

 Journal of Medicine
and Life Sciences

Vol. 1 No. 3 (2025) 1 https://doi.org/10.71222/etnrdv93

Article

Optimization of Medical Device Software Lifecycle Manage-
ment Based on DevOps
Minkang Zhang 1,*

1 Clinical Diagnostics Group (CDG) Software Team, Bio-Rad Laboratories, Hercules, CA, 94547, USA
* Correspondence: Minkang Zhang, Clinical Diagnostics Group (CDG) Software Team, Bio-Rad Laboratories,

Hercules, CA, 94547, USA

Abstract: As more and more technological advances affect medical equipment, the importance of
software for medical equipment is becoming more and more significant, and it is crucial to effec-
tively manage and control the life cycle of software. This paper proposes a software improvement
scheme with DevOps as the core, including adopting agile development mode, refining test man-
agement and optimizing operation and maintenance process, so as to improve the efficiency of soft-
ware development, test and operation and maintenance, shorten the delivery cycle and reduce com-
pliance risks. The core philosophy of DevOps is continuous integration, continuous delivery and
cross-team collaboration, providing a new approach to the development and management of med-
ical device software, the implementation of this strategy to achieve the goal of improving software
quality, improving system reliability, and meeting stringent industry standards.

Keywords: DevOps; medical device software; life cycle management

1. Introduction
With the development of medical device technology driven by the development of

technology, its built-in software has become more important. However, software built into
medical devices requires stringent compliance and complex operations. Traditional life
cycle management methods are no longer able to meet the ever-changing needs, for which
better management methods need to be sought. DevOps is a way to achieve development,
test, and operational efficiency through continuous integration thinking, continuous de-
livery, and automated testing tools, which can reduce product release cycles while ensur-
ing software quality and compliance. This paper introduces how to improve the life cycle
management of medical equipment software by DevOps optimization method, and im-
prove the work efficiency and quality.

2. Basic Concepts of DevOps
2.1. Core Concepts of DevOps

DevOps is the culture and practice of integrating development and operations teams.
First of all, automation is the core of DevOps, including automated build, testing, and
deployment. Ensure efficient and consistent code structure with automated build tools to
prevent errors or delays caused by human manipulation. Use automated testing tools
such as Selenium and JUnit to ensure good quality at all stages of the software. Also lev-
erage automated deployment to deliver timely and stable releases online to meet cus-
tomer needs. Second, continuous integration, continuous delivery (CI/CD) is critical to
DevOps. Frequent, small-batch release patterns combined with rapid feedback will help
the team respond to market changes while avoiding large changes over a long period of
time so that the product always meets consumer needs [1]. When a problem is found, the
version rollback mechanism can help the team immediately fall back to a stable version to

Received: 07 April 2025

Revised: 12 April 2025

Accepted: 25 April 2025

Published: 28 April 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

https://doi.org/10.71222/etnrdv93

Journal of Medicine and Life Sciences https://www.gbspress.com/index.php/JMLS

Vol. 1 No. 3 (2025) 2 https://doi.org/10.71222/etnrdv93

protect the smooth running of the system. Finally, DevOps emphasizes teamwork and
culture. Close contact between teams in various fields, information sharing, and continu-
ous improvement habits are the keys to a successful DevOps implementation. Develop-
ment, operation and testing teams are involved in each step to ensure a smooth transfor-
mation of software from development to operation. Through continuous review, im-
provement, continuous optimization of development, operation and maintenance process,
improve efficiency, and finally achieve continuous delivery of efficient and more stable
software services [2]. Combining these practices with ideas, DevOps is being introduced
into current software development practices to help organizations improve software qual-
ity, responsiveness, and competitiveness (see Figure 1).

Figure 1. Basic Framework of Core DevOps Concepts.

2.2. DevOps Toolchain and Technology Stack
To achieve a successful DevOps practice, you need to rely on a strong and complete

tool support system, including CI/CD tools, automated testing tools, configuration man-
agement systems, and monitoring and logging systems. Among them, common CI/CD
tools such as Jenkins and GitLabCI can ensure rapid release automation under the premise
of frequent code consolidation. Common automated test tools such as Selenium, JUnit,
TestNG, etc., can automatically perform detection tasks after each code update to ensure
software quality. Common configuration management systems, such as Ansible, Puppet,
and Chef, help enterprises automatically manage environment Settings and software de-
ployment to ensure the unity of various environments. Common monitoring and log man-
agement tools, such as Prometheus, Grafana, and ELK Stack. The health of applications
and their infrastructure can be monitored in real time, so that possible problems can be
identified early and measures can be taken to resolve them [3].

3. Life Cycle Management Status of Medical Device Software
3.1. Slow Response to Development Cycle

The development cycle of medical device software is generally long, mainly because
the requirements are complex and strictly controlled by laws and industry norms. The
development of these software often needs to go through multiple review and inspection
processes, including functional, performance, safety and other requirements, so in addi-
tion to technical constraints, but also need to comply with regulatory standards such as
FDA, ISO13485, so the overall process may take a long time. Especially when there are
changes in demand and changes in laws and regulations, the general old work process is
not easy to adjust the response in time, resulting in a lag in response [4]. In addition, de-
velopment, verification and maintenance teams are often different units, resulting in in-
sufficient cooperation between each other, low information transmission and feedback
efficiency, so the research and development progress is slow, but if the lack of feedback

https://www.gbspress.com/index.php/JMLS
https://doi.org/10.71222/etnrdv93

Journal of Medicine and Life Sciences https://www.gbspress.com/index.php/JMLS

Vol. 1 No. 3 (2025) 3 https://doi.org/10.71222/etnrdv93

mechanism and efficient cooperation mode, the process of product development from de-
mand to delivery is too long, it will affect the current market's rapidly changing needs. It
has a negative impact on the competitiveness of products and the speed of responding to
the market.

3.2. Compliance Verification Is Complex
In order to ensure the safety, quality and performance of medical equipment software,

it must be implemented in accordance with strict industry norms, which may cover a large
number of processes, such as functional verification, performance testing, documentation,
and each step needs to be manually operated and a large number of manual records,
which not only increases the difficulty of inspection work. It also greatly increases the
likelihood of mistakes. In traditional methods, due to the complexity of documentation
and inspection, compliance inspection is often inefficient and time-consuming. Especially
for continuously updated products, repeated manual reviews will make the release time
lag, unable to respond to market changes and regulatory requirements in a timely manner
and delay the time to market. At the same time, complicated compliance verification can
increase the burden on the development team and make it prone to omissions or errors,
which can affect the software's compliance and go-to-market process [5].

3.3. Insufficient Test Efficiency
For medical device software testing, it is necessary not only to achieve functional

verification in breadth, but also to carry out rigorous testing across multiple hardware
platforms, operating systems and network configurations. Traditional single-point testing
cannot complete the above certification work in a short time and in a full range, resulting
in low test efficiency and poor test results. Often, manual audit can only check some func-
tions or scenarios, and cannot find all possible vulnerabilities and problems, especially
when there is a large number of parallel operations between servers, long-term continu-
ous operation of the case, the overall back testing, performance analysis is difficult. In
addition, in the absence of unified control and tracking, the degree of standardization of
test cases is low and the reuse rate is not high, resulting in accurate and comprehensive
test results. In the test work, the lack of support of automated testing means makes it dif-
ficult for the test team to complete all the quality assurance work as agreed in advance.

3.4. Lack of Automation in Operation and Maintenance
For the management and maintenance of medical equipment software, it is generally

carried out by manual means, and there is insufficient automation support. For software
installation, update, configuration and debugging problems encountered in the process,
operation and maintenance personnel need to participate in a lot of work, not only in-
crease their work burden, but also there will be human subjective errors. Due to the lack
of automated operation and maintenance process, once the system fails, it is often very
slow to judge and solve the problem, resulting in the suspension of the entire system for
a long time, which has a continuous impact on the functional operation of the equipment
and the medical services provided. In addition, the traditional operation and maintenance
scheme lacks real-time monitoring and alarm, cannot find the latent system failure or per-
formance bottleneck in time, will also prolong the problem discovery time, and have a
negative impact on the reliability and stability of the system.

4. Optimization Strategy of Medical Device Software Life Cycle Management Based
on DevOps
4.1. Adopting Agile Development and Short Cycle Iteration

In the medical device software development process, adopting an agile development
approach can help speed up the development process by putting the entire project into a
series of iterations (generally two weeks to a month) of small but easily deliverable tasks,

https://www.gbspress.com/index.php/JMLS
https://doi.org/10.71222/etnrdv93

Journal of Medicine and Life Sciences https://www.gbspress.com/index.php/JMLS

Vol. 1 No. 3 (2025) 4 https://doi.org/10.71222/etnrdv93

which is more conducive to adapting to customer needs and market feedback. At the end
of each iteration, the development team will provide a usable version of the feature for
the customer to review, not only for prompt feedback, but also for early detection of prob-
lems. For medical device software, using agile methods not only makes product changes
more flexible, but also ensures that software quality is constantly improved throughout
the process. Because each iteration cycle is short, the team is better able to get feedback
from customers and the market and make corrections and improvements in each iteration,
preventing requirements errors caused by prolonged development. By adopting an agile
approach to development, team members are able to work more intensively on the most
important feature points to increase productivity, and are able to ensure a successful re-
lease within a clear deadline. In addition, Agile also has the characteristics of emphasizing
communication and cooperation between internal departments, such as development,
testing, operation and maintenance of all the relevant personnel involved, so as to pro-
mote effective communication and timely feedback, to ensure that the project can be com-
pleted on schedule.

4.2. Integrated Automated Compliance Check Tool
For the sake of safety and reliability, medical device software needs to comply with

a variety of stringent regulations, such as FDA21CFRPart11, ISO13485, etc. This makes
compliance checking an important part of the software life cycle of the device. However,
traditional manual compliance checking causes time-consuming and high error rate. The
application of DevOps automated compliance checking tools can significantly improve
the efficiency and accuracy of compliance management (Table 1).

Table 1. Integrated Automated Compliance Checking Tools.

Procedure Description
Integration of

compliance check-
ing tools

Incorporate compliance checking tools into the development and de-
ployment process to ensure that every commit and release is automat-

ically reviewed
Automated code

scanning
Static analysis of code through automated tools to identify compliance

issues and ensure code complies with relevant laws and regulations

Generate compli-
ance reports

Compliance reports are automatically generated, and compliance is-
sues with each release can be tracked in real time, allowing teams to

fix and comply with the law in a timely manner

Integrate CI/CD
processes

Integrate compliance checking tools into the CI/CD process to mini-
mize human error by subjecting every commit and deployment to an

automated compliance review
Firstly, static scanning is used for static compliance check during the whole process

of code from development to production, including unit testing and integration testing,
to achieve automatic code compliance detection. The ability to ensure that all changes,
including new code, new versions, and changes in each release, are automatically checked
for compliance, and to apply static analysis methods to find possible compliance viola-
tions to help developers write compliant code. Significantly improve the efficiency and
quality of compliance checks by reducing the cost of code scanning for developers and
errors for inspectors through automated code scanning technology, while also providing
compliance reports to developers so that the development team can know the latest com-
pliance status and quickly fix compliance issues by monitoring each release. Version com-
pliance is also guaranteed at every release throughout the release. This mechanism en-
hances the development team's emergency response speed, and makes the development
and release process more transparent, so that compliance issues can be quickly detected
and resolved. Finally, automated compliance checks are integrated into continuous inte-

https://www.gbspress.com/index.php/JMLS
https://doi.org/10.71222/etnrdv93

Journal of Medicine and Life Sciences https://www.gbspress.com/index.php/JMLS

Vol. 1 No. 3 (2025) 5 https://doi.org/10.71222/etnrdv93

gration (CI) and continuous deployment (CD) processes, ensuring that an automated com-
pliance check is performed before every change and release throughout the process. The
compliance detection tool is integrated into the CI/CD pipeline, so that every released
software goes through strict compliance inspection to reduce the human factor and ensure
the compliance of the software version, and the pipeline between each step can be con-
nected in series to improve the work efficiency and supervision efficiency of the entire
software development process. It can be seen from the table that automation integrates
compliance testing tools, which cannot only enhance the regulatory efficiency of software
compliance, but also enable software products to ensure compliance with industry regu-
lations and legal requirements, and promote the safety and marketing of medical device
software.

4.3. Refined Test Case Management
The testing of medical device software is not only limited to realizing all the functions

required, but also needs to ensure the stability and security of the software in various
environments. Refined test case management is considered to be an important step to en-
sure the quality of medical device software, especially in complex controlled environ-
ments. Test case classification is the starting point of test case management. It divides test
cases as finely as possible according to functions, risk levels, platforms and other factors,
so as to ensure adequate testing of key functions and key areas. Through reasonable clas-
sification of test cases, the team can understand which functions have a greater impact on
system stability and system security, and more tests can be conducted under the condition
of limited resources. Priority design is conducive to improving test efficiency (see Table
2).

Table 2. Refined Test Case Management.

Procedure Description

Use case clas-
sification

Test cases are carefully divided according to function, risk, platform and
other factors to ensure adequate coverage of important functions and

high-risk areas

Priority order-
ing

According to the level and importance of risk in the test cases, priority is
arranged to ensure that high-risk areas are tested first and test efficiency

is improved
Automated
execution

Use automated execution for regression tests and test cases with high re-
peatability to reduce manual involvement and increase execution rate

Test coverage
monitoring

Monitor the execution of test cases with coverage tools to ensure that tests
cover all critical functionality and areas of potential defect

Test cases are prioritized according to their risk level and importance. High-risk areas
should be tested first. This ensures that testing resources are focused on the most im-
portant resources and that testing time or manpower is not wasted on smaller use cases.
Prioritization helps the test team to carry out the test work in an orderly manner, shorten
the test cycle, and improve the overall test process efficiency. Automated execution is an
effective means to improve the effectiveness of repeated tests. For backtesting and fre-
quently executed test cases, automated execution technology reduces manual intervention
in test execution and improves execution efficiency and accuracy. Automated test tools
run at the moment of every code update to find errors and correct them in time, ensuring
high software quality and lasting stability. Test measurement is the most important meas-
ure for software coverage testing. Use of coverage measurement tools to track test case
usage. Make the team confident that all important features and potential defects have been
covered in testing. Applying coverage measurements can help identify undetected parts,
assess whether current tests are adequate and complete, and determine if missing tests
need to be supplemented.

https://www.gbspress.com/index.php/JMLS
https://doi.org/10.71222/etnrdv93

Journal of Medicine and Life Sciences https://www.gbspress.com/index.php/JMLS

Vol. 1 No. 3 (2025) 6 https://doi.org/10.71222/etnrdv93

4.4. Optimizing the O&M Process and Role Assignment
The O&M management and maintenance of medical equipment software is an im-

portant part to ensure the long-term stable operation of the system. By optimizing the
O&M process and effectively assigning O&M roles, the efficiency can be greatly improved
and the time for fault repair can be shortened. The traditional approach to operations
tends to be that operations personnel perform a lot of manual configuration and mainte-
nance work, with no process or standard working methods. You can use a DevOps ap-
proach to improve operations with standardized processes, automated tools, and real-
time monitoring. For example, use automated deployment tools (such as Ansible, Puppet,
and Chef) to quickly install and upgrade medical device software, avoiding unnecessary
manual setup errors and delays. In addition, IaC technology helps operations personnel
adopt code management infrastructure, simplifies configuration management, ensures
environment consistency, and improves operational flexibility. In addition, appropriate
division of responsibilities is also an important measure to improve operation and mainte-
nance efficiency. DevOps emphasizes close cooperation between development, opera-
tions, and test teams, so that operations personnel are no longer just a system operation
worker, but actively participate in the software development cycle, identifying problems
at an early stage and solving problems as soon as possible. Standardized operation pro-
cess and role arrangement cannot only reduce the probability of system failure, but also
shorten the repair time after system problems, which plays an important role in ensuring
the efficiency of medical equipment software and stable system.

5. Conclusion
With the increasing complexity of medical device software, traditional methods can

no longer meet the stringent requirements of the current medical industry. Therefore, an
improvement scheme of medical device software life cycle management based on DevOps
is proposed. Through the use of agile development, automated compliance verification,
refined testing and optimized operation and maintenance processes, the software quality
of medical devices can be improved, the software development cycle can be shortened,
and the time to market of products can be reduced. At the same time, the work collabora-
tion mechanism based on DevOps can further enhance the close cooperation between de-
velopment, testing and optimized operation and maintenance processes. Reduce error
rates, risks and trial and error costs, improve the progress of medical device software de-
velopment and improve the reliability of medical devices, and strengthen and protect the
health of patients.

References
1. S. Das, N. Deb, N. Chaki, et al., "Minimising conflicts among run-time non-functional requirements within DevOps," Syst. Eng.,

2024, no. 1, pp. 27, doi: 10.1002/sys.21715.
2. L. E. Lwakatare, et al., "DevOps in practice: A multiple case study of five companies," Inf. Softw. Technol., vol. 114, pp. 217–230,

2019, doi: 10.1016/j.infsof.2019.06.010.
3. K. Kikutani, T. Shimatani, A. Kawaguchi, T. Ikeyama, D. Yamaguchi, O. Nishida, and S. Ohshimo, "Medical equipment that

improve safety and outcomes of inter-facility transportation of critically ill patients: A systematic review," Medicine, vol. 102,
no. 22, p. e33865, Jun. 02, 2023, doi: 10.1097/MD.0000000000033865.

4. A. Hotz, E. Sprecher, L. Bastianelli, et al., "Categorization of a universal coding system to distinguish use of durable medical
equipment and supplies in pediatric patients," JAMA Netw. Open, vol. 6, no. 10, p. e2339449, 2023, doi: 10.1001/jamanetworko-
pen.2023.39449.

5. A. Bhan, C. V. Green, L. Liang, L. Philpotts, et al., "Educational interventions to improve compliance with disinfection practices
of noncritical portable medical equipment: A systematic review," Infect. Control Hosp. Epidemiol., vol. 45, no. 3, pp. 360–366, 2024,
doi: 10.1017/ice.2023.234.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.gbspress.com/index.php/JMLS
https://doi.org/10.71222/etnrdv93
https://doi.org/10.1002/sys.21715
http://doi.org/10.1016/j.infsof.2019.06.010
http://doi.org/10.1097/MD.0000000000033865
http://doi.org/10.1001/jamanetworkopen.2023.39449
http://doi.org/10.1001/jamanetworkopen.2023.39449
http://doi.org/10.1017/ice.2023.234

	1. Introduction
	2. Basic Concepts of DevOps
	2.1. Core Concepts of DevOps
	2.2. DevOps Toolchain and Technology Stack

	3. Life Cycle Management Status of Medical Device Software
	3.1. Slow Response to Development Cycle
	3.2. Compliance Verification Is Complex
	3.3. Insufficient Test Efficiency
	3.4. Lack of Automation in Operation and Maintenance

	4. Optimization Strategy of Medical Device Software Life Cycle Management Based on DevOps
	4.1. Adopting Agile Development and Short Cycle Iteration
	4.2. Integrated Automated Compliance Check Tool
	4.3. Refined Test Case Management
	4.4. Optimizing the O&M Process and Role Assignment

	5. Conclusion
	References

