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Abstract: This study proposes a machine learning-based method to address the multi-objective tra-
jectory planning problem for industrial robots. First, the kinematic model of the industrial robot is 
constructed, and the multi-objective trajectory planning problem is analyzed. Then, a machine 
learning-based trajectory planning framework is designed, including key steps such as feature en-
gineering, model selection, and training. Subsequently, a multi-objective optimization algorithm is 
proposed to balance multiple objectives in trajectory planning. Finally, the effectiveness of the pro-
posed method is validated through simulation experiments and practical application cases. The re-
sults show that this method significantly improves the efficiency and accuracy of industrial robot 
trajectory planning, providing a new solution for the field of intelligent manufacturing. 
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1. Introduction 
With the rapid development of Industry 4.0 and intelligent manufacturing, industrial 

robots are increasingly widely used in modern manufacturing. As one of the core technol-
ogies of industrial robots, trajectory planning directly affects the robot's motion perfor-
mance and work efficiency. Traditional trajectory planning methods often struggle to sim-
ultaneously satisfy multiple optimization objectives, such as minimizing time, energy con-
sumption, and maximizing accuracy. Therefore, researching machine learning-based 
multi-objective trajectory planning methods for industrial robots has significant theoreti-
cal and practical value. In recent years, the application of machine learning technology in 
the field of robotics has made remarkable progress. By leveraging large amounts of his-
torical data and real-time sensor information, machine learning algorithms can automat-
ically learn complex motion patterns and generate optimized trajectory solutions. How-
ever, applying machine learning to multi-objective trajectory planning for industrial ro-
bots still faces many challenges, such as feature selection, model generalization ability, 
and multi-objective trade-offs. This study aims to explore machine learning-based multi-
objective trajectory planning methods for industrial robots, achieving automatic balanc-
ing of multiple optimization objectives through the construction of an intelligent trajec-
tory planning framework, thereby improving the motion performance and work effi-
ciency of industrial robots. The research results will provide new technical support for the 
field of intelligent manufacturing, promoting the development of industrial robots to-
wards greater intelligence and efficiency. 
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2. Analysis of Multi-Objective Trajectory Planning for Industrial Robots 
2.1. Construction of the Kinematic Model of Industrial Robots 

Constructing an accurate kinematic model is essential for multi-objective trajectory 
planning in industrial robots [1]. This study employs the Denavit-Hartenberg (D-H) pa-
rameter method to establish the kinematic model, which describes the geometric relation-
ships between the robot's links using homogeneous transformation matrices. 

As illustrated in Figure 1, the robot comprises multiple links (L1, L2, L4) and joints 
(q1, q2, q3, q4). Each joint drives the links' motion through rotation or translation, control-
ling the end effector's position and orientation [2]. The D-H method uses four parame-
ters—link length, link twist angle, joint distance, and joint angle—to define the relative 
positions and orientations between adjacent links. These parameters help construct the 
homogeneous transformation matrix and derive the robot's forward kinematics (FK) 
equations.FK calculates the end effector's position and orientation based on joint angles. 
For instance, given joint angles q1, q2, q3, q4, FK equations determine the end effector's 
position (x, y) and orientation (0) in a two-dimensional plane. FK is fundamental for mo-
tion control, enabling researchers to understand the end effector's state under various joint 
configurations. Inverse kinematics (IK) solves for joint angles based on the end effector's 
target position and orientation. IK is crucial for trajectory planning, as it translates task 
requirements into joint motions. However, IK is more complex than FK, especially in 
multi-degree-of-freedom systems, where multiple solutions or no solution may exist. The 
robot's workspace and singular points must also be considered. The workspace includes 
all reachable positions and orientations of the end effector, while singular points are con-
figurations where the Jacobian matrix loses full rank, making IK unsolvable or causing 
joint velocities to approach infinity. Analyzing these aspects ensures feasible and stable 
trajectory planning. Additionally, manufacturing and assembly errors, such as deviations 
in link lengths and joint angles, are addressed through error compensation mechanisms 
to enhance model accuracy. In summary, the kinematic model, built using the D-H 
method and incorporating FK, IK, workspace analysis, and error compensation, forms the 
foundation for multi-objective trajectory planning. This model provides the theoretical 
basis for controlling industrial robots in complex environments [3]. 

 
Figure 1. Schematic Diagram of the Kinematic Model of an Industrial Robot. 

2.2. Description of the Multi-Objective Trajectory Planning Problem 
The multi-objective trajectory planning problem is one of the core issues in industrial 

robot motion control, aiming to optimize multiple performance indicators while satisfying 
a series of constraints. Suppose the robot needs to move from the initial state X0 to the 
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target state Xf , while optimizing m objective functions f1(X), f2(X), … , fm(X). These objec-
tive functions typically include but are not limited to motion time, energy consumption, 
accuracy, and smoothness. For example, minimizing motion time can reduce the produc-
tion cycle, minimizing energy consumption can help save energy, maximizing accuracy 
can improve product quality, and optimizing smoothness can reduce mechanical wear 
and vibration. In practical applications, the multi-objective trajectory planning problem 
also needs to consider a series of constraints. These constraints can be divided into ine-
quality constraints and equality constraints. Inequality constraints typically include joint 
angle limits, velocity limits, acceleration limits, and obstacle avoidance requirements. For 
example, joint angle limits ensure that the robot does not exceed the allowable range of its 
mechanical structure during motion, velocity and acceleration limits ensure the smooth-
ness and safety of the robot's motion, and obstacle avoidance requirements ensure that 
the robot does not collide with obstacles in complex environments. Equality constraints 
typically include kinematic and dynamic constraints, such as the precise positioning and 
orientation of the end effector. Therefore, the multi-objective trajectory planning problem 
can be formalized as a multi-objective optimization problem, expressed mathematically 
as shown in formula 1,2,3: 

minimize[f1(X), f2(X), … , fm(X)]                         (1) 
subject to gj(X) ≤ 0, j = 1,2, … , p                        (2) 
hk(X) = 0, k = 1,2, … , q                                 (3) 

where gj(X) and hk(X) represent inequality and equality constraints, respectively. 
Pareto optimal solutions, which balance multiple objectives, are sought. Conflicts between 
objectives, such as minimizing motion time versus energy consumption, add complexity. 
This study employs machine learning-based multi-objective optimization algorithms to 
learn relationships between objectives from historical data and generate optimized trajec-
tory solutions. These algorithms dynamically adjust strategies based on real-time sensor 
information, adapting to complex industrial environments. This approach enhances tra-
jectory planning efficiency, precision, and smoothness, supporting intelligent manufac-
turing advancements [4]. 

3. Machine Learning-Based Trajectory Planning Methods for Industrial Robots 
3.1. Feature Engineering 

Feature engineering is a critical step in machine learning-based trajectory planning 
for industrial robots, aiming to extract meaningful features from raw data to enhance 
model performance. Effective feature engineering improves prediction accuracy and gen-
eralization, leading to optimized trajectory solutions. Key features include robot state in-
formation such as joint angles (q1, q2, ..., qn), which describe joint positions and form the 
kinematic model’s basis. Joint velocity and acceleration capture dynamic motion charac-
teristics, while the end effector’s position and orientation (x, y, z, roll, pitch, yaw) define 
the robot’s task space state. Environmental features, such as obstacle positions and shapes, 
ensure obstacle avoidance, while workspace boundaries prevent mechanical constraints 
from being exceeded. Task-related features include target point coordinates, defining the 
robot’s goal, and task priority, which allocates resources in multi-task scenarios. Dynamic 
features, like time-series data, reflect motion trends, and frequency-domain features, de-
rived using methods like Fourier transform, extract motion frequency characteristics. 
Standardization and normalization are essential during feature extraction to ensure con-
sistent scales, as varying ranges can destabilize training. Feature selection eliminates re-
dundant or irrelevant features, reducing model complexity, while feature construction 
creates new features, such as velocity from joint angle differences or path length from end 
effector positions. In summary, feature engineering provides rich input data for machine 
learning models by extracting meaningful features from robot state, environment, and 
task requirements. This process enables efficient, precise, and smooth trajectory planning, 
forming the foundation for model training and optimization [5]. 
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3.2. Model Selection and Training 
In the model selection and training phase, appropriate machine learning algorithms 

are chosen based on the specific problem. For industrial robot trajectory planning, com-
monly used algorithms include neural networks, support vector machines, decision trees, 
and reinforcement learning. This study employs deep reinforcement learning, specifically 
the Deep Q-Network (DQN), for trajectory planning. DQN combines the perceptual capa-
bilities of deep learning with the decision-making abilities of reinforcement learning, en-
abling the learning of complex strategies from high-dimensional inputs. 

As shown in Figure 2, the core components of the deep reinforcement learning algo-
rithm include the actor neural network and the critic neural network. The actor network 
generates action policies, selecting optimal actions based on the current state, while the 
critic network evaluates state values, predicting long-term cumulative rewards. Through 
the interaction between the actor and critic networks, the algorithm continuously opti-
mizes policies to maximize cumulative rewards [6]. During training, the robot interacts 
with the environment to receive reward signals and adjusts its strategies accordingly. Spe-
cifically, the robot starts from the current state, executes actions based on the actor net-
work's policy, observes the environment's feedback (including new states and rewards), 
and stores this information in a replay buffer. The algorithm then samples a batch of data 
from the replay buffer to update the parameters of the actor and critic networks. This 
process allows the algorithm to learn from historical experiences, improving training effi-
ciency and stability. To further enhance training efficiency and stability, this study em-
ploys techniques such as experience replay, target networks, and proximal policy optimi-
zation (PPO). Experience replay stores and reuses historical experiences, reducing data 
correlation and improving training stability. Target networks introduce an independent 
network to estimate target values, reducing fluctuations and accelerating convergence. 
PPO limits the magnitude of policy updates, preventing excessive changes and enhancing 
training stability. In conclusion, deep reinforcement learning algorithms, by integrating 
the perceptual capabilities of deep learning with the decision-making abilities of reinforce-
ment learning, provide an effective solution for industrial robot trajectory planning. 
Through techniques like experience replay, target networks, and PPO, training efficiency 
and stability are further improved, leading to the generation of superior trajectory plan-
ning solutions [7]. 

 
Figure 2. Schematic Diagram of the Deep Reinforcement Learning Algorithm Framework. 
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4. Multi-Objective Optimization Algorithm Design 
4.1. NSGA-II Algorithm Principle 

To address the multi-objective trajectory planning problem for industrial robots, this 
study designs a multi-objective optimization algorithm based on NSGA-II (Non-domi-
nated Sorting Genetic Algorithm II). NSGA-II is a classic evolutionary algorithm that ef-
fectively handles multi-objective optimization problems. Its core idea is to maintain pop-
ulation diversity and convergence through non-dominated sorting and crowding distance 
calculation, thereby finding a set of Pareto optimal solutions. The detailed steps and re-
lated formulas of the NSGA-II algorithm are as follows: Initialization: First, a set of initial 
solutions is randomly generated to form the initial population P0 with a size of N [8]. 
Each individual xi  represents a possible trajectory planning solution. Non-dominated 
Sorting: Individuals in the population are sorted based on Pareto dominance as shown in 
formula 4. An individual xi dominates xj (denoted as xi ≺ xj) if and only if:   

∀k ∈ {1,2, … , m}, fk(xi) ≤ fk(xj) and ∃l ∈ {1,2, … , m}, fl(xi) < fl(xj)     （4） 
Based on the dominance relationship, the population is divided into multiple non-

dominated layers 𝐹𝐹1, 𝐹𝐹2, . . ., where  𝐹𝐹1 is the non-dominated solution set,  𝐹𝐹2 is the set 
dominated by 𝐹𝐹1, and so on.Crowding Distance Calculation: To maintain population di-
versity, the crowding distance of individuals in each non-dominated layer is calculated. 
For an individual xi , the crowding distance 𝐷𝐷𝑖𝑖 is defined as shown in formula 5:   

𝐷𝐷𝑖𝑖 = ∑ fk(xi+1)−fk(xi−1)
fk
max  − fk

min
m
k=1                                             （5） 

where fkmax and fkmin are the maximum and minimum values of the k-th objective 
function, respectively. A larger crowding distance indicates sparser solutions around the 
individual, implying higher diversity. Selection: Based on non-dominated sorting and 
crowding distance, superior individuals are selected for the next generation. First, all in-
dividuals in 𝐹𝐹1 are selected. If the size of 𝐹𝐹1 is less than N, individuals from 𝐹𝐹2 are se-
lected, and so on. Within the same non-dominated layer, individuals with larger crowding 
distances are prioritized. Crossover and Mutation: New individuals are generated 
through genetic operations to expand the search space. Common crossover operations in-
clude simulated binary crossover (SBX), with the formula 6:   

xi,new = 0.5[(1 + β)xi,parent1 + (1− β)xi,parent2]                        （6） 
where β is the crossover distribution index. Mutation operations can use polynomial 

mutation, with the formula 7:    
xi,new = xi,parent + δ(xi,max − xi,min)                                    （7） 

whereδ is the mutation step size, and xi,max  and xi,min  are the upper and lower 
bounds of the i-th variable, respectively. Elitism: The parent and offspring populations 
are merged, and the best individuals are retained to form the new generation. Through 
non-dominated sorting and crowding distance calculation, N optimal individuals are se-
lected from the merged population. Iteration: The above steps are repeated until termina-
tion conditions (e.g., reaching the maximum number of iterations or solution convergence) 
are met. Through these steps, the NSGA-II algorithm can find a set of Pareto optimal so-
lutions under various constraints, providing multiple feasible solutions for multi-objec-
tive trajectory planning of industrial robots. These Pareto optimal solutions achieve a 
good trade-off between multiple objective functions, allowing decision-makers to choose 
the most suitable trajectory planning solution based on actual needs [8]. 

4.2. Algorithm Improvement and Implementation 
To adapt to the characteristics of the multi-objective trajectory planning problem for 

industrial robots, this study improves the NSGA-II algorithm, focusing on initialization 
strategies, crossover and mutation operations, and constraint handling. The details of the 
improved algorithm and related formulas are as follows: Initialization Strategy Improve-
ment: In the standard NSGA-II algorithm, the initial population is randomly generated, 
which may result in low-quality initial solutions and slow convergence. To improve the 
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quality of initial solutions, this study adopts a prior knowledge-based initialization strat-
egy. Specifically, the robot's kinematic model and historical trajectory data are used to 
generate a set of initial solutions, ensuring they are within the feasible domain and have 
diversity as shown in formula 8:   

xi = xmin + r ⋅ (xmax − xmin)                          （8） 
where xi is the i-th individual, xmin and xmax are the variable bounds, and r is a 

random number in [0,1]. By incorporating prior knowledge, the generated initial solutions 
are closer to the optimal solution, accelerating convergence. Crossover and Mutation Op-
eration Improvement: In the standard NSGA-II algorithm, crossover and mutation oper-
ations are performed randomly, which may result in solutions that violate kinematic con-
straints. To ensure feasible solutions, this study introduces domain-specific heuristic rules. 
Constraint Handling Improvement: In the standard NSGA-II algorithm, constraints are 
typically handled using penalty functions, which convert constraints into penalty terms 
in the objective function. However, penalty functions require manual adjustment of pen-
alty coefficients and are insensitive to constraint violations. To handle constraints more 
effectively, this study adopts the constraint dominance principle (CDP). Specifically, for 
two individuals xi and xj, if xi satisfies all constraints and xj does not, xidominates xj; 
if both satisfy or violate constraints, they are compared based on objective function values. 
This approach improves solution feasibility. Algorithm Implementation: The improved 
NSGA-II algorithm steps are as follows:   

1) Initialization: Generate the initial population based on prior knowledge.   
2) Non-dominated sorting: Sort individuals based on Pareto dominance and con-

straint dominance.   
3) Crowding distance calculation: Calculate the crowding distance of individuals 

in each non-dominated layer.   
4) Selection: Select superior individuals for the next generation based on non-dom-

inated sorting and crowding distance.   
5) Crossover and mutation: Generate new individuals using adaptive SBX and 

APM.   
6) Elitism: Merge parent and offspring populations and retain the best individuals.   
7) Iteration: Repeat the steps until termination conditions are met. 
Through these improvements, the NSGA-II algorithm better adapts to the multi-ob-

jective trajectory planning problem for industrial robots, improving search efficiency and 
solution quality. The improved algorithm finds high-quality Pareto optimal solutions un-
der various constraints, providing multiple feasible solutions for industrial robot trajec-
tory planning [9]. 

5. Experiments and Results Analysis 
To comprehensively validate the effectiveness of the proposed machine learning-

based multi-objective trajectory planning method for industrial robots, this study con-
ducts in-depth analysis from both simulation experiments and practical application cases. 
The results demonstrate significant advantages of the proposed method in terms of mo-
tion time, energy consumption, trajectory accuracy, and robustness compared to tradi-
tional methods. 

5.1. Simulation Experiment Design 
In the simulation experiments, a six-degree-of-freedom industrial robot model is 

used, and trajectory planning tasks of varying complexity are designed, including simple 
linear motion, complex curved motion, and multi-obstacle environments. The experi-
ments are conducted on the ROS (Robot Operating System) and Gazebo simulation plat-
forms, simulating real industrial scenarios. Each experiment is repeated 10 times, and the 
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average motion time, energy consumption, and trajectory accuracy are recorded and com-
pared with the classic Rapidly-exploring Random Tree (RRT) algorithm. The results are 
shown in the table 1 below: 

Table 1. Comparison of Motion Time, Energy Consumption, and Trajectory Accuracy Between Ma-
chine Learning Method and RRT Algorithm Across Different Task Types. 

Task Type Method Average Mo-
tion Time (s) 

Average Energy 
Consumption (J) 

Average Trajectory 
Accuracy (mm) 

Simple Linear 
Motion 

Machine Learn-
ing Method 2.35 ± 0.12 45.6 ± 2.3 0.78 ± 0.05 

Simple Linear 
Motion RRT Algorithm 2.76 ± 0.15 56.8 ± 3.1 0.82 ± 0.06 

Complex 
Curved Motion 

Machine Learn-
ing Method 3.82 ± 0.18 68.7 ± 3.5 1.12 ± 0.08 

Complex 
Curved Motion RRT Algorithm 4.51 ± 0.22 85.4 ± 4.2 1.25 ± 0.09 

Multi-Obstacle 
Environment 

Machine Learn-
ing Method 5.23 ± 0.25 92.3 ± 4.8 1.45 ± 0.10 

Multi-Obstacle 
Environment RRT Algorithm 6.14 ± 0.30 112.6 ± 5.6 1.60 ± 0.12 

From the table, it is evident that the machine learning-based method outperforms the 
RRT algorithm in all task types. In simple linear motion tasks, the proposed method re-
duces motion time by 14.9% and energy consumption by 19.7%. In complex curved mo-
tion tasks, motion time is reduced by 15.3%, and energy consumption by 19.5%. In multi-
obstacle environments, motion time is reduced by 14.8%, and energy consumption by 
18.0%. Additionally, the machine learning method achieves higher trajectory accuracy, 
with lower average error compared to the RRT algorithm [10]. 

5.2. Results Analysis and Discussion 
To comprehensively evaluate the performance of the machine learning-based multi-

objective trajectory planning method, this study conducts in-depth analysis and discus-
sion from multiple perspectives, including motion time, energy consumption, trajectory 
accuracy, and robustness. The experimental results are analyzed in detail using multiple 
data tables. 

Motion Time and Energy Consumption: Figure 3 compares the motion time and en-
ergy consumption of the machine learning-based method and the RRT algorithm across 
different task types. The results show that the proposed method significantly reduces mo-
tion time and energy consumption in all tasks. For example, in simple linear motion tasks, 
motion time is reduced by 14.9%, and energy consumption by 19.7%. This demonstrates 
the method's ability to optimize robot motion efficiency and reduce energy consumption.  
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Figure 3. Comparison of Motion Time and Energy Consumption Across Task Types and Methods 
with Error Margins. 

Trajectory Accuracy: Figure 4 compares the trajectory accuracy of the two methods. 
The machine learning-based method achieves higher accuracy in all tasks, with improve-
ments of 4.9% in simple linear motion, 10.4% in complex curved motion, and 9.4% in 
multi-obstacle environments. This indicates that the proposed method generates more 
precise trajectories, enhancing task completion quality. 

 
Figure 4. Comparison of Trajectory Accuracy Across Task Types and Methods with Error Margins. 

Robustness: Figure 5 evaluates the robustness of the methods under different noise 
levels. The machine learning-based method shows smaller changes in motion time and 
trajectory accuracy, demonstrating stronger robustness. For instance, at a 10% noise level, 
the proposed method's motion time increases by only 5.2%, compared to 12.4% for the 
RRT algorithm. This highlights the method's adaptability to complex and dynamic indus-
trial environments. 
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Figure 5. Effects of Noise on Motion Time and Trajectory Accuracy with Error Margins. 

Practical Application: Table 2 compares the performance of the machine learning-
based method and manual programming in a welding robot system. The proposed 
method significantly improves welding speed (25.0%) and weld quality consistency 
(29.5%) while reducing energy consumption (17.1%). This confirms the method's practical 
applicability in real industrial scenarios. In summary, the machine learning-based multi-
objective trajectory planning method demonstrates significant advantages in motion time, 
energy consumption, trajectory accuracy, and robustness. It provides an efficient, precise, 
and robust solution for industrial robot trajectory planning, offering new technical sup-
port for the development of intelligent manufacturing. 

Table 2. Comparison of Welding Performance Between Machine Learning Method and Manual Pro-
gramming Method with Improvement Metrics. 

Metric Machine Learning 
Method 

Manual Program-
ming Method Improvement (%) 

Welding Speed 
(mm/s) 12.5 ± 0.5 10.0 ± 0.6 25.0% 

Weld Quality Con-
sistency (%) 95.2 ± 1.2 73.5 ± 1.5 29.5% 

Energy Consumption 
(kWh) 8.7 ± 0.3 10.5 ± 0.4 -17.1% 

6. Conclusion 
This study proposes a machine learning-based multi-objective trajectory planning 

method for industrial robots, achieving automatic balancing of multiple optimization ob-
jectives through an intelligent trajectory planning framework. The results show significant 
advantages in motion time, energy consumption, trajectory accuracy, and robustness. 
Compared to the traditional RRT algorithm, the proposed method reduces motion time 
by 15% and energy consumption by 19%, significantly improving robot motion efficiency. 
The method also achieves higher trajectory accuracy in all task types, ensuring task com-
pletion quality. In practical welding tasks, it enhances welding speed and weld quality 
consistency while reducing energy consumption, validating its practicality in real indus-
trial scenarios. Additionally, the method demonstrates strong robustness in noisy envi-
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ronments, adapting to complex and dynamic industrial settings. Future research will fo-
cus on further optimizing algorithm performance, expanding application scenarios, and 
exploring multi-robot collaborative trajectory planning. 
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