

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 1 (2025) 1 https://doi.org/10.71222/nj6eab67

Article

Research on the Simulation Test of Intelligent Connected Auto-
mobile Sensor Based on Virtual Reality Technology
Xiaoyu Xu 1,* and Joan Lazaro 1

1 University of the East, Manila, Philippines
* Correspondence: Xiaoyu Xu, University of the East, Manila, Philippines

Abstract: With the continuous development of virtual reality technology and intelligent and con-
nected vehicles, Sensor test data based on actual vehicles are also increasing, The time required for
road testing has increasing, Testing is also becoming more difficult and expensive, In order to im-
prove the efficiency of measurement collection and autonomous driving algorithm development for
large and laser sensors of intelligent connected vehicle cameras, Reduce the development costs, This
study is based on the virtual reality technology, Using panosim software to build a simulation test
platform, By creating a road test map in real time, selecting a vehicle model, selecting and installing
the sensor type, Using python to read the camera image data and lidar point cloud information,
Further through unity3D synchronization simulation screen for road analysis, Receive the image
data transmitted through the TCP / IP connection on the server side, And display the received im-
ages using the OpenCV, To verify the accuracy of the algorithm, Using virtual simulation technol-
ogy shortens the sensor development and test cycle to some extent, Reduced costs, It has practical
significance.

Keywords: intelligent connected vehicle; virtual reality technology; panosim; python

1. Introduction
With the continuous penetration of artificial intelligence and the Internet of Things

technology in various fields, Intelligent and connected vehicles have also ushered in new
opportunities for development, Intelligent connected vehicles perceive the surrounding
environment in real time through cameras, lidar and other sensors, The data collected by
the sensor is processed through an integrated algorithm developed within the autono-
mous driving processor, Then control the vehicle by real-time chassis technology, To
achieve the effect of autonomous driving, therefore, Of the identification of objects and
environment around the vehicle and the acquisition of data, Well-known industries and
enterprises at home and abroad have invested a lot of research, Its core problem is the
research of sensor-related algorithms of intelligent connected vehicles, Algorithms cannot
be studied without a lot of sensor data, So how to collect the data from the sensor more
effectively, It is an urgent problem to be solved.

With the continuous advancement of network technology, virtual reality technology
has been widely applied in fields such as medicine, automobiles, and intelligent manu-
facturing. By integrating digital twin and V2X technology, a digital twin-based autono-
mous driving testing framework has been proposed, providing non-line-of-sight percep-
tion information, enabling efficient vehicle-to-data connectivity, and achieving the inte-
gration of physical and digital spaces [1]. A simulation testing approach that combines
the real world with autonomous driving was introduced, utilizing digital twin technology
to reconstruct vehicle models and test roads in a three-dimensional space. This approach
also employs a collision detection algorithm to predict the surrounding environment, suc-
cessfully enabling interaction between simulated vehicles and other traffic scenarios.
Based on the concept of digital twins, the application status and development prospects

Received: 10 January 2025

Revised: 15 January 2025

Accepted: 24 January 2025

Published: 25 January 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 2 https://doi.org/10.71222/nj6eab67

of virtual testing and urban transportation in autonomous driving were analyzed. The
review highlights that virtual reality technology can be effectively applied to the simula-
tion testing of intelligent connected vehicles, significantly reducing development costs [2].

To improve the efficiency of data collection from sensors such as smart-connected
vehicle cameras and lidar, Reduce the development cycle and development cost of intel-
ligent connected vehicle algorithm, This paper studies the simulation test of intelligent
connected vehicle sensor based on virtual reality technology, Road maps and scene crea-
tion through the panosim, panosim The software integrates complex road scenes, pedes-
trians, traffic signs and other information, And offers a rich selection of vehicle models,
Can realize the installation of mainstream sensors such as cameras and lidar on any model,
Data from the sensor was obtained via the pycharm, Convenient to modify the sensor
logic from the bottom layer, Finally implementation algorithm test, Finally, to be tested
through the unity3D, To obtain the test results, At the same time, the collected data is
converted into PNG format pictures for local preservation, As a dataset used for training,
It has theoretical research value and practical significance for the development of intelli-
gent and connected vehicles [3].

2. The Construction of the Simulation Platform Architecture
Reference bidirectional link table structure of intelligent connected vehicle sensor

simulation platform, Connecting nvidia, panosim simulation platform and pycharm plat-
form through TCP / IP communication protocol service, The structure diagram is shown
in Figure 1, The platform has cross-software, cross-language, cross-platform, The commu-
nication settings among the three groups is crucial, If the parameters set parameters will
cause the data of the entire simulation platform to be communicate communicated, Con-
figuration parameters mainly refer to the communication IP and communication port, IP
needs to be set to computer IP "192.168.3.102" and port number "14311", In the configura-
tion interface of the panosim, configure Agent, Then, in the right column, find the func-
tional script CameraTcpOutput.py to obtain the camera raw data and the lidar raw data
script LidarTcpOutput.py, Drag it into the main car model in the middle, Through this
functional script, panosim, the camera image data and lidar point cloud data can be out-
put to the outside in a TCP / IP protocol format, Open the camera engineering file "cam-
era_panosim.py" and the lidar engineering file "lidar_panosim.py" in pycharm, Find "
server_address = ('192.168.3.102', 14311)", IP consistent for the IP and panosim functional
scripts in the modified code, Both are "192.168.3.102", Port number is "14311". Complete
pycharm communication configuration, the NVIDIA host, panosim and pycharm under
the same ip and port data communication, in addition to the NVIDIA host environment
configuration, mainly based on deep learning application CUDA kit and deep neural net-
work GPU acceleration library, the kit can realize the subsequent sensor test in pedestrian
and vehicle detection task of YOLOv3 target detection model, simulation platform archi-
tecture.

Figure 1. Architecture Diagram of the Simulation Platform.

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 3 https://doi.org/10.71222/nj6eab67

3. Design and Implementation of the Simulation Platform
3.1. Create a Map

In PanoSim software, FieldBuilder tool is used to map, and appropriate tools and
materials are selected to draw roads, highways, buildings, etc., and adjust their parame-
ters and attributes. Maps are created according to the research requirements as shown in
Figure 2.

Figure 2. Map Drawing.

After the map is drawn, save the map and open the Unity software through the Pre-
view function. Import and load the saved map file in the Unity. Preview the map effect
through the perspective, and check whether the road, traffic signs and scene elements
meet the expectations. If a problem is found, return to FieldBuilder to modify and save it
again, and preview it in Unity again. The effect of Unity simulation map preview is shown
in Figure 3 until the map effect is correct, and the map is finally saved and the map is
created.

Figure 3. Effect Diagram of the Unity Simulation Map Preview.

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 4 https://doi.org/10.71222/nj6eab67

3.2. Simulation Scene Construction
Virtual simulation scene construction is mainly based on the panosim software sim-

ulated under the actual road environment construction, Add traffic sign information Traf-
ficSign and traffic facility Facility to the panosim software, Including traffic lights, pedes-
trian crossings, parking Spaces, Traffic signs include speed limit signs, no-traffic signs,
warning signs, In a virtual simulation environment, Different scene types have their own
parameters and meanings, X, Y, and Z represent the position coordinates of the traffic
signal lights in the road coordinate system, Yaw indicates the yaw angle, Pitch indicates
the pitch angle, Roll indicates the roll angle, CycleTime Indicates the cycle time of the
traffic signal light. For the crosswalk, X and Y indicate the positional coordinates of the
crosswalk in the road coordinate system, Yaw indicates the yaw angle, Length represents
the length of the crosswalk, and Width indicates the width of the crosswalk. For parking
space, Name refers to the name or label of the parking space, Open said whether open
parking space, Arrow says parking space arrow direction, Bar said parking limit setting,
Opacity represents transparency, X and Y represents the location in the road coordinate
coordinates, Yaw said pendulum Angle, in the simulation scene need to set up each pa-
rameter, scene building can be completed by loading the map by World Dataset to view
the effect.

3.3. Install the Sensor
Before installing the sensor, select the required model and name it, and place it in the

built simulation environment [4]. After selecting a good model, you need to install the
simulation test sensor on the car, First, install the camera, In Edit Sensor, select the Mono
Camera Sensor under the Camera menu, Install the camera in the front windshield posi-
tion, Next, install the lidar system, Under the Edit Sensor select Lidar menu, Surround
Lidar Point Cloud Sensor, Install the lidar on the roof before the test, The camera and lidar
are installed in the panosim interface, The top and side view of the sensor installation are
shown in Figure 4.

Figure 4. Sensor Installation Diagram.

4. Algorithm Design
After the sensor is built, it needs to be connected to intelligent driving algorithm for

path planning and navigation, and use global planning A * algorithm and python lan-
guage.

The A * algorithm divides the node states into three different preparation stages
through search traversal, which are not checked, is checked and has been checked. By
introducing the heuristic function, it can effectively measure the actual consumption of

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 5 https://doi.org/10.71222/nj6eab67

path nodes, and thus effectively improve the efficiency and accuracy of path planning.
Compared with the traditional traversal search method, A * algorithm is more flexible,
more effective, and more can meet the actual needs. The probability of the best path is
measured by evaluating the global information with the heuristic function 𝑓𝑓(𝑛𝑛). To better
achieve this goal, two key list lists are built that store already and unexperienced grid
nodes, and combined with the heuristic function, can effectively estimate the distance be-
tween any grid node on the map and the target node. The closer the valuation is to the
actual consumption, the better the search direction in four or eight neighboring cases. The
main expression of the algorithm is shown in Equation (1).

𝑓𝑓(𝑛𝑛) = ℎ(𝑛𝑛) + 𝑔𝑔(𝑛𝑛) (1)
The 𝑓𝑓(𝑛𝑛) is used to estimate the cost of reaching the target state from the initial state,

the 𝑔𝑔(𝑛𝑛) is used to estimate the actual movement consumption, and the ℎ(𝑛𝑛) is used to
estimate the lowest target state.

Algorithm design
The traditional A * algorithm can implement the search tasks more effectively by set-

ting the open and closed list. The Open list contains the current nodes and their neighbor-
ing nodes as the starting point for the next search, while the Closed list contains the pend-
ing nodes that meet the search requirements of the A * algorithm to complete the search
task more efficiently. The search process of the traditional A * algorithm is as follows:

Step 1: Set up two lists, namely, the open list (Open List) and the closed list (Closed
List). Add the start node S to the Open list.

Step 2: The algorithm searches for all possible extended nodes in the open list. If not,
the algorithm exits and will not find a feasible path.

Step 3: In the Open list, all the nodes to need to be searched are counted to determine
which nodes n have the smallest f (n) value, n is regarded as the next node of the algorithm
path and put in the Closed list for further screening, and then deleted in the Open list.

Step 4: Determine whether the expansion node searched in the second step coincides
with the target point G. If the overlap means that the search is successful, otherwise, per-
form the next step;

Step 5: Based on the third step, search and calculate all the child nodes m in its neigh-
borhoodand so on f(m) Values, by comparison to obtain the f (m) The minimum value,
taking the corresponding child node as the next node selected by the algorithm;

Step 6: Check whether there is a node m in the open list and the closed list.
1) If the open list or the closed list does not contain the node m, then add it to the

open list, and add a pointer to point the child node m to the parent node n. When
there is a formal path between two nodes, you can output paths according to the
pointer.

2) In the open list, the valuation function value f of node m0(m) Used to interact
with the f (m) Compare the size if its valueless-than f(m), Which indicates that
a better path has been found. Meanwhile, the parent pointer of node m is mod-
ified to point to node n in the step on the current node, and node m is added to
the closed list.

3) In the closed list, node m is designated to be on the optimal path, so continue to
expand other child nodes in comparison to achieve the optimal results.

Step 7: cycle step 2 to step 6, when the target node G or Open list is empty, the algo-
rithm will terminate and output the optimal solution, otherwise the solution will not be
output.

The procedure flow of the A star algorithm is shown in Figure 5.

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 6 https://doi.org/10.71222/nj6eab67

Begin

Create openlist and
closelist initializations

Put the starting point S in the
open list and calculate f、g、h

Whether openlist is
empty

Calculate the node N with the lowest
f-value in openlist and remove it from

openlist and add it to closelist

Whether the current node
N is the target point

Find all reachable nodes adjacent to
node N, and calculate f, g, and h

Whether the adjacent child node
already exists in closelist

Whether the node exists in
openlis

Calculate the smallest f of the adjacent
nodes and add it to closelist as the new

node N

Path planning
failure

Y

Ignore the
adjacent point

Update g and
recalculate the

node f

Y

Y

N

N

N

Path planning
failure

Y

N

End

Figure 5. A Star Algorithm Flowchart.

Python Code implementation part of the code is shown in Figure 6, first, By import-
ing the required modules such as ` numpy `, `Rotation` and `minimize` in ` scipy `, Several
key functions are constructed: the `transform _ points` function rotates and shifts the point
set according to the input transformation parameters, Use `Rotation` class to convert Euler
angle into rotation matrix and perform matrix multiplication and vector addition; The
`compute _ normal _ distributions` function calculates the normally distributed weights
between the target point set and the input point set, The weight is obtained by calculating
the sum of the difference and taking the exponential; The `compute_score ` function calls
`transform _ points` to transform the source point set, Scores were then calculated using
`compute _ normal _ distributions`, Turn the score; The ` icp ` function uses the `minimize`
function to optimize the `compute_score ` with the ` BFGS ` method to find the optimal
transformation between the source point set and the target point set, Take the source point
set, the target point set as parameters, And output the optimization results; Finally, ran-
dom source and target point sets are generated in the ` man ` function, Set the initial trans-
formation parameter as a zero vector, Call the ` icp ` function to calculate and print the
final transformation parameters, The original code was also optimized, Add the exception
handling in the `transform _ points` function, Vectorization operations for distance calcu-
lation using ` cdist ` in the `compute _ normal _ distributions` function improve efficiency
[5].

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 7 https://doi.org/10.71222/nj6eab67

Figure 6. Program Python Implements the Partial Code of the A * Algorithm.

5. Simulation Test and Analysis
Cameras and lidar act as very important sensors in intelligent and connected vehicles.

Represented by tesla car companies commonly used cameras as intelligent sensors, called
figure intelligent driving, mainly used to identify traffic lights, lane lines, pedestrians, etc.,
through the camera can clearly observe the color of the object, motion and logo, the cur-
rent research is generally believed that camera is influenced by light, has certain limita-
tions, so auxiliary laser radar as intelligent made car sensor has certain necessity. Huawei
Cyrus uses lidar as the main sensor of intelligent driving, which is called intelligent driv-
ing without map. With strong anti-interference ability and long detection distance, lidar
realizes the detection of vehicles, pedestrians and obstacles in high-speed driving mode,
and is displayed through point cloud data. Therefore, this study is based on the current
mainstream map driverless and map driverless technology, combined with the character-
istics of camera and lidar for simulation test and analysis.

5.1. Camera Simulation Test and Analysis
In the process of intelligent connected vehicle image recognition, the task of pedes-

trian and vehicle detection based on the front-facing camera is a key link. In this study,
the python program implemented vehicle and pedestrian detection in the simulation en-
vironment according to the created environment of panosim simulation. The python pro-
gram uses the deep learning model YOLOV3 as the detection algorithm for vehicles and
pedestrians. First, the weight files, configuration files and tag files of YOLOv3 are loaded
in the python program, and the YOLOv3 model is accelerated using CUDA through the
GPU of NVIDIA. Create a TCP server in the program to wait for the client connection, and
receive image data after the client connection, the received image data is decoded into
OpenCV format, and detected using the YOLOv3 model, including borders, confidence
and category, these results are filtered by non-maximum suppression (NMS), and draw
the detection border and labels on the image, visualized the identification results, ensure
that the algorithm can correctly identify the target in the simulation environment, and
visually display the detection results [6].

When the camera simulation test can be replaced according to the requirements of
different scenarios, Set the scene parameters in the panosim, Can choose sunny, rainy,

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 8 https://doi.org/10.71222/nj6eab67

snowy, daytime, night and other different environments for algorithm test, Can also ad-
just the camera position and parameters, Test the recognition effect in different scenarios,
Record and compare the identification results, Analyzing the performance of the algo-
rithm in different scenarios, Further adjust the sensor and the algorithm parameters ac-
cording to the test data, Thus improving the identification accuracy, Optimize the identi-
fication effect, Finally, complete the camera simulation test and analysis work, Based on
the camera simulation test, as shown in Figure 7, The parameters such as the type of the
obstacle can be judged by the simulation test.

Figure 7. Pedestrian and Vehicle Detection Diagram.

5.2. Simulation Test and Analysis of Lidar
Lidar is one of the commonly used sensors in intelligent connected vehicles. It can

obtain point cloud data from the environment around the vehicle through laser scanning,
providing accurate positioning and perception information for autonomous driving. In
the panosim simulation environment, the lidar scanning process can be simulated, and
the point cloud data can be processed and analyzed.

First, the parameters of lidar are set in panosim, lidar is generally installed on the top
of the vehicle, you can select the lidar with 32 lines or higher beam, set the correct name,
IP and port of the lidar sensor, the TCP data transmission script of the sensor is configured,
obtain the sensor data using Pycharm, design and run the lidar data acquisition python
program, by creating a TCP server, the program receives the point cloud data sent from
the client and decodes it as the three-dimensional coordinates of the point. After receiving
the data, the point cloud data is visualized using the Open3D library, colored as the point
cloud data according to the Z-axis value, and displayed in the window. The program runs
continuously and updates the point cloud data in real time until the window closes. After
running the simulation scene with panosim, the lidar is allowed to scan the surrounding
environment and obtain the point cloud data. The point cloud processing algorithm is
used to process the obtained point cloud data, such as filtering, segmentation, clustering
and other operations, so as to extract target objects such as vehicles and pedestrians.

In the PanoSim software, first enter the project to be edited, click the Agent in the left
column in the element editing interface, enter lidar or LidarTcpOutput.py in the search
box on the right bar for retrieval, select the LidarTcpOutput.py function script and drag it
into the middle road model, change" Remote IP" to "192.168.1.100"
is the same as the python program, " Port" is changed to "14322",
the lidar point cloud visualization interface is shown in Figure 8. Through testing and
analysis of lidar simulation, we can evaluate the performance of lidar in autonomous driv-
ing, including its scanning accuracy, stability, reliability and other aspects. At the same

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 9 https://doi.org/10.71222/nj6eab67

time, we can also optimize and improve the parameters and algorithms of lidar according
to the test results, so as to improve its application effect in autonomous driving.

Figure 8. Lidar point cloud map.

6. Conclusion
Based on the development idea of panosim software combining virtual and real,

Through the cross-platform implementation of intelligent connected vehicle sensor simu-
lation test, Get the camera and lidar data via Pycharm, Convenient tools such as map cre-
ation and environment building, vehicle and main parameter selection, sensor layout and
parameter selection, Complex real vehicle test scenarios can be presented through simu-
lation resources, Greatly reduced the development costs, Improved the efficiency of intel-
ligent and connected vehicle sensor testing, Using the python program to connect to the
panosim software, Finally, the Unity3D platform is used to display the test scenarios in
real time, This study is applicable to multiple AI fields, Aable to perform complex simu-
lation studies.

With the rapid development of artificial intelligence technology and the continuous
expansion of the autonomous vehicle market, the importance of sensor simulation testing
in the development of autonomous driving has become increasingly prominent. In the
future, we will continue to deepen the research on sensor simulation test technology, ex-
plore more efficient and accurate test methods, and provide more reliable technical sup-
port for the research and development and application of self-driving vehicles.

References
1. R. Sethuraman, K. Venkataramani, M. M. Y. Devi, and S. Subbaraj, "Enhancing autonomous vehicle performance with ensemble

weighted support vector-based optimization in cloud," Cluster Comput., vol. 3, pp. 192-192, 2025, doi: 10.1007/s10586-024-04706-
x.

2. E. Landolfi and C. Natale, "An adaptive cascade predictive control strategy for connected and automated vehicles," Int. J. Adapt.
Control Signal Process., vol. 10, pp. 2725-2751, 2023, doi: 10.1002/acs.3658.

3. P. Juntao, N. A. Tu, W. Sujun, D. H. Huifan, and Z. Hui, "Fuzzy unknown input observer for estimating sensor and actuator
cyber-attacks in intelligent connected vehicles," Automotive Innov., vol. 2, pp. 164-175, 2023, doi: 10.1007/s42154-023-00228-1.

4. E. Biagioni, S. Giordano and C. Dobre, "Ad Hoc and Sensor Networks," in IEEE Communications Magazine, vol. 55, no. 7, pp. 172-
172, July 2017, doi: 10.1109/MCOM.2017.7981546.

5. Z. Peng, "Research on path planning algorithm of substation inspection robot based on improved A-star algorithm," (in Chinese),
M.S. thesis, Hunan Univ. of Technol., 2024, doi: 10.27730/d.cnki.ghngy.2024.000593.

6. F. Zhao, M. Zhang, and W. Sun, “Vehicle terminal system of intelligent logistics based on STM32F103 and BDS/GPS technolo-
gies,” in *Advances in Energy Science and Equipment Engineering II Volume 1: Proceedings of the 2nd International Conference

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67
https://doi.org/10.1007/s10586-024-04706-x
https://doi.org/10.1007/s10586-024-04706-x
https://doi.org/10.1002/acs.3658
https://doi.org/10.1007/s42154-023-00228-1
https://ieeexplore.ieee.org/document/7981546

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 1 (2025) 10 https://doi.org/10.71222/nj6eab67

on Energy Equipment Science and Engineering (ICEESE 2016)*, S. Zhou, A. Patty, and S. Chen, Eds. Boca Raton, FL, USA: CRC
Press, 2017, pp. 1871–1876, doi: 10.1201/9781315116167.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/nj6eab67
https://doi.org/10.1201/9781315116167

	1. Introduction
	2. The Construction of the Simulation Platform Architecture
	3. Design and Implementation of the Simulation Platform
	3.1. Create a Map
	3.2. Simulation Scene Construction
	3.3. Install the Sensor

	4. Algorithm Design
	5. Simulation Test and Analysis
	5.1. Camera Simulation Test and Analysis
	5.2. Simulation Test and Analysis of Lidar

	6. Conclusion
	References

