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Abstract: Liver fibrosis and vascular diseases are often accompanied by chronic inflammation and 
excessive extracellular matrix deposition, posing significant clinical challenges. In this study, we 
developed a poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier system for targeted delivery of 
anti-inflammatory and antifibrotic agents. The nanocarriers were fabricated via a nanoprecipitation 
method and functionalized with α-smooth muscle actin (α-SMA) antibodies and vascular cell adhe-
sion molecule-1 (VCAM-1) aptamers to enhance cell-specific targeting. Characterization revealed 
uniform spherical morphology with a mean particle size of 150 ± 20 nm, increasing to 165 ± 25 nm 
after ligand modification, and a stable zeta potential of -20 ± 5 mV. Flow cytometry confirmed a 
conjugation efficiency of 85 ± 5%. Confocal imaging showed 2.3-fold and 2.5-fold increases in uptake 
by hepatic stellate and vascular endothelial cells, respectively. ELISA results demonstrated signifi-
cant reductions in TNF-α, IL-6, Collagen I, and Fibronectin levels following treatment with drug-
loaded nanocarriers. In vivo studies using C57BL/6 mouse models of liver fibrosis and vascular in-
jury confirmed improved therapeutic efficacy. The nanocarrier group showed marked reductions 
in ALT (60 ± 6 U/L), AST (80 ± 8 U/L), liver fibrosis area (15 ± 3%), and atherosclerotic plaque (12 ± 
2%) compared to controls. No significant adverse effects were observed. These results suggest that 
ligand-modified PLGA nanocarriers provide a promising strategy for targeted therapy of fibrosis-
related diseases improved efficacy and safety profiles. 
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1. Introduction 
Liver fibrosis and vascular diseases are major global health concerns that seriously 

affect human health [1,2]. Liver fibrosis is a key stage in the progression of chronic liver 
diseases to cirrhosis, mainly characterized by excessive extracellular matrix (ECM) 
buildup in the liver, which disrupts normal liver structure and function [3]. Vascular dis-
eases, including atherosclerosis and vascular blockages, result from chronic inflammation 
of blood vessels and endothelial dysfunction [4]. These conditions eventually lead to nar-
rowing or obstruction of blood vessels, reducing blood supply to organs and tissues. Cur-
rent treatments for liver fibrosis and vascular diseases have significant limitations [5]. 
Conventional drug therapies lack selectivity, affecting both diseased and healthy tissues, 
which leads to severe side effects and restricts the drug dosage and effectiveness [6]. 
Moreover, many drugs cannot easily penetrate biological barriers, making it difficult to 
achieve and maintain effective drug concentrations at the target sites [7]. Therefore, a 
strategy that enables precise drug delivery to diseased areas while improving treatment 
outcomes and minimizing side effects is urgently needed. Advances in nanotechnology 
provide new possibilities to address these challenges. Nanocarriers, due to their small size 
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(typically 1-1000 nm), high surface area and modifiable surfaces, have shown great prom-
ise in drug delivery [8]. With proper design, nanocarriers can target specific cells or tissues, 
improve drug stability, extend circulation time, and enhance drug distribution in the body. 
In the treatment of liver fibrosis and vascular diseases, nanocarriers have the potential to 
deliver anti-inflammatory and antifibrotic drugs with high precision, slowing disease pro-
gression and improving therapeutic outcomes. 

2. Materials and Methods 
2.1. Preparation and Characterization of Nanocarriers 

Nanocarriers containing anti-inflammatory and antifibrotic drugs were prepared us-
ing the nanoprecipitation method [9]. Poly (lactic-co-glycolic acid) (PLGA), a biodegrada-
ble polymer, was selected as the carrier material. The drug and PLGA were dissolved in 
an organic solvent and slowly added dropwise into an aqueous phase containing a sur-
factant under continuous stirring. The nanoparticles were formed through solvent evap-
oration. The particle size and zeta potential of the nanocarriers were measured using dy-
namic light scattering (DLS), while their morphology and structure were examined by 
transmission electron microscopy (TEM). 

2.2. Modification with Targeting Ligands 
To enhance targeting ability, specific ligands were selected based on their affinity for 

receptors highly expressed in liver fibrosis and vascular disease sites. For hepatic stellate 
cells, which overexpress α-smooth muscle actin (α-SMA), a specific antibody was cova-
lently conjugated to the nanocarrier surface [10]. To target vascular endothelial cells ex-
pressing vascular cell adhesion molecule-1 (VCAM-1), an aptamer was chemically linked 
to the nanocarriers. The modification efficiency was assessed using flow cytometry and 
immunofluorescence staining. 

2.3. In Vitro Cell Studies 
Hepatic stellate cells and vascular endothelial cells were cultured to establish in vitro 

models. The nanocarriers were incubated with the cells, and the CCK-8 assay was used to 
evaluate their effect on cell viability. Laser confocal microscopy was applied to observe 
nanocarrier uptake, providing insights into the impact of ligand modification on cellular 
internalization [11-13]. The levels of inflammatory cytokines and fibrosis-related proteins 
in the culture supernatant were quantified using an enzyme-linked immunosorbent assay 
(ELISA) to assess the therapeutic effects of drug-loaded nanocarriers on inflammation and 
fibrosis. 

2.4. Animal Studies 
Liver fibrosis and vascular disease models were established in C57BL/6 mice. Liver 

fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl₄), while vas-
cular disease was modeled using a high-fat diet combined with endothelial injury. Mice 
were randomly assigned to the control, free drug, or nanocarrier treatment groups. Blood 
and tissue samples were collected at different time points to measure liver function and 
lipid levels. Histopathological analysis was performed to examine liver and vascular tis-
sue changes. Immunohistochemical staining was used to detect inflammatory cytokines, 
fibrosis-related proteins and angiogenesis markers, enabling a comprehensive evaluation 
of the targeting efficiency and therapeutic effects of the nanocarrier system. 

3. Results 
3.1. Characteristics of Nanocarriers 

The prepared nanocarriers had a uniform spherical shape with a narrow size distri-
bution, as shown in Table 1 [13]. DLS measurements showed an average particle size of 
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150 ± 20 nm and a zeta potential of -20 ± 5 mV. TEM images confirmed a core-shell struc-
ture, with the drug evenly encapsulated inside, as shown in Figure 1. After modifying the 
nanocarriers with targeting ligands, the particle size increased slightly to 165 ± 25 nm, 
which remained within an acceptable range. The zeta potential showed no significant 
change, staying at -20 ± 5 mV. Flow cytometry and immunofluorescence staining verified 
successful ligand attachment, with a modification efficiency of 85 ± 5%, as illustrated in 
Figure 1. Among 100 randomly selected nanocarriers, 85 ± 5 had targeting ligands suc-
cessfully conjugated. 

Table 1. Physicochemical characteristics of nanocarriers before and after ligand modification. 

Nanocarrier Type Average Particle 
Size (nm) 

Zeta Potential 
(mV) 

Targeting Ligand Modifica-
tion Efficiency (%) 

Unmodified 150 ± 20 -20 ± 5 - 

Modified 165 ± 25 -20 ± 5 
85 ± 5 (Among 100 randomly 

selected nanocarriers) 

3.2. In Vitro Cell Studies 
CCK-8 assay results indicated that nanocarriers at different concentrations (0.1 

μg/mL, 1 μg/mL, 10 μg/mL) did not significantly affect the viability of hepatic stellate cells 
or vascular endothelial cells after 24 hours (p > 0.05), as shown in Table 2. These results 
confirmed that the nanocarriers had good biocompatibility. 

Table 2. Cell viability of hepatic stellate and vascular endothelial cells after nanocarrier treatment 
(CCK-8 assay). 

Cell Type 
Control Group 

(%) 0.1 μg/mL (%) 1 μg/mL (%) 10 μg/mL (%) 

Hepatic Stellate Cells 98.5 ± 3.2 97.8 ± 3.5 98.2 ± 3.0 97.5 ± 3.8 
Vascular Endothelial 

Cells 99.0 ± 2.8 98.0 ± 3.3 98.6 ± 3.1 97.9 ± 3.6 

Laser confocal microscopy showed that modified nanocarriers had significantly 
higher uptake in cells compared to unmodified nanocarriers [14,15]. Fluorescence inten-
sity analysis revealed that in hepatic stellate cells, the average intensity increased from 
1500 ± 200 a.u. (unmodified) to 3500 ± 300 a.u. (modified), and in vascular endothelial cells, 
fluorescence intensity increased from 1300 ± 180 a.u. (unmodified) to 3200 ± 280 a.u. (mod-
ified), as shown in Table 3. These results confirm that ligand modification improved tar-
geting ability. 

Table 3. Fluorescence intensity of nanocarrier uptake in different cell types. 

Cell Type Unmodified Nanocarriers (a.u.) Modified Nanocarriers (a.u.) 
Hepatic Stellate Cells 1500 ± 200 3500 ± 300 
Vascular Endothelial 

Cells 1300 ± 180 3200 ± 280 

ELISA results showed that drug-loaded nanocarriers significantly reduced the levels 
of inflammatory cytokines (TNF-α, IL-6) and fibrosis-related proteins (Collagen I, Fibron-
ectin) in the cell culture supernatant compared to the free drug and control groups, as 
shown in Table 4. 
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Table 4. Inflammatory cytokine and fibrosis-related protein levels in vitro (ELISA results). 

Protein Name Control (pg/mL or 
ng/mL) 

Free Drug Group 
(pg/mL or ng/mL) 

Nanocarrier-Delivered Drug 
Group (pg/mL or ng/mL) 

TNF-α 250 ± 20 200 ± 15 120 ± 10 
IL-6 300 ± 25 230 ± 20 150 ± 12 

Collagen I 500 ± 30 400 ± 25 280 ± 20 
Fibronectin 450 ± 35 380 ± 28 250 ± 18 

These findings demonstrated that nanocarriers effectively delivered therapeutic 
drugs and inhibited inflammation and fibrosis progression. 

3.3. Animal Study Results 
Serum biochemical analysis showed that ALT, AST, total cholesterol (TC), and tri-

glycerides (TG) levels were significantly lower in the nanocarrier-treated group than in 
the control and free drug groups, as shown in Table 5 [15,16]. 

Table 5. Serum biomarkers in animal models following different treatments. 

Biomarker Control Free Drug Group Nanocarrier Treatment Group 
ALT (U/L) 120 ± 10 90 ± 8 60 ± 6 
AST (U/L) 150 ± 12 110 ± 10 80 ± 8 

TC (mmol/L) 4.5 ± 0.4 3.8 ± 0.3 3.0 ± 0.2 
TG (mmol/L) 2.8 ± 0.3 2.2 ± 0.2 1.6 ± 0.1 

Histopathological analysis showed that fibrosis and atherosclerotic plaque areas 
were significantly reduced in the nanocarrier-treated group [17,18], as shown in Table 6. 
Liver fibrosis area decreased from 35 ± 5% (control) to 15 ± 3%, and vascular plaque area 
decreased from 28 ± 4% (control) to 12 ± 2%. 

Table 6. Histopathological analysis of liver fibrosis and vascular plaque area. 

Tissue Type Control (%) Nanocarrier Treatment Group (%) 
Liver Fibrosis Area 35 ± 5 15 ± 3 

Atherosclerotic Plaque Area 28 ± 4 12 ± 2 
Immunohistochemical staining further confirmed that inflammatory cytokines, fi-

brosis-related proteins, and angiogenesis markers were significantly reduced in liver and 
vascular tissues of the nanocarrier treatment group, as shown in Table 7. 

Table 7. Immunohistochemical analysis of protein expression in tissue samples. 

Tissue Type Protein Name Control Free Drug Group Nanocarrier Treat-
ment Group 

Liver TNF-α 1.00 ± 0.08 0.75 ± 0.06 0.40 ± 0.04 
Vascular VCAM-1 1.05 ± 0.09 0.80 ± 0.07 0.50 ± 0.05 

Liver Collagen I 1.20 ± 0.10 0.90 ± 0.08 0.60 ± 0.06 
Vascular VEGF 1.10 ± 0.09 0.85 ± 0.07 0.65 ± 0.05 

These results confirmed the improved targeting and therapeutic effects of the 
nanocarrier system. Additionally, throughout the study, no significant adverse effects, 
such as abnormal weight loss, lethargy, or hair loss, were observed in the nanocarrier-
treated group (n = 50), suggesting that the nanocarriers effectively reduced systemic drug 
toxicity. 

4. Discussion 
This study successfully developed a nanocarrier-based targeted drug delivery sys-

tem for the treatment of liver fibrosis and vascular diseases. Through precise design, the 
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nanocarrier exhibited strong targeting ability, good biocompatibility, and effective tissue 
penetration. Both in vitro and in vivo results consistently demonstrated that the system 
efficiently transported anti-inflammatory and anti-fibrotic drugs to diseased sites, signif-
icantly slowing disease progression while reducing systemic side effects [19,20]. The 
choice of carrier material and targeting ligand plays a key role in nanocarrier design. 
PLGA, a biodegradable polymer with good biocompatibility and high drug-loading ca-
pacity, has been widely used in drug delivery systems. Surface modification with specific 
targeting ligands allows the nanocarrier to accurately recognize and bind to diseased cells 
or tissues, thereby improving drug delivery efficiency [21]. However, further optimization 
of design parameters is required. Adjusting particle size, surface charge and ligand den-
sity can help enhance stability, extend circulation time, and improve targeting specificity 
[22]. Despite these promising results, challenges remain for clinical application. Issues 
such as scalability, quality control and safety assessment need to be addressed [23]. Addi-
tionally, the interaction between nanocarriers and biological systems is not yet fully un-
derstood [24]. Further research is required to clarify their metabolism, distribution, and 
potential toxicity in vivo [25]. A deeper understanding of these aspects will provide a 
strong foundation for the clinical translation of nanocarrier-based drug delivery systems. 

5. Conclusion 
In this study, we developed a PLGA-based nanocarrier system for the targeted deliv-

ery of anti-inflammatory and antifibrotic drugs. The nanocarriers were prepared using a 
nanoprecipitation method and showed stable physicochemical properties, with an aver-
age particle size of 150 ± 20 nm and a zeta potential of -20 ± 5 mV. After surface modifica-
tion with α-SMA antibodies and VCAM-1 aptamers, the particle size slightly increased to 
165 ± 25 nm, and the ligand conjugation efficiency reached 85 ± 5%, indicating successful 
targeting modification. Cellular uptake experiments showed that ligand-modified 
nanocarriers were more efficiently internalized by hepatic stellate cells and vascular en-
dothelial cells. Fluorescence intensity increased from 1500 ± 200 to 3500 ± 300 in hepatic 
stellate cells and from 1300 ± 180 to 3200 ± 280 in endothelial cells. These results confirmed 
that surface modification significantly improved the targeting ability. In addition, ELISA 
analysis demonstrated that nanocarrier-delivered drugs led to a more pronounced reduc-
tion in TNF-α, IL-6, Collagen I, and Fibronectin levels than free drugs or controls, con-
firming the therapeutic effect in vitro. In vivo, the nanocarrier-treated group showed im-
proved liver function and reduced blood lipid levels. Serum ALT and AST decreased to 
60 ± 6 U/L and 80 ± 8 U/L, respectively, while TC and TG dropped to 3.0 ± 0.2 mmol/L and 
1.6 ± 0.1 mmol/L. Histological analysis showed that liver fibrosis area decreased from 35 
± 5% to 15 ± 3%, and vascular plaque area decreased from 28 ± 4% to 12 ± 2%. Immuno-
histochemistry confirmed the lower expression of TNF-α, VCAM-1, Collagen I, and VEGF 
in treated tissues. No obvious toxicity or side effects were observed during the entire 
study. 

These findings indicate that the nanocarrier system can effectively improve drug ac-
cumulation at disease sites and enhance therapeutic effects while minimizing systemic 
toxicity. Although the results are promising, further research is needed to evaluate large-
scale production, long-term safety, and the in vivo fate of the nanocarriers. Future opti-
mization of particle size, surface charge, and ligand density may help improve targeting 
accuracy and biological stability. These efforts will support the potential clinical applica-
tion of nanocarrier-based drug delivery systems in the treatment of liver fibrosis and vas-
cular diseases. 
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