
Article

AI-Based Dance Evaluation Systems and Personalized Instruction: Possibilities and Boundaries of Dance Education in the Intelligent Era

Ning Li ^{1,*}

¹ Northeast Normal University, Changchun, Jilin, China

* Correspondence: Ning Li, Northeast Normal University, Changchun, Jilin, China

Abstract: With the rapid advancement of intelligent technologies, AI-based dance evaluation systems have increasingly been integrated into dance education to support movement recognition, performance assessment, and personalized instruction. This study examines both the pedagogical possibilities and inherent limitations of such systems. The findings indicate that AI can enhance technical accuracy, expand learning accessibility, and provide individualized training pathways for learners with diverse skill levels. However, dance is fundamentally an embodied and expressive art form grounded in somatic awareness, emotional presence, and cultural meaning-elements that cannot be fully captured through quantifiable movement data. AI-based evaluation models may inadvertently reinforce singular aesthetic standards and overlook cultural diversity, while the role of the dance teacher in guiding artistic interpretation and providing relational support remains irreplaceable. Therefore, the integration of AI in dance education should be approached as a strategy of complementarity rather than substitution, ensuring that technological precision is balanced with human-centered artistic and cultural values.

Keywords: AI-based dance evaluation; personalized instruction; somatic awareness; aesthetic diversity; embodied learning; dance pedagogy

I. Introduction

In the era of rapidly advancing intelligent technologies, the landscape of art education is undergoing profound transformation. Artificial intelligence, computer vision, big data analytics, and machine learning have begun to restructure teaching processes, learning environments, and assessment mechanisms across multiple artistic domains. Compared with traditional instruction, which depends heavily on the instructor's personal expertise and in-class demonstration, AI-supported teaching systems can provide continuous monitoring, precise data analysis, and adaptive learning feedback. These technological developments are shifting the paradigm of art education from experience-based and teacher-centered models toward data-informed, interactive, and learner-centered frameworks. As digital platforms and intelligent evaluation tools become more common, art education is progressively evolving into a hybrid form in which human instruction and machine-assisted analysis coexist. This transformation raises critical questions about how artistic knowledge—especially embodied and aesthetic knowledge—can be effectively mediated in the age of intelligent education.

Dance learning, in particular, presents unique challenges that distinguish it from other fields within the arts. Unlike visual or auditory art forms that can be observed or heard and reproduced with relative immediacy, dance relies on the body as both the medium and the expressive instrument. It requires mastery of movement accuracy, spatial orientation, rhythmic coordination, emotional interpretation, and kinesthetic awareness. The learner must simultaneously process technical details such as posture alignment and

Received: 12 October 2025

Revised: 22 October 2025

Accepted: 05 November 2025

Published: 11 November 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

joint trajectory, while also cultivating expressive qualities such as musicality, dynamic contrast, and personal style. The holistic nature of dance makes its evaluation inherently complex and often subjective. Traditional dance pedagogy depends strongly on face-to-face guidance, individualized correction, and tacit knowledge transmitted through body demonstration and imitation. Such methods, while irreplaceable in conveying artistic nuance, face difficulties in providing continuous, objective, and quantifiable feedback—especially for learners practicing independently or outside specialized studios. This tension underscores the need to explore supplementary systems that can support precision learning without undermining embodied artistic experience [1].

Against this background, AI-based dance evaluation systems have emerged as a promising response to these pedagogical challenges. Combining motion capture algorithms, pose estimation models, and performance analysis frameworks, these systems are capable of identifying movement deviations, assessing rhythmic synchronization, and generating personalized feedback with a level of granularity that is difficult to achieve through human observation alone. In addition to serving as an instructional aid in formal dance classes, such systems can facilitate autonomous learning in home environments, expanding access to dance education and reducing learning inequities caused by geographic or institutional limitations. However, the integration of AI into dance instruction also raises important questions about aesthetic judgment, cultural interpretation, data privacy, and the irreplaceable role of the human teacher in fostering emotional expression and artistic identity. Therefore, examining both the possibilities and limitations of AI-based dance evaluation is essential for understanding how dance education can evolve responsibly and creatively in the intelligent era [2].

2. Technical Foundations of AI-Based Dance Evaluation Systems

2.1. Motion Capture Technologies

The core foundation of AI-based dance evaluation systems lies in motion capture technologies, which enable the precise digital representation of human movement. Currently, these technologies can be broadly divided into two categories: vision-based motion capture and sensor-based motion capture. Vision-based systems rely on computer vision algorithms to detect and track key body points from video input, using pose estimation models such as OpenPose, MediaPipe, or HRNet to analyze joint positions and movement trajectories in real time. These systems have the advantage of accessibility, as they operate with standard cameras or mobile devices without requiring additional hardware. However, their accuracy may be influenced by lighting, background complexity, and occlusion of body parts. In contrast, sensor-based systems use wearable devices—such as inertial measurement units (IMUs), motion-tracking suits, or pressure sensors—to capture subtle details of movement. They provide higher stability and precision, particularly in complex choreography or fast motion sequences, but often require more equipment and financial investment [3].

In dance education, the choice of motion capture approach affects the depth and quality of feedback that AI evaluation systems can deliver. Vision-based systems are more suitable for general dance training and remote learning contexts, while sensor-based systems are advantageous in professional training environments where nuanced movement qualities and biomechanical accuracy are essential. As motion capture technology continues to evolve, hybrid systems that integrate both visual and sensor data are emerging, offering the potential for robust and comprehensive movement analysis capable of supporting more refined and individualized dance instruction.

2.2. Personalized Learning Algorithms

Personalized learning algorithms are a crucial component of AI-based dance evaluation systems, as they enable instructional feedback to be adapted to the unique needs, progress, and physical conditions of individual learners. Unlike traditional dance

pedagogy, which often follows a standardized sequence of training regardless of personal differences, AI-driven systems analyze each learner's performance data over time to identify patterns of improvement, persistent errors, and motor learning tendencies. Based on this longitudinal data, the system can construct individualized skill profiles, which reflect the learner's strengths in rhythm and timing, their consistency in posture and alignment, and their challenges in specific movement categories, such as jumps, turns, or expressive phrasing.

To provide tailored learning recommendations, personalized algorithms frequently employ techniques such as collaborative filtering, reinforcement learning, or adaptive difficulty scheduling. For example, reinforcement learning enables the system to modify training difficulty dynamically: when a learner consistently performs a movement correctly, the system introduces more complex variations to promote skill advancement; conversely, when repeated errors are detected, the system offers simplified guidance, targeted drills, or slower tempo breakdowns to support incremental correction. Furthermore, the system can generate individualized practice plans that consider the learner's physical endurance, learning pace, and stylistic preferences, thereby reducing frustration and enhancing motivation [4].

However, effective personalization must recognize the multidimensional nature of dance learning. The expressive, emotional, and cultural dimensions of movement cannot be fully captured by quantitative learning profiles alone. Therefore, the most robust personalized learning models do not aim to replace the instructor's interpretive role; rather, they function as supportive tools that help learners receive continuous, precise, and accessible guidance. When integrated responsibly, personalized learning algorithms have the potential to promote autonomy, reinforce embodied awareness, and cultivate deeper artistic engagement within the dance learning process.

3. Applications of AI Dance Evaluation in Education

3.1. Real-Time Movement Correction Systems

Real-time movement correction systems are one of the most widely applied functions of AI-based dance evaluation technologies, as they enable immediate feedback during practice, thus directly influencing learning efficiency and skill acquisition. These systems operate by continuously capturing the dancer's movements through camera input or wearable sensors, processing the data through pose estimation algorithms, and comparing the learner's movement trajectory to a pre-established reference model. When discrepancies occur—such as incorrect joint angles, unstable center of gravity, insufficient extension, or poorly synchronized rhythm—the system generates instant corrective cues. These cues may take the form of visual overlays highlighting misaligned body parts, auditory prompts guiding timing and pacing, or textual suggestions recommending specific technical adjustments. Such real-time feedback allows learners to identify and correct errors during the moment of performance, which is particularly valuable in dance training since kinesthetic awareness is strengthened most effectively when correction is closely paired with action [5].

Importantly, real-time correction systems also change the temporal structure of dance instruction. In traditional classrooms, feedback is typically delayed, offered only after the teacher observes the entire phrase or section of choreography. Learners may then struggle to recall the exact physical sensation or movement detail associated with the correction. In contrast, real-time evaluation supports a more continuous, iterative, and sensory-anchored learning cycle, reducing the gap between error detection and bodily adjustment. This is especially beneficial for students practicing independently or outside studio environments, where direct instructional supervision is limited. However, the effectiveness of such systems depends on their ability to balance corrective precision with cognitive and emotional accessibility: overly frequent or mechanistic feedback may overwhelm learners, diminish intuitive movement exploration, and reduce the aesthetic

or expressive qualities of dance. Therefore, the design of real-time correction features must be guided not only by technological accuracy but also by pedagogical sensitivity, ensuring that feedback supports embodied learning rather than constraining it.

3.2. Personalized Practice Plan Generation

Personalized practice plan generation represents another key application of AI in dance education, enabling learners to receive training guidance that is closely aligned with their abilities, goals, and developmental trajectories. After collecting and analyzing performance data over multiple practice sessions, AI systems can construct an evolving profile of each learner's technical strengths, habitual movement errors, and stylistic tendencies. Based on this profile, the system automatically organizes targeted exercises that emphasize areas in need of improvement—for example, drills for balance and turnout in classical ballet, isolation and control for hip-hop, or fluid transitions for contemporary dance. These personalized plans are often structured in progressive difficulty levels, ensuring that learners are neither over-challenged nor under-stimulated, thereby supporting steady and sustainable skill enhancement [6].

Moreover, personalized practice plans take into account not only technical proficiency but also cognitive and physical factors such as motor learning pace, muscle fatigue thresholds, and memory retention patterns. Some systems incorporate adaptive scheduling mechanisms, adjusting training intensity based on the learner's daily performance or engagement level. For instance, if repeated corrective feedback is required for a particular movement, the system may introduce additional breakdown exercises or modify tempo and repetition frequency to reinforce mastery. Conversely, when proficiency is demonstrated, the system may introduce choreographic variations that encourage expressive development and stylistic confidence. Nonetheless, while these personalized plans offer considerable support to independent learning, they may risk narrowing movement diversity if overly focused on correction rather than exploration. Therefore, effective integration of these systems requires maintaining a balance between structured repetition and open-ended artistic discovery, ensuring that the learner's individuality and creativity remain central to the dance experience.

3.3. Digital Resource Libraries and Platform-Based Teaching

Digital resource libraries and platform-based teaching environments expand the accessibility and scalability of dance education by providing learners with structured instructional materials, archival performance references, and interactive learning tools. These platforms often include video tutorials, annotated movement breakdowns, 3D motion visualizations, music rhythm guides, and repertoire databases organized according to dance genre, difficulty level, and pedagogical goals. By combining these resources with AI recommendation algorithms, platforms can guide learners to appropriate instructional content based on their progress and interests, thereby promoting self-directed learning. Additionally, some platforms support community-based learning environments where students can upload practice videos, receive feedback from peers and instructors, and participate in virtual classrooms, workshops, or online performance showcases [7].

The digitization of dance resources also contributes to cultural preservation and knowledge sharing. Archiving choreographic works, stylistic traditions, and master teacher methodologies allows learners to access diverse cultural forms that might otherwise be geographically distant or institutionally restricted. This is particularly valuable for dance genres rooted in cultural heritage or minority identity, which benefit from broader dissemination and contextual understanding. However, the expansion of digital dance resources raises critical considerations regarding authorship, cultural interpretation, and pedagogical authenticity. Dance is deeply contextual, and the subtleties of breath, emotion, weight, and cultural meaning are not always fully

transferable through digitized formats. Platform-based teaching should therefore be understood as complementary rather than substitutive, supporting—but not replacing—the embodied, relational, and culturally situated dimensions of in-person dance education [8].

The applications outlined above illustrate that AI-based dance evaluation systems are not merely technical tools, but active participants in reshaping dance learning environments. Real-time corrective feedback enhances the immediacy of skill refinement, personalized practice plans support long-term and sustainable learning progress, and digital resource platforms increase accessibility while expanding the cultural and stylistic range of dance education. These developments suggest that AI has the capacity to influence both the efficiency and inclusiveness of dance training. At the same time, the integration of intelligent technology also invites deeper reflection on the nature of artistic expression, bodily awareness, and aesthetic judgment, highlighting that dance education involves dimensions that extend beyond technical accuracy or performance consistency. Recognizing these broader implications is essential for understanding the evolving landscape of dance learning in the intelligent era.

4. Educational Value and Possibilities of AI-Based Dance Instruction

4.1. Enhancing Accessibility and Expanding Learning Opportunities

One of the most significant educational values of AI-based dance evaluation systems lies in their capacity to enhance the accessibility of dance learning and broaden opportunities for participation. Traditional dance education often requires access to specialized studios, trained instructors, and structured class schedules, which can present substantial barriers for learners with geographic, economic, or institutional limitations. AI-supported platforms reduce these constraints by enabling practice and skill development outside formal classroom environments. Learners can receive real-time corrective feedback and personalized training guidance through mobile devices or home-based practice settings, allowing them to pursue dance training at their own pace and according to their own schedules. This flexibility is particularly beneficial for students in rural or underserved areas, individuals with limited access to professional instruction, or adult learners seeking non-traditional pathways into dance.

Moreover, AI systems support differentiated learning by recognizing individual differences in physical condition, cognitive processing speed, and prior movement experience. Instead of adhering to standardized, one-size-fits-all instructional models, AI-based platforms accommodate diverse learning trajectories, allowing students to progress through material that matches their readiness and interests. This personalization not only improves training efficiency but also fosters motivation by enabling learners to set meaningful goals and observe measurable progress. Additionally, digital resource platforms provide exposure to a wide variety of dance genres and cultural styles, giving students the opportunity to explore movement traditions that might not be represented within their immediate educational environment. Through these mechanisms, AI contributes to a more inclusive and expansive dance learning ecosystem—one in which participation is not constrained by location, social background, or prior access to institutional training.

However, while increased accessibility offers meaningful benefits, it also necessitates careful consideration of instructional quality, cultural context, and learner support systems. Accessibility should be complemented by pedagogical guidance that ensures learners develop not only technical proficiency but also expressive depth and embodied understanding. Thus, the educational value of AI-based dance systems is most effectively realized when accessibility is viewed not simply as wider distribution of instructional content, but as the creation of learning environments that remain respectful of dance's aesthetic, cultural, and humanistic dimensions.

4.2. Providing Objective Feedback and Supporting Personalized Skill Development

AI-based dance evaluation systems contribute significant value to instructional processes by offering objective, consistent, and data-driven feedback. Traditional dance evaluation largely depends on the instructor's visual perception and professional intuition, which, while irreplaceable for conveying artistic nuance, may introduce subjectivity and variation due to personal teaching styles, aesthetic preferences, or momentary observational limitations. In contrast, AI assessment models analyze movement through quantifiable parameters-such as joint alignment, trajectory accuracy, weight distribution, and rhythmic synchronization-allowing learners to receive precise indicators of where technical disparities occur. This objectivity can help reduce ambiguity in movement correction and enable students to engage in more focused, goal-oriented practice.

Importantly, when integrated with personalized learning algorithms, data-driven feedback does not merely classify performance as correct or incorrect, but instead maps patterns of improvement and challenge across time. This longitudinal analysis supports individualized skill development: students can clearly identify recurring errors, observe progress curves, and adjust their practice strategies accordingly. This fosters greater learner autonomy, as students gain the ability to monitor their own growth rather than relying solely on intermittent teacher evaluation. Furthermore, instructors can use these data insights to design targeted lesson plans, differentiate instruction among varied skill levels, and more effectively allocate classroom attention. In this sense, AI does not replace the teacher but enhances the teacher's capacity to guide learning with greater precision and responsiveness.

However, although objective feedback provides clarity and structure, it must be understood as one dimension of dance learning rather than its defining standard. Dance is not solely the execution of mechanically correct movement; it is an embodied form of aesthetic expression, emotional communication, and cultural meaning. Excessive reliance on quantification may risk narrowing learners' focus to technical correctness at the expense of expressiveness, musicality, and personal interpretation. Therefore, the role of objective feedback is most productive when positioned not as the final authority, but as a supportive reference that enriches the learner's embodied and artistic understanding.

4.3. Limits of Quantification: Embodied Experience and Aesthetic Expression

While AI-based evaluation systems offer measurable benefits in precision training and personalized guidance, their capabilities remain fundamentally limited when confronted with the deeply embodied and expressive nature of dance. Unlike purely cognitive or procedural skills, dance integrates physical movement with emotional intention, musical interpretation, cultural symbolism, and personal identity. These elements cannot be fully reduced to numerical metrics or algorithmic patterns. For instance, two dancers may execute the same movement with identical technical accuracy, yet differ profoundly in emotional resonance, energetic quality, or interpretative nuance. Such distinctions are perceptible to human observers but often elude computational evaluation models, which prioritize quantifiable aspects of motion over experiential and affective dimensions.

Moreover, dance learning is not only a technical process but also a means of cultivating somatic awareness and body-mind connectivity. The sensation of weight, breath, tension release, spatial expansion, and relational presence forms a core part of the dancer's internal learning experience. AI systems, however, evaluate movement from an externalized perspective-primarily through visual or sensor data-thereby overlooking the internal, felt dimension of movement that dancers develop through embodied practice. This creates a potential misalignment: learners who rely too heavily on AI feedback may become overly focused on external appearance and correction cues, weakening their intuitive bodily sensibility and diminishing their capacity for expressive authenticity.

Finally, aesthetic judgment in dance is inherently shaped by cultural context and stylistic tradition. The dynamics of flamenco, the grounded weight of African diasporic dance forms, the vertical elongation of ballet, and the fluid release of contemporary dance represent distinct aesthetic values that cannot be universally standardized. If AI evaluation models are built upon limited or culturally narrow training datasets, there is a risk of reinforcing dominant aesthetics and marginalizing alternative or emergent dance traditions. Therefore, while AI can support the development of technical proficiency, it must not be viewed as the definitive arbiter of artistic quality. Recognizing the boundaries of quantification underscores the need to maintain the role of human teachers, choreographers, and cultural practitioners in guiding the expressive, interpretive, and meaning-making dimensions of dance education.

The integration of AI-based evaluation systems into dance education reveals both transformative potential and inherent limitations. On one hand, AI technologies expand access to learning, offer objective and consistent feedback, and support individualized training pathways that align with learners' diverse needs and developmental trajectories. These advancements contribute to a more flexible and inclusive educational environment in which students can engage with dance beyond traditional studio constraints. On the other hand, dance remains an art form grounded in embodied sensation, cultural context, and expressive interpretation-dimensions that resist full capture by algorithmic assessment. While AI can analyze the external shape and coordination of movement, it cannot replicate the internal experience of presence, intention, or emotional resonance that defines dance as a human, relational, and aesthetic practice. Thus, the value of AI in dance education emerges most clearly when technology is positioned as a supportive tool rather than a replacement for human instruction, enabling technical refinement while preserving the centrality of artistic expression and embodied learning.

5. Limitations and Boundaries of AI-Based Dance Education

5.1. *The Non-Quantifiable Nature of Body Awareness and Movement Sensation*

Although AI-based dance evaluation systems can measure technical accuracy and movement efficiency, they remain fundamentally limited in addressing the embodied, sensory dimension of dance learning. Dance is not only a physical skill but a practice of internal awareness: dancers must feel the flow of weight through the body, the elasticity and resistance of muscle tone, the musicality that shapes phrasing, and the breath that sustains expressive intention. These sensations are highly individualized, tacit, and often difficult to verbalize—even for experienced dancers and instructors. AI systems, however, operate from an external, visualized perspective, relying on observable data such as joint angles, limb pathways, and rhythm synchronization. While such measurements contribute to technical refinement, they cannot access the internal, felt experience that guides expressive movement. As a result, learners who depend too heavily on algorithmic feedback may begin to prioritize outward correctness—striving to “look right”—rather than cultivating the deeper somatic awareness required to “feel right.”

Furthermore, dance education involves the development of an embodied identity, not merely the achievement of technical competency. The ability to make movement meaningful, to infuse choreography with personal interpretation, and to connect emotionally with an audience arises from experiences that are neither uniform nor algorithmically predictable. These elements emerge through lived practice, improvisation, shared classroom culture, and empathetic interaction with teachers and peers. AI cannot replicate these relational and affective dimensions. Its evaluation is necessarily reductive, narrowing the richness of dance into quantifiable components. Therefore, while AI can support training by clarifying errors and guiding repetition, it cannot replace the experiential depth that occurs when dancers learn to listen to their bodies, engage their emotions, and discover their own artistic voice. Acknowledging this boundary is essential

for ensuring that technology remains a tool in service of dance, rather than a force that reshapes dance into something merely mechanical.

5.2. The Risk of Aesthetic Standardization and Cultural Narrowing

A central concern in the integration of AI into dance education lies in the system's dependency on training datasets and model-defined reference standards. These datasets inevitably reflect particular cultural, stylistic, or institutionalized ideals of movement quality—often those dominant in mainstream dance education systems. When an AI model determines correctness primarily by comparing a learner's performance to a fixed reference, it implicitly promotes a singular aesthetic benchmark. However, dance as an art form is inherently pluralistic. The upright alignment and refined extension valued in ballet differ fundamentally from the grounded, rhythmic, and community-centered movement aesthetics present in African and Afro-diasporic forms, or the release-based fluidity central to contemporary dance. If AI systems privilege one aesthetic over others—whether intentionally or as a byproduct of biased data—students may internalize a limited conception of what counts as "good" dance.

Over time, this risks narrowing the expressive and cultural diversity of dance, encouraging learners to conform to standardized movement patterns rather than exploring their own expressive potential. Moreover, many dance forms carry cultural, historical, and spiritual dimensions that cannot be fully captured through visual movement data alone. An AI system may recognize the external shape of a traditional movement but remain unable to understand the cultural meaning that animates it from within. Thus, the introduction of AI into dance education requires conscientious dataset design, diverse representation in training materials, and critical pedagogical dialogue. Only when guided by cultural sensitivity and aesthetic awareness can AI serve as a tool that enhances, rather than homogenizes, dance education.

5.3. The Changing Role of the Dance Teacher and the Human Dimension of Instruction

As AI systems increasingly provide real-time feedback, progress tracking, and individualized training plans, questions emerge regarding how the teacher's role should be understood in technologically integrated dance education. While AI can analyze external movement efficiency with impressive accuracy, it lacks the capacity to recognize emotional intention, interpersonal energy exchange, artistic risk-taking, and the subtle relational dynamics that shape learning environments. Dance teachers do not simply correct posture; they model how to embody emotion, guide students through vulnerability, inspire creativity, and cultivate confidence. These pedagogical dimensions depend on empathy, sensitivity, and lived artistic experience—qualities that cannot be computationally replicated.

If students begin to prioritize AI evaluation over teacher guidance, there is a risk that learning may shift toward mechanical compliance rather than expressive exploration. The teacher-student relationship in dance provides mentorship, motivation, and a sense of shared artistic purpose; it shapes identity as much as technique. Therefore, the goal is not to replace teachers but to redefine the human-technology relationship in dance education. AI can reduce repetitive correction labor, allowing teachers to focus more deeply on creative coaching and interpretative guidance. Likewise, teachers can help students interpret AI feedback in ways that support embodied awareness rather than technical rigidity. In this collaborative model, technology enhances precision, and teachers sustain artistic depth—ensuring that the human experience remains at the center of dance learning.

In summary, while AI-based systems can support technical accuracy and provide individualized feedback, they cannot fully address the embodied, expressive, and relational dimensions of dance learning. The risks of aesthetic standardization and the irreplaceable role of teachers highlight the need for cautious and reflective integration of

technology. AI should function as an assistive tool, not a substitute for human guidance or artistic exploration.

6. Future Directions for AI-Assisted Dance Education

As AI continues to develop, its role in dance education should emphasize complementarity rather than substitution. Future system design can focus on integrating external motion analysis with models of internal sensation and movement intention, exploring ways to represent somatic awareness rather than solely visible form. Meanwhile, dataset expansion should prioritize cultural and stylistic diversity, ensuring that evaluation standards reflect the pluralistic nature of dance rather than reinforcing a singular aesthetic norm.

6.1. Developing Human-Technology Co-Teaching Frameworks

Going forward, the integration of AI into dance education must be grounded in a pedagogical model that understands technology and human instruction as mutually supportive rather than competitive. AI systems are especially effective in providing detailed biomechanical analysis-detecting subtle alignment deviations, timing discrepancies, or inefficiencies in force distribution that may be difficult to consistently observe in real-time classroom settings. By taking on these highly repetitive and data-intensive forms of feedback, AI can reduce the corrective load placed on instructors, thereby increasing teaching efficiency and enabling learners to access individualized guidance beyond class time.

However, while AI can assist with technique optimization, it cannot replace the teacher's role in cultivating expressive interpretation, embodied imagination, artistic risk-taking, or the emotional presence required in dance performance. Therefore, a co-teaching framework might involve students using AI for preliminary technical practice and refinement, followed by in-person sessions where instructors help them interpret movement in relation to meaning, style, and personal identity. This model preserves the irreplaceable human dimension of dance learning while leveraging AI's analytical strengths, ultimately fostering a learning environment where precision and artistry develop together rather than at the expense of one another.

6.2. Strengthening Ethical Governance of Bodily Data and Cultural Representation

As AI dance evaluation systems depend extensively on motion-capture data, video archives, and embodied movement datasets, the ethical management of bodily imagery must become a central consideration. A dancer's movement is not merely a "data pattern"; it is an extension of personal identity, lived experience, and, in many cases, cultural heritage. Therefore, the use of body-model data requires clear and transparent consent procedures that specify how data will be stored, analyzed, shared, and importantly-not repurposed outside the learning context without permission. Developing institutional ethics guidelines, secure storage protocols, and rotational anonymization processes will be necessary to prevent surveillance, unauthorized reuse, or commercial exploitation of bodily data.

Moreover, as AI datasets expand, attention must be paid to cultural representation and intellectual sovereignty. Dance traditions from Indigenous, diasporic, or community-based contexts cannot be treated merely as "movement resources" for algorithmic training without collaboration, acknowledgment, and community agency. Respectful co-development frameworks-where cultural practitioners play active roles in dataset design, annotation, and interpretive translation-are essential to avoid aesthetic flattening and cultural appropriation. Ethical governance therefore protects not only individual learners, but the integrity and diversity of dance as a cultural and artistic practice.

7. Conclusion

This study has examined the emerging role of AI-based dance evaluation and personalized instruction within the broader context of intelligent-era education. While AI technologies significantly enhance the precision of movement analysis, expand learning accessibility, and support individualized training trajectories, their impact is inherently bounded by the embodied, expressive, and relational nature of dance as an art form. Dance is not solely the reproduction of correct movement patterns; it is a practice of somatic awareness, cultural meaning-making, emotional presence, and personal interpretation. These dimensions cannot be fully quantified or replicated by algorithmic systems. Thus, the educational potential of AI lies not in replacing traditional pedagogy, but in complementing it by relieving technical-correction burdens and enabling more flexible learning environments.

However, the integration of AI also raises critical concerns regarding aesthetic standardization, cultural representation, and the evolving role of the dance educator. If evaluation models privilege a limited set of stylistic norms, there is a risk of narrowing aesthetic diversity and reinforcing dominant cultural frameworks. Likewise, while AI can support technical skill acquisition, it cannot replace the embodied mentorship, artistic guidance, and interpersonal connection provided by human teachers. Ethical governance related to bodily data protection and cultural sovereignty must also remain central to responsible implementation.

In this sense, the future of AI-assisted dance education depends on balance-a pedagogical and cultural negotiation that maintains the expressive, human, and pluralistic core of dance while embracing technologies that enhance precision and accessibility. When thoughtfully integrated, AI can serve as a tool that strengthens technical refinement and promotes individualized learning, while teachers safeguard the artistry, depth, and cultural vitality that define dance as a uniquely human practice. The possibilities are significant, but so too are the boundaries; acknowledging both is essential for shaping a sustainable and meaningful path forward.

References

1. Z. Wang, "Artificial intelligence in dance education: Using immersive technologies for teaching dance skills," *Technology in Society*, vol. 77, p. 102579, 2024. doi: 10.1016/j.techsoc.2024.102579.
2. Y. Zhong, X. Fu, Z. Liang, Q. Chen, R. Yao, and H. Ning, "The Application of Artificial Intelligence Technology in the Field of Dance," *Applied System Innovation*, vol. 8, no. 5, p. 127, 2025. doi: 10.3390/asi8050127.
3. H. Miko, R. Frizen, and C. Steinberg, "Using AI-based feedback in dance education-a literature review," *Research in Dance Education*, pp. 1-25, 2025.
4. X. Cao, "Case study of China's compulsory education system: AI apps and extracurricular dance learning," *International Journal of Human-Computer Interaction*, vol. 40, no. 13, pp. 3419-3426, 2024. doi: 10.1080/10447318.2023.2188539.
5. L. J. Xu, J. Wu, J. D. Zhu, and L. Chen, "Effects of AI-assisted dance skills teaching, evaluation and visual feedback on dance students' learning performance, motivation and self-efficacy," *International Journal of Human-Computer Studies*, vol. 195, p. 103410, 2025. doi: 10.1016/j.ijhcs.2024.103410.
6. T. Zhang, and H. Chen, "AI-driven personalized training model for dance movement and health management research," *J. COMBIN. MATH. COMBIN. COMPUT.*, vol. 127, pp. 5215-5231, 2025. doi: 10.61091/jcmcc127a-294%20%20.
7. J. Whang, "Artificial intelligence-based smart dance resources for a quality education system," Available at SSRN 5000080. doi: 10.2139/ssrn.5000078.
8. J. Weng, and X. Jiang, "Research on movement fluidity assessment for professional dancers based on artificial intelligence technology," *Artificial Intelligence and Machine Learning Review*, vol. 5, no. 4, pp. 41-54, 2024. doi: 10.69987/AIMLR.2024.50404.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.