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Abstract: The defect issues of photovoltaic solar panels are closely related to their efficiency and 
reliability. To enhance the efficiency and accuracy of defect detection in photovoltaic solar panels, 
this paper proposes an improved YOLOv8 model for this purpose. The improved C2f module, C2f-
MS, is utilized to replace part of the original C2f structure in the model, which not only reduces the 
computational complexity and parameter count of the model but also enhances the extraction and 
fusion capabilities of multi-scale features. Additionally, NWD is incorporated into the existing 
CIOU to improve the detection performance for small targets, making the model's detection capa-
bilities more balanced across various target sizes. Soft-NMS is employed to replace NMS, mitigating 
the issue of multiple detection boxes for a single target. Experimental results demonstrate that the 
improved YOLOv8 model achieves enhanced detection accuracy while reducing both the parameter 
count and computational complexity. 
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1. Introduction 
The "carbon peaking by 2030 and carbon neutrality by 2060" goals represent signifi-

cant strategic decisions in China's energy transition, marking a crucial phase for the coun-
try [1]. As of the end of 2021, China's cumulative installed capacity of grid-connected pho-
tovoltaic (PV) power generation was approximately 305.9870 GW. In the new context of 
achieving these "dual carbon" targets, China's solar energy utilization technologies and 
application scenarios have entered a new period of development [2]. As a crucial renew-
able energy technology, the widespread application of PV panels has become an im-
portant means to reduce dependence on fossil fuels and greenhouse gas emissions. How-
ever, during actual production, PV panels may face various defects and issues caused by 
manufacturing processes, environmental factors, and human factors. Accurate and effi-
cient identification of PV panel defects, identification of their causes, and proposal of so-
lutions are crucial for improving the reliability and efficiency of PV panels. 

In the industrial production of PV panels, common defects include cracks, fragmen-
tation, scratches, and broken busbars. Considerable research has been conducted by do-
mestic and foreign research institutions and enterprises to develop more precise and effi-
cient detection methods for these PV defects. Manual visual inspection is a traditional 
method for detecting PV panel defects, involving direct observation and examination of 
PV panels to identify surface defects. This method is simple and intuitive but has draw-
backs such as strong subjectivity, low efficiency, and inaccuracy. Especially for minute 
defects or internal issues, manual visual inspection often fails to meet requirements. With 
the gradual increase in demand for PV panels and the rapid development of computer 
vision technology, automated detection methods based on machine vision and deep 
learning have gradually become mainstream. This trend has led to improved production 
efficiency, reduced costs, and enhanced detection accuracy and reliability. 

Previous deep learning-based algorithms for PV panel defect detection have 
achieved good results in detection tasks. However, there has been limited research on the 
detection of minute targets among PV panel defects and issues related to model parameter 
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quantity, which are crucial for deployment on mobile devices. Addressing the inadequacy 
in detecting minute targets in PV panel defect detection and the issue of model parameter 
quantity, this paper proposes an improved YOLOv8 model to enhance the detection ca-
pability for small targets and achieve model lightweighting. Drawing inspiration from 
depthwise separable convolution and Scale-Aware Modulation (SAM), a new convolu-
tional module, MS Conv (Multi-scale Convolution), is constructed and incorporated into 
C2f to form a new C2f structure, C2f-MS. This enhances multi-scale feature extraction ca-
pabilities and obtains more global information while reducing parameter quantity and 
computational complexity. Furthermore, NWD is added to the original CIoU loss function 
to improve the detection capability for small targets, thereby enhancing overall perfor-
mance. Finally, Soft-NMS is used to replace NMS, addressing the issue of multiple detec-
tion boxes for the same target. 

2. Introduction to the YOLOv8 Model 
YOLOv8 represents the latest version in the YOLO series of object detection algo-

rithms [3]. The network architecture of this algorithm comprises three main components: 
the backbone feature extraction network, the neck feature fusion network, and the detec-
tion head, which collaborate to achieve efficient object detection. Within the network 
model, the backbone feature extraction network consists of Conv, SPPF, and C2f modules. 
The C2f module, in particular, draws inspiration from the design concepts of the C3 mod-
ule in YOLOv5 and the ELAN module in YOLOv7, obtaining richer gradient flow infor-
mation while maintaining lightweight characteristics. The neck feature fusion network, 
composed of Upsample, Concat, and C2f, focuses on feature fusion to integrate multi-
scale feature information, providing more comprehensive feature representations for sub-
sequent object detection tasks.  

The detection head adopts a mainstream decoupled-head structure, separating the 
classification and detection heads. Additionally, it employs an anchor-free model, directly 
predicting the center point, width, and height ratio of objects rather than predicting the 
position and size of anchor boxes. This approach reduces the number of anchor boxes, 
accelerates non-maximum suppression (NMS), and enhances detection speed and accu-
racy. This paper improves upon the YOLOv8n model by utilizing three strategies for per-
formance optimization: incorporating a novel C2f-MS module, adding NWD to the origi-
nal loss function, and replacing NMS with Soft-NMS. The specific improved YOLOv8n 
architecture is illustrated in Figure 1. 

 
Figure 1. Improved Architecture of YOLOv8. 

3. Improvements to the Algorithm 
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3.1. Improved C2f Module 
Depthwise Separable Convolution [4] consists of Depthwise Convolution and 

Pointwise Convolution. Depthwise Convolution refers to convolution that does not cross 
channels, meaning each channel of the feature map has an independent convolutional 
kernel that operates solely on that channel. Depthwise Convolution is employed to per-
form convolutional feature extraction on the number of channels in each layer. However, 
these features are extracted on a single feature channel, and the information among chan-
nels is independent. Subsequently, Pointwise Convolution (realized by a 1x1 convolution) 
is used to fuse the features of each channel. The role of Pointwise Convolution is to in-
crease or decrease the dimensionality of feature channels. 

Scale-Aware Modulation (SAM) [5] includes two key components: MHMC (Multi-
Head Mixed Convolution) and SAA (Scale-Aware Aggregation). MHMC introduces 
DWConv with different kernel sizes, enabling it to capture spatial features at multiple 
scales. SAA, designed to enhance information interaction among multiple heads in 
MHMC, introduces a new lightweight aggregation module. SAA reorganizes and groups 
the features of different granularities generated by MHMC and then uses 1x1 convolution 
for cross-group information fusion within and between groups, achieving lightweight and 
efficient aggregation. 

Drawing on the concepts of Depthwise Separable Convolution and SAM, we inde-
pendently apply convolutions with different kernels to the input channels. The output 
feature maps of different scales are then integrated and interacted through a 1x1 convolu-
tion to achieve feature fusion, constructing a new convolutional module, MS Conv (Multi-
scale Convolution). The architecture of MS Conv is illustrated in Figure 2. 

 
Figure 2. Architecture Diagram of MS Conv. 

Half of the input channels undergo no convolution operation, while one-quarter of 
the input channels are subjected to 3x3 convolution, and another quarter to 5x5 convolu-
tion. Subsequently, the feature maps of different scales from these independent channels 
are concatenated along the channel dimension. Finally, a 1x1 convolution operation is per-
formed to adjust the number of channels. This convolution employs kernels of different 
sizes, enabling it to capture various details and scale information from the input feature 
maps, thereby enhancing the model's ability to perceive multi-scale features. Additionally, 
by processing the channels of the input feature map separately, this convolution avoids 
redundant multiplication operations and reduces computational load. Furthermore, no 
convolution operation is applied to the remaining half of the channels, further decreasing 
computational complexity. In this paper, MS Conv is used to replace some of the Conv in 
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C2f, and the improved C2f-MS structure is employed to substitute the original C2f struc-
ture with more than 512 channels in the model. A comparison of the structures before and 
after the improvement is illustrated in Figure 3. 

 
Figure 3. Improved C2f Structure Diagram. 

3.2. NWD Loss Function 
Intersection over Union (IoU) [6] is a commonly used metric to evaluate the perfor-

mance of object detection algorithms. It measures the degree of overlap between detection 
results and ground truth annotations. In object detection tasks, algorithms output a series 
of bounding boxes to represent the detected object locations. IoU quantifies the similarity 
between the algorithm-generated bounding box and the ground truth bounding box by 
calculating the ratio of their intersection area to the union area. IoU serves two main pur-
poses: firstly, as an evaluation metric in object detection tasks, it assesses the algorithm's 
accuracy in locating objects and the overall effectiveness of object detection. Typically, a 
detection is considered correct only if its IoU exceeds a threshold (e.g., 0.5 or 0.7). Secondly, 
in object detection, Non-Maximum Suppression (NMS) is often used to suppress overlap-
ping detection results and retain the most accurate one. IoU is employed to calculate the 
overlap between two bounding boxes, thereby determining whether a detection result 
should be retained or suppressed. 

Normalized Gaussian Wasserstein Distance (NWD) [7] is a normalized Gaussian dis-
tance metric based on the Wasserstein distance, used in object detection to measure the 
similarity between predicted bounding boxes and ground truth object bounding boxes. It 
models bounding boxes as two-dimensional Gaussian distributions, calculates the dis-
tance between them, and applies normalization to mitigate the impact of factors such as 
size and spacing. 

In the photovoltaic panel defect dataset used in this paper, some targets in the labels 
are relatively small, leading to a tendency for missed detections during the detection pro-
cess. However, considering that not all labels contain small targets, and the convergence 
speed of using NWD is slower than the original CIOU, we only add the NWD loss to the 
loss function of the original model to enhance the detection capability for small targets. 
By incorporating the NWD loss, the ability to detect small targets is improved, while the 
original CIOU [8] loss is retained, ensuring that the convergence speed is not significantly 
affected. 

3.3. Soft-NMS 
NMS (Non-Maximum Suppression) [9] is a post-processing module in object detec-

tion frameworks, primarily used to eliminate highly redundant object bounding boxes 
and retain only the box with the highest score within a certain region for each object cate-
gory. The NMS process begins by selecting the predicted bounding box B1 with the high-
est confidence score among all candidate boxes as the baseline. Subsequently, all other 
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bounding boxes with an IOU (Intersection over Union) with B1 exceeding a predefined 
threshold are removed. 

In the context of Soft-NMS [10], rather than directly deleting highly overlapping de-
tected objects with high-confidence targets during the NMS process, their confidence 
scores are reduced. This approach allows these objects to have the opportunity to be re-
tained as correct detection boxes in subsequent steps, thereby avoiding false detections. 
When implementing the score reduction strategy, a guiding principle is that the larger the 
IOU between a detection box and a high-confidence detection box, the greater the magni-
tude of the confidence score reduction should be. 

Soft-NMS is suitable for addressing the issue of missed detections in dense detection 
scenarios caused by directly deleting highly overlapping objects during the NMS process. 
In this paper, Soft-NMS is utilized to replace the NMS in the original model. Soft-NMS 
retains more candidate boxes, which helps capture small, occluded, or densely packed 
objects that are prone to being overlooked. This improves the detection recall rate, reduces 
missed and false detections in scenarios with clustered objects, and addresses the issue of 
multiple detection boxes for the same object, further enhancing detection results. 

4. Experimental Results and Analysis 
4.1. Experimental Environment 

The environmental configuration for this study is as follows: Intel(R) Xeon(R) CPU 
E5-2686 v4 for CPU, NVIDIA GeForce RTX 3070 Ti with 8GB of VRAM, CUDA version 
11.7.0, Ubuntu 20.04.5 LTS as the operating system, PyTorch version 1.13.1, CUDA version 
11.7.0 (matched with PyTorch), Python version 3.8.0, an initial learning rate (lr0) set to 
0.01, momentum of 0.937, Adamw optimizer, IOU threshold of 0.7, batch size of 32, num-
ber of workers set to 8, and image size of 640 x 640 pixels. 

4.2. Evaluation Criteria 
The evaluation criteria in this paper include the number of parameters, GFLOPs, 

mAP@0.5 (mean Average Precision with an IOU threshold greater than 0.5), and 
mAP@[0.5:0.95]. mAP@0.5 reflects the trend of the model's precision as recall varies, with 
a higher value indicating that the model is more likely to maintain high precision at high 
recall rates. mAP@[0.5:0.95] represents the average mAP across multiple IOU thresholds, 
specifically calculated by taking 10 IOU thresholds within the range [0.5, 0.95] with a step 
size of 0.05, computing the mAP for each threshold, and then averaging these values. A 
higher mAP@[0.5:0.95] indicates more accurate predicted bounding boxes, as it considers 
a wider range of high IOU thresholds. 

4.3. Ablation Study 
In this paper, the network model is improved through three enhancement schemes. 

To investigate the impact of these enhancements on the research structure, an ablation 
study is conducted to analyze each enhancement point step-by-step. The specific ablation 
study data are presented in Table 1. The three enhancements include replacing the C2f 
structure with more than 512 channels with the improved C2f-MS structure, incorporating 
NWD into the original CIOU loss function, and replacing the NMS in the original model 
with Soft-NMS. 

Table 1. Ablation Study Results. 

C2f-MS NWD Soft-NMS Parameters GFLOPs mAP@50 mAP@[0.5:0.95] 
× × × 3 8.2 87 45.7 
✓ × × 2.7 7.7 88.7 45.3 
× ✓ × a 8.2 88 45.5 
× × ✓ 3 8.2 88.8 49.2 
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✓ ✓ × 2.7 7.7 89 46.1 
✓ ✓ ✓ 2.7 7.7 89.5 49.8 
From the above data, it can be observed that using any single improvement can en-

hance the model's mAP@50 and improve its overall performance. However, when C2f-MS 
and NWD are used individually, although mAP@50 increases, mAP@[0.5:0.95] experi-
ences a slight decline. When Soft-NMS is used alone, it achieves the highest improvement 
in both mAP@50 and mAP@[0.5:0.95] compared to the other two enhancements, with in-
creases of 2.07% and 7.66%, respectively. Soft-NMS reduces overlapping detection results 
by decreasing the confidence scores between candidate bounding boxes, thereby mitigat-
ing missed and false detections in situations where targets are clustered. The combination 
of all three improvements yields the greatest benefits, with a 9.57% reduction in the num-
ber of parameters and a 6.1% decrease in computational complexity (GFLOPs). Under 
these conditions, mAP@50 increases by 2.87%, from the original 87% to 89.5%. Meanwhile, 
mAP@[0.5:0.95] rises by 9.0%, from 45.7% to 49.8%. The improved model enhances its 
overall detection performance by strengthening its multi-scale feature extraction capabil-
ities, optimizing the loss function, and improving its detection ability in cases of target 
overlap. 

4.4. Comparative Experiments 
To objectively analyze and compare the performance of different methods in photo-

voltaic solar panel defect detection, the algorithm proposed in this paper is compared with 
YOLOv3 [11], YOLOv3-Tiny, YOLOv5n [12], YOLOv7 [13], and YOLOv7-Tiny in terms of 
the number of parameters, computational complexity, and mAP. The experimental results 
are presented in Table 2. 

Table 2. Comparative Experiments. 

Model Parameters GFLOPs mAP@50/% mAP@[0.5:0.95]/% 
YOLOv3 103.7 283.0 89.3 47.9 

YOLOv3-Tiny 12.1 19.0 86.9 43.5 
YOLOv5n 2.5 7.2 87 44.1 
YOLOv7 37.2 105.1 86.5 43.6 

YOLOv7-Tiny 6.0 13.2 80.4 38.3 
This paper 2.7 7.7 89.5 49.8 
From the data in the table, it can be seen that the improved algorithm in this paper 

achieves the highest mAP@50 and mAP@[0.5:0.95] among all models, with an increase of 
9.1% in mAP@50 and 11.5% in mAP@[0.5:0.95] compared to YOLOv7-Tiny. In terms of the 
number of parameters and computational complexity, the improved YOLOv8 algorithm 
is only 8.53% and 6.94% higher than YOLOv5n, respectively, and lower than the other 
algorithms. In summary, the algorithm proposed in this paper outperforms the above-
mentioned algorithms in comprehensive effect and demonstrates better detection perfor-
mance in photovoltaic solar panel defect detection. 

5. Conclusion 
This paper proposes an improved YOLOv8 model for defect detection in photovol-

taic solar panels. The C2f-MS structure is used to reduce the number of model parameters 
and computational complexity while enhancing multi-scale feature extraction and fusion 
capabilities. Then, NWD is employed to optimize the original loss function, improving 
the detection performance for small targets and balancing detection capabilities. Finally, 
Soft-NMS is used to replace the original NMS, addressing the issue of multiple detection 
boxes for the same target. Experimental results show that the improved YOLOv8 model 
exhibits enhanced overall detection performance and reduced model weights, making it 
more convenient for deployment on mobile devices. Due to the limitations of experiments 
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and datasets, only three types of defects—scratches, broken grids, and dirt—were tested, 
and other defects were not studied. In future research, more defects will be investigated 
to further optimize the defect detection performance of related algorithms. 
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