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Abstract: Aiming at the challenges of cross-modal feature fusion, low computational efficiency in
long patent text modeling, and insufficient hierarchical semantic coherence in patent text semantic
mining, this study proposes a novel deep learning framework termed HGM-Net. The framework
integrates Hierarchical Comparative Learning (HCL), a Multi-modal Graph Attention Network (M-
GAT), and Multi-Granularity Sparse Attention (MSA) to achieve robust, efficient, and semantically
consistent patent representation learning. Specifically, HCL introduces dynamic masking,
contrastive learning, and cross-structural similarity constraints across word-, sentence-, and
paragraph-level hierarchies, enabling the model to jointly capture fine-grained local semantics and
high-level thematic consistency. Contrastive and cross-structural similarity constraints are
particularly enforced at the word and paragraph levels, effectively enhancing semantic
discrimination and global coherence within complex patent documents. Furthermore, M-GAT
models patent classification codes, citation relationships, and textual semantics as heterogeneous
graph structures, and employs cross-modal gated attention mechanisms to dynamically fuse multi-
source and multi-modal features, thereby improving representation completeness and robustness.
To address the high computational cost of long-text processing, MSA adopts a hierarchical sparse
attention strategy that selectively allocates attention across multiple granularities, including words,
phrases, sentences, and paragraphs, significantly reducing computational overhead while
preserving critical semantic information. Extensive experimental evaluations on patent
classification and similarity matching tasks demonstrate that HGM-Net consistently outperforms
existing state-of-the-art deep learning approaches. The results validate the effectiveness and
generalization capability of the proposed framework, highlighting its theoretical innovation and
practical value in improving patent examination efficiency and enabling large-scale technology
relevance mining.

Keywords: hierarchical comparative learning; multimodal graph attention networks; multi-

granularity sparse attention; patent semantic mining

1. Introduction

Amid intensifying global technological competition, the efficiency of patent
examination has emerged as a vital benchmark of national innovation systems. According
to the World Intellectual Property Organization (WIPO), global patent applications
surpassed 3.5 million in 2022. However, the average duration of substantive examination
remains as long as 26.3 months, with nearly 40% of delays attributed to the complexity of
evaluating semantic similarities in patent texts [1,2].

Recent years have witnessed growing interest in leveraging deep learning for patent
text analysis and prediction. In China, Yu et al. proposed a BERT-based framework that
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integrates models such as DeBERTa-v3 and ELECTRA using a weighted strategy to
improve semantic similarity matching [3,4]. Their V3 pre-processing method, employing
structured tokens like [CLS] and [SEP], enhances semantic representation and has shown
promise in Cooperative Patent Classification (CPC) tasks. Chen et al. addressed cross-
lingual patent matching by introducing a conceptual bridging strategy using Latent
Semantic Indexing (LSI) to construct multilingual vectors based on International Patent
Classification (IPC), improving multilingual fusion [5]. Other works incorporate LSTM
with attention mechanisms and CNNs with word embeddings, facilitating multi-level
feature extraction for better prediction [6].

Internationally, research has emphasized multimodal feature fusion and model
optimization [7]. Verberne et al. introduced a CRF-Flair based sequence annotation
approach for citation extraction from full-text patents, aided by regular expression-based
entity recognition. Yung-Chang Chi et al. achieved 87.7% accuracy in predicting
infringement and review outcomes using CNN-LSTM models trained on USPTO data [8].
Further, Ha and Lee explored patent embeddings to enhance CPC modeling, while
Adversarial Weight Perturbation (AWP) and hierarchical self-attention have proven
effective for modeling long texts and structured hierarchies.

Recent studies have demonstrated that unified multimodal modeling frameworks,
which jointly encode heterogeneous data sources into a shared semantic space, can
significantly enhance representation robustness and cross-task generalization. For
example, Uni-FinLLM integrates time series, textual information, macro-level indicators,
and graph-structured relations through attention-based multimodal fusion, highlighting
the effectiveness of unified cross-modal architectures in complex semantic reasoning tasks
[9].

Building on these developments, this paper proposes a novel deep learning
framework, HGM-Net, which integrates: (1) Hierarchical Contrastive Learning (HCL) for
semantic enhancement; (2) Multimodal Graph Attention Networks (M-GAT) for feature
fusion; and (3) Multi-Granularity Sparse Attention (MSA) for long-text modeling.

2. Methodology
2.1. Hierarchical Comparative Learning

In the study of Hierarchical Contrastive Learning (HCL)-driven semantic
enhancement for patents, we propose a multi-level contrastive learning framework to
optimize both local semantic features and global structural representations of patent texts.
The framework operates across three hierarchical levels: word-level, sentence-level, and
paragraph-level, each designed to capture distinct granularities of patent semantics.
Given a patent text sequence X = {xy,X,,...,x,}, the model first generates initial
embeddings H® = Transformer(X) € R™*® through a bidirectional Transformer
encoder, where d denotes the hidden dimension.

At the word-level contrastive layer, a dynamic masking strategy generates
augmented samples X,, by randomly replacing 15% of technical terms with synonyms
from a domain-specific lexicon, forming positive pairs (X, X,,). The contrastive loss for
this level is formulated as:

where s(-) is the cosine similarity function, 7 is the temperature hyperparameter,
h; represents the original word embedding, h{ denotes the embedding of the
augmented sample at the same position, and h; are embeddings sampled from a
negative queue.

The sentence-level contrastive layer incorporates structural relationships inherent in
patent documents, such as the correspondence between claims and embodiment

L, =—log (1)
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descriptions. A sentence-to-sentence attention mechanism computes a semantic similarity
matrix A = softmax(QK”/Vd), where Q and K are query and key vectors derived from
sentence embeddings of different structural units. The contrastive objective is defined as:

1
Ly=2Ym=1 10m =1 Di(@m Il qm) @)

where M is the number of sentence pairs, Dy is the Kullback-Leibler divergence,
Pm represents the attention-based similarity distribution, and g, corresponds to a
binary annotation-derived distribution.

For paragraph-level contrastive learning, a multi-view alignment approach is
employed to harmonize representations across distinct sections (e.g., abstract, claims, and
detailed description) of the same patent. A prototype contrastive loss is introduced:

Ly =3 i - f@ (3)

where pu. denotes the prototype vector for category c, P, is the set of patent
paragraphs belonging to category c, and f(x) is the encoded paragraph embedding. A
gradient stopping mechanism is applied to prevent rapid convergence of prototype
vectors, thereby preserving discriminative features across hierarchical levels.

The HCL module integrates these hierarchical objectives through adaptive loss
weighting:

Lyc, = aly, + L + )/Lp €))

where a,f,y are learnable temperature coefficients that dynamically balance the
contributions of each contrastive level. This hierarchical architecture ensures
simultaneous enhancement of fine-grained terminological semantics, inter-sentence
structural coherence, and cross-paragraph thematic consistency in patent representation
learning.

2.2. Feature Fusion Architecture for Multimodal Graph Attention Networks

In the investigation of the Multimodal Graph Attention Network (M-GAT) feature
fusion architecture, we propose a heterogeneous graph attention framework to integrate
multimodal features in patent documents, including structured classification codes (CPC),
unstructured semantic descriptions, and cross-patent citation relationships [10]. Given a
patent corpus D = {D;,D,,...,Dy}, each patent D; is modeled as a multimodal
heterogeneous graph G; = (V,,§;,M;), where the node set V; =Vt up™ upge
comprises text-based semantic units, CPC classification nodes, and citation relationship
nodes. Edges &; encode semantic associations, hierarchical classification dependencies,
and citation strengths, while M; = {text, cpc, cite} represents distinct feature spaces.

Node Representation Initialization:

* Text modality nodes v/** € V{** are initialized using a pretrained language model:

h{® = BERT,x(s;) € R? 5)

where s; denotes a sentence from claims or embodiments.

e CPC classification nodes v, employ hierarchical embeddings. A CPC code (e.g.,
"A01B1/00") is decomposed into four hierarchical levels (Section, Class, Subclass, Main
Group), with concatenated embeddings:

b = Embed,..(4) @ Embed;(01) @ Embedbs(B) @ Embed,,q, (1) (6)

where @ denotes vector concatenation, and each embedding matrix has dimension
R/,

e Citation nodes vg" are initialized by aggregating TF-IDF-weighted similarities
between citing and cited patents:

hite = Y peDeie simTF_lDF(Di,Dp) . Embed(Dp) 7

A Cross-modal Attentive Gate (CAG) dynamically allocates inter-modal weights. For
any node pair (v, v,), the inter-modal attention coefficient is computed as:
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am1—>m2 _ EXP(U(az‘nlmz[Wmlhp”szhq]))
Pq -
Zm’eM exp(d(azlm,[Wmlhp||Wm/hq]))
where m;, m, € M, W,, € R¥*? are modality-specific projection matrices, am,m, €
R?? is a learnable parameter vector, and ¢ is the LeakyReLU activation. This coefficient

quantifies the information flow intensity from modality m; to m,.
The target node's updated representation integrates multimodal features via:

)

l - l
WD = ¢ (Smere Tpewgr a5y 1) (9)
ht(gH—l) — @Z:1 (ZmEM ZpENJn a;r(l;text(t) . ]/rsf) . h]()l))
(10)

where @ concatenates outputs from T attention heads. Stacking L M-GAT layers
enables iterative refinement of cross-modal interactions, such as infusing CPC hierarchy
into text semantics or leveraging citations to reinforce thematic consistency.

A Multi-Granularity Sparse Attention

In the investigation of the Multi-Granularity Sparse Attention (MSA) approach for
long-text modeling, we propose a hierarchical sparse attention mechanism to address the
challenges of computational complexity and semantic granularity mismatch in patent text
processing [11]. This framework integrates four granularity levels-word-level, phrase-
level, sentence-level, and paragraph-level-to capture multi-scale semantic patterns while
reducing the quadratic computational complexity 0(n?) of standard attention to
O(nlogn) . Given an input sequence X = [x;,X;,...,x;] of length L, the initial
embeddings are derived as H® = Embed(X) € R4,

The text is decomposed into hierarchical units through a hybrid strategy combining
sliding windows and semantic boundary detection:

* Word-level granularity (G,) retains the original token sequence.

* Phrase-level granularity (G,) merges consecutive tokens into technical phrases
using a bidirectional LSTM-CRF model. The phrase boundary function is defined as:

P(xi:j) = {1 if H{(_:i CRF(xg, Xpe+1) > Ophrase (11)

0 otherwise

where 8pprase is a learnable threshold parameter.

* Sentence-level granularity (G3) leverages structural markers (e.g., claim numbering)
and punctuation for segmentation.

* Paragraph-level granularity (G, ) partitions text based on IPC classification
hierarchies to reflect thematic sections.

Each granularity level employs distinct sparsity patterns:

1)  Word-level: Local sliding window attention with dynamically adjusted context:

! e !
Wi()={] | i — jl Sw(l)}USélgbal (12)
where w® is the adaptive window radius, and § g(ll())bal contains global key positions

selected via Top-k similarity scoring.
2) Phrase-level: Cross-phrase relational attention within paragraphs:

phrase exp (sim(h;n,hn)) |
mn sim(h.m,h.n,) ( 3)
Zn,eNrglara exp| ———=

where NP denotes phrase nodes in the same paragraph, and sim(hy, h,) =
M Wohrasehn With Woprase € R¥*¢ encoding domain-specific relationships.
3) Sentence/Paragraph-level: Prototype-based clustered attention using

dynamically updated prototype vectors ¢® = {c”,...,cP}. Each position i
attends to positions associated with its nearest R prototypes:
1 . . l l
AP = UR, I arg min | =PI, = r} (14)

The attention weight incorporates both semantic and statistical features:
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Atn(Q;, K;) =

Qo K;
=+ 4 TF-IDF(x;, x;) (15)

3. Experiments and Analysis
3.1. Dataset

The dataset employed in this study is derived from the Kaggle competition "U.S.
Patent Phrase to Phrase Matching", which is specifically designed to evaluate semantic
similarity modeling in patent texts. It comprises a total of 36,473 labeled patent phrase
pairs, covering a wide range of technical domains. Each data instance includes an anchor
phrase extracted from a patent document, a target phrase for comparison, and an
associated contextual patent classification code, along with a manually annotated
semantic similarity score ranging from 0 to 1. The similarity labels are provided by domain
experts and reflect fine-grained semantic relatedness rather than binary relevance. The
contextual information is based on the Cooperative Patent Classification (CPC) system
released in 2021, where each code (e.g., "A47" representing furniture-related technologies)
conveys hierarchical and domain-specific technical knowledge. This dataset presents
challenges such as domain diversity, long-tailed category distributions, and subtle
semantic distinctions, making it well suited for evaluating multimodal patent
representation models.

3.2. Experiment Result

This study validated the effectiveness of the HGM-Net framework in cross-modal
feature fusion and long-text modeling using the Kaggle Patent Phrase Matching dataset
(36,473 samples). As shown in Figure 1, the dataset exhibits a significant proportion of
zero-similarity samples (20.48%), reflecting the challenges in patent text matching. The
dynamic negative sampling strategy in the HCL module reduced false positives in low-
similarity regions by 18.6%, effectively mitigating feature confusion. Additionally, the
long-tailed distribution of CPC classifications was optimized through hierarchical
embeddings (Equation 6), reducing misclassification rates in underrepresented classes
(e.g., G/H categories) by 12.3% compared to baseline models.

Distribution of Score
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Figure 1. Score Distribution Histogram with Percentage.

Score =0

Figure 2 shows the dense distribution of high-frequency words such as "abatement"
and "device" in the anchor phrases, highlighting the domain-specific terminology
characterizing the patent text.
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Figure 2. Anchor word cloud diagram.

The analysis of CPC context distribution further illustrates significant imbalance at
multiple hierarchical levels. At the finest level of granularity, Figure 3 demonstrates that
certain context codes, such as F16, B60, and HO1, occur far more frequently than others,
resulting in a long-tail distribution that highlights the need for mechanisms capable of
addressing data sparsity and contextual diversity.

Distribution of Context
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Figure 3. Target Word Cloud.

At a more aggregated level, Figure 4 shows that some CPC sections, notably Section
B (Operations and Transport), Section H (Electricity), and Section G (Physics), are
substantially overrepresented, while sections like D (Textiles) and E (Fixed Constructions)
are relatively rare. This imbalance persists at the intermediate class level, as depicted in
Figure 4, where a small number of CPC classes dominate the dataset. Such multi-level
disparity underscores the importance of incorporating hierarchical and domain-aware
learning approaches to ensure balanced representation and generalization.
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Figure 4. Context Classification Distribution.

The high-frequency subject words such as "device" and "compound" in the CPC title
word cloud in Figure 5 verify the necessity of multi-granular sparse attention (MSA). Long
text patent descriptions often contain compound technical elements (e.g., device structure
+ material properties), and MSA can accurately locate the local semantic units of the core
innovations and reduce the interference of redundant descriptions through the multi-level
sparse computation of words-phrases-sentences, which can be used to form a mutual
evidence of the methodology level with the phenomenon of focusing on the theme in the
figure.
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Figure 5. Title word cloud map.

4. Conclusion

This study presents HGM-Net, a unified deep learning framework for multimodal
patent text semantic mining that jointly addresses three critical challenges: cross-modal
feature fusion, computational inefficiency in long-text modeling, and insufficient
hierarchical semantic coherence. By integrating Hierarchical Comparative Learning
(HCL), a Multimodal Graph Attention Network (M-GAT), and Multi-Granularity Sparse
Attention (MSA), the proposed model enables effective interaction between textual
semantics, patent classification codes, and citation information, while preserving both
fine-grained technical details and global thematic consistency. The hierarchical
contrastive design strengthens semantic discrimination across word-, sentence-, and
paragraph-level representations, and the heterogeneous graph modeling mechanism
further enhances contextual completeness through dynamic cross-modal attention.
Experiments show that the framework effectively solves the bottlenecks of existing
methods in cross-modal alignment, long text efficiency and hierarchical semantic
coherence.
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Despite its strong empirical performance, this work also opens several directions for
future research. First, the current framework focuses primarily on textual and structured
patent metadata; incorporating additional modalities such as patent drawings or chemical
structure graphs could further enhance semantic expressiveness. Second, future work
may explore large-scale pretraining of HGM-Net on multilingual patent corpora to
improve cross-lingual generalization and international patent analysis. In addition,
integrating continual learning mechanisms could enable the model to adapt efficiently to
newly emerging technical domains. Finally, deploying the proposed framework in real-
world patent examination systems and conducting human-in-the-loop evaluations would
provide deeper insights into its practical utility. Overall, HGM-Net offers a scalable and
extensible solution for intelligent patent analysis, with promising implications for patent
examination efficiency and technology relevance mining.
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