. Sequence-based methods, such as ho-
mology-based models (e.g., BLAST) and deep learning models utilizing 1-dimensional 
convolutional neural networks (CNNs) or recurrent neural networks (RNNs), primarily 
focus on identifying evolutionary relationships and sequence patterns [8,9]. However, 
they often fail to capture the 3-dimensional interactions between amino acids [10,11]. On 
the other hand, structure-based methods, including Graph Convolutional Networks 
(GCNs), Graph Attention Networks (GATs), and Equivariant Graph Neural Networks 
(EGNNs), leverage the spatial arrangements of molecular components to predict protein 
function [12]. While these methods provide insights into protein structure, they may over-
look important sequence-based features [13]. 

To address the limitations of existing methods, we developed the Equivariant Graph 
Neural Network based Comprehensive Protein Mutational Effect Predictor, EGNN-
CMutPred, that integrates two powerful approaches—Evolutionary Scale Modeling 2 
(ESM-2) and Equivariant Graph Neural Network (EGNN)—to capture both the primary 
and tertiary structures of proteins, overcoming the limitations of using sequence or struc-
ture data alone [13,14]. ESM-2, a transformer-based language model, learns the “grammar” 
of amino acid sequences by identifying patterns that dictate protein function, while 
EGNN encodes the 3D structure of proteins, focusing on the geometric relationships be-
tween amino acids and their surrounding environment [15]. By combining these compo-
nents, EGNN-CMutPred can simulate mutations and accurately evaluate the fitness, sta-
bility, and functional impact of mutated proteins. 

2. Materials and Methods 
2.1. Dataset 

The model is trained based on the non-redundant Protein Data Bank (PDB) format 
files in CATH v4.3.0. Protein domains, or the portions of a protein that fold independently 
from the remainder of the protein, are organized systematically in the CATH database 
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[16]. There are 5841 superfamilies among the 151 million protein domains that are cur-
rently in the database. The database is divided into four levels (listed from top to bottom): 
class (C), architecture (A), topology (T), and homologous superfamily (H). The C-level 
categorizes the proteins based on the arrangements of their locally folded structures. The 
A-level groups the proteins based on the three-dimensional organization of secondary 
structures within a protein domain. The T-level arranges the domains that have similar 
topological secondary structures (folds), irrespective of evolutionary relationships. The 
H-level indicates an evolutionary relationship with domains that share a common ances-
tor [17]. Figure 2 is a depiction of the CATH Database classification. 

 
Figure 2. The classification of the CATH Database. 

The PDB format is a standard format for files that contain the description and anno-
tation of structural information of proteins in the form of atomic coordinates. This study 
incorporates the ATOM record that consists of x, y, and z orthogonal Å coordinates of the 
atoms of proteins or nucleic acids [18]. Table 1 demonstrates the information presented in 
the ATOM record. The most crucial information is the residue name (18–20) and 3D coor-
dinates (31–54). Additionally, additional data also refine the model’s understanding of 
each atom: atom name (13-16) identifies the element’s chemical properties and ability to 
form bonds, chain and segment identifier (22) (73-76) prevent confusion between different 
polypeptide chains and protein chain regions, and occupancy (55-60) and temperature 
factor (61-66) allow the model to predict possible structural conformations. We used 
ProThermDB, also referred to as the Thermodynamic Database for Proteins and Mutants, 
to evaluate the performance of our trained model. The database contains more than 32,000 
data on protein stability, and it contains data for both wild-type proteins and mutants 
with point mutations. The two parameters we chose were the change in melting temper-
ature and the change in the variation of Gibbs free energy, with the datasets named △Tm 
and △△G respectively [19]. The other benchmark that was used was the ProteinGym 
benchmark, which includes over 80 proteins of varying taxa [20]. It is used for testing deep 
mutational effects. 

Table 1. The ATOM record of the PDB layout [14]. 

Columns 
 

Data 

1-4 “ATOM” 
7-11 Atom serial number 
13-16 Atom name 

17 Alternative location indicator 
18-20 Residue name 

22 Chain identifier 
23-26 Residue sequence number  
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27 Code for insertions of residues 
31-38 X orthogonal Å coordinate 
39-46 Y orthogonal Å coordinate 
47-54 Z orthogonal Å coordinate 
55-60 Occupancy  
61-66 Temperature factor 
73-76 Segment identifier 
77-78 Element symbol 
79-80 Charge 

To gain insights into testing data, we conducted a preliminary analysis of the 
ProThermDB dataset by creating graphs that compare the original and mutated protein 
sequences. We made the comparisons based on several factors, including the distribution 
of atom and amino acid types, as well as 3-dimensional structural changes resulting from 
the mutations. See Appendix A for analyzed protein data files and codes for the graphs. 
This analysis is essential for understanding the mutant’s degree of change. Figure 3 illus-
trates the atomic composition of three protein structures: 1w7s (the original wild-type se-
quence), 1w7t, and 1w7u (both are mutants of 1w7s), depicted through 3D scatter plots. 
Each plot represents the spatial distribution of key atoms within the proteins, with carbon 
atoms shown in red, oxygen in yellow, nitrogen in blue, and sulfur in green. Despite the 
subtle differences in atomic positioning, the scatter plots highlight the overall structural 
consistency between the proteins. The visualization underscores the minimal structural 
changes resulting from mutations, providing insight into the stability and geometric ar-
rangement of these proteins. 

 
Figure 3. 3D scatter plot representation of each protein. 

Even though there are no significant structural changes by appearance as displayed 
in the scatter plot, subtle alterations in the protein sequence are highlighted in Figures 4 
and 5. Figure 4 compares the amino acid distribution of the original and mutant sequences, 
and Figure 5 compares the atom type distribution. This illustrates the effect of point mu-
tations on amino acid and atom distributions. Notably, the amino acid composition of the 
two mutants is the same, suggesting that they differ structurally due to variations in atom 
positioning. Exposing the model to proteins with minor mutations allows it to gain a bet-
ter comprehension of such mutations and improve the ability to predict their effects. 

 
Figure 4. Bar graph presentation of amino acid distribution. 
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Figure 5. Bar graph presentation of atom type distribution. 

2.2. Model Architecture 
By synthesizing the semantic embeddings from ESM-2 and topological embeddings 

from EGNN, the model will generate predictions for mutational effects with higher accu-
racy than previous models because it will learn about the protein from both local and 
global perspectives. This allows the model to understand relationships between amino 
acids and the overall conformation patterns of the protein. The effect of mutations on pro-
tein sequence and structure is minuscule, as observed in our analysis of the ProThermDB 
benchmark data. Due to this reason, the model may potentially struggle to forecast the 
impact of mutations. 

The approach that resolves this potential issue is the introduction of observation per-
turbations. They are applied to the primary structures when the protein sequence v is 
inputted during training, where noise is added to the model to prevent it from overfitting 
and to mimic blind mutations that occur in nature. This enables the model to detect un-
derlying patterns in protein sequences despite the subtle effects of mutations. The per-
turbed protein sequences then become the input for the ESM-2 language model. The 
model learns the grammatical rules and patterns of the protein sequences through extract-
ing evolutionary information. The final output is the last hidden state Wv of the protein 
sequence, Wv = ESM-2 (v�). Next, we represent the output, along with nodes, node and 
edge attributes, and amino acid coordinates, using the kNN graph. We embed this repre-
sentation into the topological encoding, Wv

l  = EGNN(G) that contains L layers. The out-
put layer, which represents a joint distribution, predicts the potential mutations at each 
position of the protein sequence. 

To generate a query for the blind mutational prediction task, the model samples a set 
of queries that are possible point mutations through nucleotide substitution. Once the 
queries have been generated, the model computes their semantic embeddings by passing 
them through the ESM-2 once more. The model then compares the embeddings of the 
queries and the reference sequences (original and unmutated) to determine the impact of 
mutations on their robustness and to calculate a fitness score. The scores obtain probabil-
ities that represent the likelihood that a particular mutation will lead to a stable or unstable 
protein. The fitness score is not solely based on the difference and similarity between the 
reference and query sequence. Rather, it considers the entire context of the protein se-
quence and structure, as well as the interactions between amino acids within the protein. 
The fitness score of a mutated protein with the mutated sites T (|T | ≥ 1) is calculated 
using the log-odds-ratio: 

∑ log p(𝑦𝑦𝑡𝑡)𝑡𝑡∈𝑇𝑇  − ∑ log p(𝑣𝑣𝑡𝑡)𝑡𝑡∈𝑇𝑇          (1) 
𝑦𝑦𝑡𝑡  is the mutant amino acid and 𝑣𝑣𝑡𝑡 is the original wild-type amino acid at site t [12]. 

Positive values signify that the mutation is beneficial and more stable than the original 
while negative values imply the opposite outcome. Figure 6 portrays the workflow of the 
EGNN-CMutPred model. 
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Figure 6. A pipeline of the EGNN-CMutPred’s architecture. 

2.3. Observation Perturbations 
The observed amino acid (AA) type 𝑣𝑣� from the input protein files is initially sub-

jected to random observation perturbations during training. The perturbations allow the 
model to learn a more robust representation of protein sequences and to account for un-
certainty in the observations by simulating blind point mutations. The observation per-
turbations introduce a small amount of noise into the protein sequences to help avoid 
overfitting, which occurs when the model performs well on training data but fails to gen-
eralize to unseen data. When training data contains trivial or erroneous information, the 
model may mistakenly learn patterns from this noise. The observation perturbation ad-
dresses this issue by introducing noise, which reduces the model’s overconfidence. This, 
in turn, encourages the model to explore multiple possible solutions and refine its predic-
tions. Encouraging the model to rely less on specific details helps it recognize underlying 
protein sequence patterns and generalize predictions to unseen data [21]. The probability 
of amino acid variation is governed by a tunable parameter p, which determines the mu-
tation rate. The observation perturbation, based on the Bernoulli distribution, is repre-
sented by equation (2): 

There are three possible outcomes from the equation. The variable δ (v� − v) repre-
sents the Dirac delta function. If v� equals v, the function equals 1; if else, it equals 0. The 
Θ (·) is a replacement distribution, in which a random amino acid or a masked token will 
replace the original amino acid at the site. It means that the replacement distribution is 
not activated when the perturbed amino acid type v� is equal to the original amino acid 
type v with the probability (1-p). In contrast, it means that the replacement is activated 
when v� is a new amino acid type or a masked token that replaces the original amino acid 
type. Therefore, depending on the mutation rate p, the outcome is either the original 
amino acid or a replacement drawn from the 20 amino acids or a masked token. 

2.4. Capture of Hidden Representations 
To fully understand the protein, the model must capture the hidden representations 

of both its semantic and topological embeddings. 

2.5. Semantic Embedding 
The semantic encoding analyzes protein sequences v� , extracts evolutionary infor-

mation about the protein sequence, and embeds them in hidden representations Wv (a 
vector of numbers that capture important features and properties) through the Trans-
former model ESM-2. ESM-2’s process of learning sequential information is depicted in 
Figure 7. After the protein sequences are inputted into the model, the model begins to 
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create embeddings that identify unique patterns in the protein sequences. The embed-
dings are then passed to the folding block mechanism, which updates predictions of pro-
tein structure. This mechanism creates two representations, sequential and pairwise. 

 
Figure 7. A representation of ESM-2’s architecture. 

π (v� | v) = p Θ (π1, π2, . . . , π20) + (1 − p) δ (v�− v)      (2) 
The sequence representation updates information on sequential information by 

learning the function of each amino acid in each location. On the other hand, the structural 
links between pairs of amino acids are updated through pairwise representation. This en-
coding includes the evolutionary constraints (or selective pressure) on each position. The 
evolutionary constraint is the level of variability of amino acids in each position based on 
their functional importance [22]. Positions important for stability or activity undergo 
fewer substitutions over time since they face higher selective measures while less im-
portant positions are more variable since they tend to be evolutionary tolerant to muta-
tions and substitutions. More conserved positions, therefore, have more distinct semantic 
representations compared to variable ones. This information then goes through the struc-
ture module, where the model gains a basic understanding of how mutations create struc-
tural change in the protein. Through the recycling process, the model updates embedding 
information to improve the accuracy of the prediction [14]. The semantic encoding cap-
tures the long-range dependencies and global sequence patterns beyond local graph 
neighborhoods. After updating every piece of sequential information, the final layer’s out-
put is the last hidden state representation, which highlights the significance and purpose 
of each amino acid and its inter-dependencies. This information enables the model to spec-
ulate the influence of alterations in protein sequences on their resilience. 

2.6. Tertiary Structure Representation 
The k-nearest neighbor (kNN) algorithm constructs the protein’s geometric configu-

ration by representing spatial configuration and interactions. It is characterized by the 
equation of G = (V, E, Wv, WE, Xv). Each node V represents an amino acid. Every node is 
linked with k neighboring nodes in a Euclidean distance E of 30Å. Node attributes Wv 
are the hidden representations encoded by the semantic embeddings. Edge attributes WE 
are feature relationships of connected nodes within the contact region, local N-C positions 
(the relative positions or spatial relationships of nitrogen and carbon atoms that influence 
the protein structure and function), and sequential position encoding. Xv stores the 3D x, 
y, and z orthogonal Å coordinates of the protein sequence, which is key to the topological 
embedding of EGNN [15]. 

2.7. Topological Encoding 
We use the Equivariant Graph Neural Networks (EGNN) to encode the geometric 

structure of the proteins. The neural network captures the hidden representation to node 

properties Wvi
l+1 = {Wv1

l+1, . . . , Wvn
l+1} and node coordinates Xposl+1  = {xv1

l+1, . . . , xvn
l+1} at the l 

+ 1th layer with equations (3) (4) (5): 
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mij =  ∅e(wvi
l , wvj

l ,  �xvi
l − xvj

l �
2

, weij)        (3) 

xvi
l+1 = xvi

l + 1
n
∑ (xvi

l − xvj
l

j≠i )∅x�mij�         (4) 

Wvi
l+1 = ∅v�Wi

l,∑ mijj≠i �           (5) 

Each layer revises the hidden representation of nodes using the results from the pre-
ceding strata. The node refines embeddings grounded on the information from contigu-
ous nodes. The propagation rules, defining how the messages are updated and propa-
gated through the nodes and edges of the graph during each layer of the network, are ∅𝑒𝑒 
(encodes edge information), ∅𝑥𝑥 (encodes node information), and ∅𝑦𝑦 (specify how node 
features are updated at each layer). The ultimate hidden representation encapsulates the 
immediate surroundings and spatial arrangement of the protein [15]. Figure 8 portrays 
EGNN’s processing of information, and Figure 9 offers a deeper insight into how the 
model updates each layer. 

 
Figure 8. A representation of EGNN’s encoding process. 

 
Figure 9. Depiction of EGNN’s update on hidden representations. 

2.8. Evaluation Metrics 
Spearman’s correlation: Spearman’s correlation determines the extent to which two 

attributes fluctuate together. It measures the monotonic relationship (nondecreasing or 
nonincreasing function when the independent variable increases) between two ranked 
variables. The scale ranges from -1 to 1 [23]. Spearman’s correlation in this study assesses 
the model’s ability to rank mutation predictions in accordance with the ranking of the 
ground truth benchmarks. The model first ranks both the predictions and the ground 
truth based on the magnitude of their effects on protein stability. Next, it computes the 
association between the model’s predictions and the actual results. This assesses the 
model’s ability to assign higher rankings to predictions with greater effects. Figure 10 il-
lustrates the workings of Spearman’s Correlation. A positive Spearman’s correlation indi-
cates that the model is capable of distinguishing mutations with larger effects from those 
with smaller effects, while a negative value indicates the opposite. 
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Figure 10. A representation of the Spearman’s Correlation. 

True Positive Rate: The True Positive Rate (TPR), also known as sensitivity, is the 
likelihood that genuine positive cases are correctly classified as positive [24]. It evaluates 
the model's ability to detect mutations that have a substantial impact on protein integrity. 
For example, when the TPR is set at 50%, the model is expected to correctly identify the 
top 50% of mutations ranked by their magnitude of effect. The model's TPR will be eval-
uated at 5%, 25%, and 50% thresholds. Figure 11 presents the operation of TPR. 

 
Figure 11. A representation of the True Positive Rate. 

3. Result and Discussion 
3.1. Biological Analysis 

To gain a better insight into the biological characteristics of the protein sequences 
from the ProteinGym benchmark, we collected data and analyzed the protein sequences 
in terms of taxonomy, conserved domain, signal peptide, and hydropathicity. We used 
NCBI tblastn, a tool that compares protein queries to six-frame translations of nucleotide 
sequences in the database to identify homologous protein-coding regions in uncharacter-
ized sequences [25,26]. As a result, the program predicted which organisms contained the 
protein sequences and traced their evolutionary lineage. 
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We then used the NCBI Batch CD-Search tool to identify conserved domains for each 
protein and recorded their associated superfamilies. Proteins with conserved domains ex-
hibit unaltered sequence patterns that serve distinct purposes [27]. 

The PSORT II Prediction tool was used to estimate the likelihood of each protein re-
siding in the following subcellular locations: cell wall, cytoplasm, endoplasmic reticulum, 
extracellular, nuclear, nucleocapsid, periplasmic, and plasma membrane.  

We used both versions 4.1 and 5.0 of SignalP to verify result accuracy and predict 
whether each protein contains a signal peptide. Signal peptides (SP) are short strings of 
amino acids (peptides), located at the amino-terminal end of proteins that mark the pro-
tein secretory pathway and direct protein targeting [28]. 

We used ProtScale to determine the hydropathicity of the proteins. 

3.1.1. Protein Taxonomy and Conserved Domains 
We analyzed 86 mutated proteins by collecting data on their taxonomy and con-

served domains. We organized the proteins into 11 groups based on taxonomy: virus, 
pseudomonadota, primate, synthetic, fungi, macroscelidea, terrabacteria, rodentia, ther-
motogota, archaea, and artiodactyla. 

Among the proteins, we identified shared conserved domains, which are explained 
in detail in the following section. 

3.1.2. Subcellular Location 
We determined the number of proteins in each intracellular region, as shown in Fig-

ure 12. Synthetic proteins were neglected because their domains cannot be determined. 
We categorized every virus protein into the nucleocapsid area. 

 
Figure 12. The number of proteins in each subcellular location. 

We found correlations between the proteins’ intracellular sites and their conserved 
domains. Two bacterial proteins and one archaea protein all belong to the Tri-
osephosphate isomerase (TIM) superfamily. It is a glycolytic enzyme that is essential for 
the glycolysis pathway of cellular respiration [29,30]. All three of these prokaryotic pro-
teins are found in the cytoplasm, where this biochemical process occurs. Additionally, two 
eukaryotic proteins share the ION_Tras superfamily, which contains sodium, potassium, 
and calcium ion channels [31]. These two eukaryotic proteins are both found in the plasma 
membrane since these channels are important for transmembrane transport. 

3.1.3. Analysis of Signal Peptide Predicted 
We generated graphs that show the predicted probability for each protein to contain 

a signal peptide. We determined the amount of proteins expected to include a signal pep-
tide. As portrayed in Figure 13, there are significantly more proteins without a signal pep-
tide than those that possess one. Proteins with signal peptides are typically those that need 
to be transported, whereas proteins without signal peptides function within the cell where 
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they are synthesized. Because fewer proteins require transport, fewer proteins contain 
signal peptides. 

 
Figure 13. The quantity of proteins that contains SP. 

We also calculated the number of proteins with or without signal peptides in each 
subcellular location, as displayed in Figure 14. 

 
Figure 14. The quantity of proteins that contain signal peptides in each intracellular compartment. 

It can be observed that most proteins that contain a signal peptide are located in the 
endoplasmic reticulum, extracellular regions, or the periplasmic space (the region be-
tween the two plasma membranes of bacteria). All eukaryotic proteins belong to the se-
cretory pathway, where some facilitate protein construction and adjustment in the ER and 
Golgi complex while others are delivered to other locations [32]. Therefore, the ER and 
extracellular regions are two of the most prevalent areas for proteins containing signal 
peptides. On the other hand, the Sec translocase system, the primary protein targeting 
mechanism in prokaryotes, involves proteins which include signal peptides. A molecule 
named Signal Recognition Particle (SRP) first attaches to the signal peptide on the protein. 
The protein then crosses the plasma membrane to the periplasmic space via a protein 
called Sec translocase. In this space, the protein may experience further modifications and 
then carry out its specific function. As a result, a large number of prokaryotic proteins 
with signal peptides are found in the periplasmic space since it is the location for most 
secretory proteins [33]. 
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Conversely, most proteins without a signal peptide are usually found in the nucleus, 
cytoplasm, and plasma membrane. Many proteins without a signal peptide are located in 
the nucleus because they often play key roles in processes including DNA synthesis, tran-
scription, and repair. Proteins in the cytoplasm generally do not contain signal peptides 
because they do not need to be translocated anywhere. Other proteins in the plasma mem-
brane do not contain signal peptides because of the post-translational insertion process. 
In this process, ribosomes synthesize membrane proteins in the cytoplasm, and other mol-
ecules insert them into the membrane. Moreover, since parts of the plasma membrane are 
hydrophobic, it is common to find proteins without hydrophilic signal peptides in these 
regions. 

3.1.4. Analysis of Hydropathicity Prediction 
We found the hydropathicity of each protein, as depicted in Figure 15. 

 
Figure 15. The distribution of proteins that exhibit hydrophobic or hydrophilic properties. 

Proteins tend to be more hydrophilic than hydrophobic because they are often found 
in aqueous environments such as the cytoplasm and nucleus, where they need to interact 
with other molecules. Many of these molecules are polar or charged. The hydrophilic re-
gions of proteins allow them to interact with these molecules and the surrounding water, 
which is crucial for their function. Other proteins are hydrophobic as they are embedded 
in the cell membrane, which is composed primarily of hydrophobic fatty acid chains. 

3.1.5. Implications of protein-analysis 
The analysis of the ProteinGym protein data is vital as it reveals diverse characteris-

tics and behavior of the studied proteins, allowing us to comprehend the data that the 
model will analyze. Moreover, the analysis ensures the diversity of proteins. As displayed 
in previous sections, the proteins come from a wide variety of taxonomic classes, and each 
serves a different function, resulting from components such as conserved domains and 
intracellular regions. Therefore, by exposing the model to various proteins with differing 
degrees of mutations, it can learn to generalize better and improve prediction accuracy 
for protein mutations. 

3.1.6. Limitation of Protein-Level Analysis 
While the analysis of protein data offers various insights, it is essential to recognize 

that it cannot capture the full spectrum of protein characteristics. Proteins function in a 
system with myriad other molecules, and their interactions with the environment con-
stantly influence their behavior. Therefore, while the results obtained from the analysis of 
protein data are informative, they represent only a small part of the protein’s overall bio-
logical landscape. This implies that any conclusions derived from this analysis should be 
interpreted cautiously. 
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3.2. AI Results 
The biological analysis in Section 3.1 provides crucial context for understanding the 

data within the ProteinGym benchmark. This information serves as a foundation for val-
idating and interpreting the model’s predictions. The following section presents the re-
sults of the AI model, and the evaluation values will be compared with current, state-of-
art models. By combining our knowledge of the biological data and EGNN-CMutPred’s 
performance, we can assess its effectiveness in predicting the effects of protein mutations 
and identify areas for future improvement. 

Figure 14 characterizes the median evaluation scores from different versions of the 
model. See Appendix C for the evaluation scores by △△G, △Tm, and ProteinGym. In the 
graph, k stands for the number of nearest neighbors, and h represents the number of hid-
den layers. The version with the maximum score is k20_h1280 with a score of 0.640, while 
the version with the greatest Spearman’s Correlation is k20_h512 with a score of 0.587. 

From the experiments, it can be observed that setting k = 10 may cause the model to 
have insufficient ability to interpret the data. In contrast, setting k = 30 may cause the 
model to overfit to noise. Therefore, among the three k values tested, k = 20 is the optimal 
value since the versions with the best Spearman’s Correlation typically use k set to 20. 

There is no clear trend indicated for h. One feasible explanation is that the number of 
hidden layers does not have a notable influence on the outcomes, or that the effects of h 
are obscured by the considerable influence of k. Another possibility is that the model is 
more complex than necessary for practical purposes (Figure 16). 

 
Figure 16. The TPR and Spearman’s Correlation Median Evaluation Score from △△G Results of 
Different Versions of the Model. 

The log-likelihood scores of EGNN-CMutPred for mutational predictions are com-
pared to those of an ESM model based on the AlphaFold2 mechanism. This model utilizes 
inverse folding, an autoregressive encoder-decoder architecture, to predict protein se-
quences from their structure [34]. The log-likelihood score depicts the likelihood that a 
given mutated sequence occurs based on wild-type protein sequences. Higher scores in-
dicate that a sequence is more likely to resemble naturally occurring protein sequences, 
while a low score suggests that the mutation is unfavorable in natural evolution. The log-
likelihood score comparison for two proteins, O61594-6.0 and P0A3D9-7.0, is shown be-
low: 

As depicted in Tables 2 and 3 and Figure 17, the sequences generated by ESM show 
a concentrated distribution with a small standard deviation of plausible mutations, and 
all results fall within a reasonable range. In contrast, EGNN-CMutPred produces a wider 
scoring range, distinguishing highly favorable mutations (e.g., L100A and V19I) from un-
favorable ones (e.g., N391A and A102V). Therefore, the ESM model focuses on predicting 
sequences with moderate plausibility (scores close to 0), while EGNN-CMutPred identi-
fies more extreme values of beneficial and detrimental mutations. Since the ESM model is 
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a transformer-based language model trained on large-scale evolutionary sequence data, it 
captures evolutionary constraints that favor stability. When predicting mutations, ESM is 
biased towards mutations that are evolutionarily plausible and maintain protein stability. 
Conversely, EGNN-CMutPred is partially trained on structural data, enabling it to cap-
ture mutational disruptions of protein function based on spatial relationships. This struc-
tural sensitivity allows it to better distinguish between beneficial and detrimental muta-
tions, leading to a wide range of scores. 

Table 2. Comparison for O61594-6.0. 

 EGNN-CMutPred ESM 
Average -0.817 -0.07 

Highest Value -0.764 (sampled_seq_6) 0.52 (V19I) 
Lowest Value -0.922 (sampled_seq_16) -0.69 (A102V) 

Table 3. Comparison for P0A3D9-7.0. 

 EGNN-CMutPred ESM 

Average -0.873 
-1.85（-0.59 with the removal 

of N391A ） 
Highest Value -0.797 (sampled_seq_15) 0.81 (L100A) 
Lowest Value -0.954 (sampled_seq_9) -23.21 (N391A) 

 
Figure 17. Visualization of data distribution of the comparison between the log_likelihood scores. 

Table 4 compares the accuracy of sequence-based, structure-based, and combined se-
quence and structure-based models based on Spearman’s correlation values. Each model 
is tested on the △△G benchmark. According to the table, our model outperforms most 
current models. EGNN-CMutPred has the second-highest Spearman’s correlation among 
the models presented, with a score of 0.587, while the highest value is achieved by the 
structure and sequence-based model SSIPe with a score of 0.62. However, it is important 
to note that the performance of these models may vary slightly because the Spearman’s 
correlation results come from different studies, and these studies may approach the input 
data differently. There may also be newer models with enhanced capabilities that we have 
not yet recognized. The table also reveals that structure-based and combined sequence 
and structure-based models generally perform better than sequence-based models, as 
shown by their higher Spearman’s correlation scores. Sequence-based models have an av-
erage Spearman’s correlation of 0.2485, which is significantly lower than the averages of 
structure-based and combined models, which are 0.49 and 0.47 respectively. One likely 
explanation is that structural information helps AI models gain a better understanding of 
protein characteristics than sequential data. This is probably because spatial relationships 
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and interactions between residues are better represented in three-dimensional space. Ad-
ditionally, models that analyze structural information can account for epistatic effects, in 
which a mutation in one gene depends on the presence or absence of mutations in other 
genes [35]. 

Table 4. The comparison of Spearman’s values among several model types. The 3 highest values in 
each category are marked as First, Second, and Third. 

Category Model Version Spearman’s (p) 

Sequence-
based 

ProGen2 [15]  
(large-scale transformer model 

with up to billions of parameters 
[36]) 

Small (151M params) 
Medium (764M params) 

Base (764M params) 
Large (2700M params) 
xlarge (6400M params) 

0.194 
0.214 
0.253 
0.226 
0.270 

 

ESM-2 [15]  
(transformer-based language 
model trained via protein se-
quences for masked language 

modeling [14]) 

t12 
t30 
t33 
t36 
t48 

0.216 
0.317 
0.392 
0.351 
0.252 

 
RITA [15]  

(autoregressive, generative model 
with 1.2B parameters [37]) 

Small (30M params) 
Medium (300M params) 

Large (680M params) 
xlarge (1200M params) 

0.143 
0.188 
0.236 
0.264 

 
Tranception [15]  

(transformer model with auto-
regressive predictions [38]) 

Small (85M params) 
Medium (300M params) 

Large (700M params) 

0.169 
0.256 
0.284 

Structure-
based 

DSMBind [39]  
(unsupervised, energy-based 

model that predicts effects of mu-
tations in protein-protein interac-

tions [40]) 

- 0.53 

 

ProteinMPNN [39]  
(neural network with 128 hidden 
dimensions that passes messages 

[41] 

- 0.45 

Structure 
and se-
quence-
based 

DDMut [42]  
(deep learning model that inte-

grates both graph-based convolu-
tional layers and transformer en-

coder [42]) 

Result of S552 blind test 
set 

Result of S2024 blind test 
set 

0.54 
0.41 

 

Alphafold [39]  
(deep learning model that predicts 

protein structure and estimates 
mutational effects on protein-pro-

tein interactions [39,43]) 

AF3 ranking_score 
AF3 iptm 
AF3 ptm 

AF3 mean_pae  
AF2 ranking_score 

Effective Strain 
AF2 mean_pae 

0.51 
0.50 
0.33 
0.37 
0.23 
0.31 
0.22 

 

Force Field and Profile-based [39]  
(Combine structural information of 

force fields with sequence infor-
mation of profiles to estimate the 

SSIPe 
FlexddG 

FoldX 

0.62 
0.58 
0.54 
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mutational effects on protein-pro-
tein binding affinity [39,44]) 

 EGNN-CMutPred 

k30_h1280 
k20_h1280 
k10_h1280 
k30_h768 
k20_h768 
k10_h768 
k30_h512 
k20_h512 
k10_h512 

0.559 
0.517 
0.467 
0.533 
0.584 
0.524 
0.526 
0.587 
0.413 

Our study successfully developed a new method for predicting the effects of protein 
mutations by integrating both primary (sequence) and tertiary (structure) embeddings 
from the ESM-2 and EGNN models. By combining semantic and topological embeddings, 
the model captures both the grammatical rules and geometric structures of proteins, ad-
dressing limitations of traditional sequence- and structure-based prediction methods [45-
47]. Training was performed on non-redundant protein sequences from the CATH v4.3.0 
database, and evaluation was conducted using the ProteinGym (DMS) and ProThermDB 
(△Tm and △△G) benchmarks [48]. The model demonstrates its effectiveness in forecast-
ing mutational impacts on protein activity and stability [49]. 

Evaluation metrics, including Spearman’s correlation and True Positive Rate (TPR), 
indicate that the model can reliably rank mutation effects and identify significant muta-
tions, as all evaluation scores are positive. Therefore, the results suggest that the model 
can effectively forecast the impact of alterations in protein sequences [50,51]. The analysis 
of the biological input data enhances understanding of the biological characteristics of the 
protein sequences used as model input. The strengths and limitations of our model are 
also revealed through analysis of its predictions. Notably, the model’s ability to generate 
a fitness score for mutated proteins provides valuable insights for biomolecular research 
and the study of disease-related protein mutations [52,53]. 

4. Conclusion 
Future work will focus on advancing computational methodologies, experimenting 

with more detailed parameters, and testing the model on a wider variety of databases that 
measure changes in protein stability. Enhancements in the model’s architecture and train-
ing pipeline could further improve its predictive accuracy and efficiency. Experimenting 
with more specific parameters of k and h is also important for finding the optimal version 
of the model. Additionally, we plan to assess the model on an expanded range of bench-
marks to gain deeper insights into the wide variety of protein factors affected by muta-
tions. Additional thermodynamic parameters include enthalpy change, which measures 
the total amount of heat absorbed or emitted during a reaction; heat capacity change, 
which estimates the energy required to increase the temperature of a protein; and protein-
protein interaction assays, which measure changes in a protein’s ability to interact with 
others. Furthermore, the datasets used to train the model are well characterized, poten-
tially limiting its generalizability to less-studied proteins. Testing the model on large-scale 
databases with more diverse protein data, such as Deep Sequence and GEMME, is there-
fore essential. Another limitation is that the model is mostly trained on complete protein 
structural data, which may prevent accurate prediction of mutational effects when data 
are incomplete. Possible future improvements include incorporating probabilistic models 
to account for structural uncertainties. Once the model’s capabilities are improved com-
prehensively, future studies could apply it to pharmacological research, aiding drug de-
velopment by identifying drug targets and predicting mutational effects on mutated drug 
targets. 
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