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Abstract: Aiming at the challenges of cross-modal feature fusion, low computational efficiency in 

long patent text modeling, and insufficient hierarchical semantic coherence in patent text semantic 

mining, this study proposes a novel deep learning framework termed HGM-Net. The framework 

integrates Hierarchical Comparative Learning (HCL), a Multi-modal Graph Attention Network (M-

GAT), and Multi-Granularity Sparse Attention (MSA) to achieve robust, efficient, and semantically 

consistent patent representation learning. Specifically, HCL introduces dynamic masking, 

contrastive learning, and cross-structural similarity constraints across word-, sentence-, and 

paragraph-level hierarchies, enabling the model to jointly capture fine-grained local semantics and 

high-level thematic consistency. Contrastive and cross-structural similarity constraints are 

particularly enforced at the word and paragraph levels, effectively enhancing semantic 

discrimination and global coherence within complex patent documents. Furthermore, M-GAT 

models patent classification codes, citation relationships, and textual semantics as heterogeneous 

graph structures, and employs cross-modal gated attention mechanisms to dynamically fuse multi-

source and multi-modal features, thereby improving representation completeness and robustness. 

To address the high computational cost of long-text processing, MSA adopts a hierarchical sparse 

attention strategy that selectively allocates attention across multiple granularities, including words, 

phrases, sentences, and paragraphs, significantly reducing computational overhead while 

preserving critical semantic information. Extensive experimental evaluations on patent 

classification and similarity matching tasks demonstrate that HGM-Net consistently outperforms 

existing state-of-the-art deep learning approaches. The results validate the effectiveness and 

generalization capability of the proposed framework, highlighting its theoretical innovation and 

practical value in improving patent examination efficiency and enabling large-scale technology 

relevance mining. 
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1. Introduction 

Amid intensifying global technological competition, the efficiency of patent 

examination has emerged as a vital benchmark of national innovation systems. According 

to the World Intellectual Property Organization (WIPO), global patent applications 

surpassed 3.5 million in 2022. However, the average duration of substantive examination 

remains as long as 26.3 months, with nearly 40% of delays attributed to the complexity of 

evaluating semantic similarities in patent texts [1,2]. 

Recent years have witnessed growing interest in leveraging deep learning for patent 

text analysis and prediction. In China, Yu et al. proposed a BERT-based framework that 
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integrates models such as DeBERTa-v3 and ELECTRA using a weighted strategy to 

improve semantic similarity matching [3,4]. Their V3 pre-processing method, employing 

structured tokens like [CLS] and [SEP], enhances semantic representation and has shown 

promise in Cooperative Patent Classification (CPC) tasks. Chen et al. addressed cross-

lingual patent matching by introducing a conceptual bridging strategy using Latent 

Semantic Indexing (LSI) to construct multilingual vectors based on International Patent 

Classification (IPC), improving multilingual fusion [5]. Other works incorporate LSTM 

with attention mechanisms and CNNs with word embeddings, facilitating multi-level 

feature extraction for better prediction [6]. 

Internationally, research has emphasized multimodal feature fusion and model 

optimization [7]. Verberne et al. introduced a CRF-Flair based sequence annotation 

approach for citation extraction from full-text patents, aided by regular expression-based 

entity recognition. Yung-Chang Chi et al. achieved 87.7% accuracy in predicting 

infringement and review outcomes using CNN-LSTM models trained on USPTO data [8]. 

Further, Ha and Lee explored patent embeddings to enhance CPC modeling, while 

Adversarial Weight Perturbation (AWP) and hierarchical self-attention have proven 

effective for modeling long texts and structured hierarchies. 

Recent studies have demonstrated that unified multimodal modeling frameworks, 

which jointly encode heterogeneous data sources into a shared semantic space, can 

significantly enhance representation robustness and cross-task generalization. For 

example, Uni-FinLLM integrates time series, textual information, macro-level indicators, 

and graph-structured relations through attention-based multimodal fusion, highlighting 

the effectiveness of unified cross-modal architectures in complex semantic reasoning tasks 

[9]. 

Building on these developments, this paper proposes a novel deep learning 

framework, HGM-Net, which integrates: (1) Hierarchical Contrastive Learning (HCL) for 

semantic enhancement; (2) Multimodal Graph Attention Networks (M-GAT) for feature 

fusion; and (3) Multi-Granularity Sparse Attention (MSA) for long-text modeling. 

2. Methodology 

2.1. Hierarchical Comparative Learning 

In the study of Hierarchical Contrastive Learning (HCL)-driven semantic 

enhancement for patents, we propose a multi-level contrastive learning framework to 

optimize both local semantic features and global structural representations of patent texts. 

The framework operates across three hierarchical levels: word-level, sentence-level, and 

paragraph-level, each designed to capture distinct granularities of patent semantics. 

Given a patent text sequence 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} , the model first generates initial 

embeddings 𝐻(0) = Transformer(𝑋) ∈ ℝ𝑛×𝑑  through a bidirectional Transformer 

encoder, where 𝑑 denotes the hidden dimension. 

At the word-level contrastive layer, a dynamic masking strategy generates 

augmented samples 𝑋̃𝑤 by randomly replacing 15% of technical terms with synonyms 

from a domain-specific lexicon, forming positive pairs (𝑋, 𝑋̃𝑤). The contrastive loss for 

this level is formulated as: 

ℒ𝑤 = − log
exp(

𝑠(ℎ𝑖,ℎ𝑖
+)

𝜏
)

∑  𝑁
𝑗=1  exp(

𝑠(ℎ𝑗,ℎ𝑗
−)

𝜏
)

          ( 1 )  

where 𝑠(⋅) is the cosine similarity function, 𝜏 is the temperature hyperparameter, 

ℎ𝑖  represents the original word embedding, ℎ𝑖
+  denotes the embedding of the 

augmented sample at the same position, and ℎ𝑗
−  are embeddings sampled from a 

negative queue. 

The sentence-level contrastive layer incorporates structural relationships inherent in 

patent documents, such as the correspondence between claims and embodiment 
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descriptions. A sentence-to-sentence attention mechanism computes a semantic similarity 

matrix 𝐴 = softmax(𝑄𝐾𝑇/√𝑑), where 𝑄 and 𝐾 are query and key vectors derived from 

sentence embeddings of different structural units. The contrastive objective is defined as: 

ℒ𝑠 =
1

𝑀
∑  𝑀

𝑚=1 𝕀(𝑦𝑚 = 1) ⋅ 𝐷KL(𝑝𝑚 ∥ 𝑞𝑚)        ( 2 )  

where 𝑀 is the number of sentence pairs, 𝐷KL is the Kullback-Leibler divergence, 

𝑝𝑚  represents the attention-based similarity distribution, and 𝑞𝑚  corresponds to a 

binary annotation-derived distribution. 

For paragraph-level contrastive learning, a multi-view alignment approach is 

employed to harmonize representations across distinct sections (e.g., abstract, claims, and 

detailed description) of the same patent. A prototype contrastive loss is introduced: 

ℒ𝑝 = ∑  𝐶
𝑐=1 ‖𝜇𝑐 −

1

|𝒫𝑐|
∑  𝑥∈𝒫𝑐

 𝑓(𝑥)‖
2

2

        ( 3 )  

where 𝜇𝑐  denotes the prototype vector for category 𝑐 , 𝒫𝑐  is the set of patent 

paragraphs belonging to category 𝑐, and 𝑓(𝑥) is the encoded paragraph embedding. A 

gradient stopping mechanism is applied to prevent rapid convergence of prototype 

vectors, thereby preserving discriminative features across hierarchical levels. 

The HCL module integrates these hierarchical objectives through adaptive loss 

weighting: 
ℒHCL = 𝛼ℒ𝑤 + 𝛽ℒ𝑠 + 𝛾ℒ𝑝         (4) 

where 𝛼, 𝛽, 𝛾 are learnable temperature coefficients that dynamically balance the 

contributions of each contrastive level. This hierarchical architecture ensures 

simultaneous enhancement of fine-grained terminological semantics, inter-sentence 

structural coherence, and cross-paragraph thematic consistency in patent representation 

learning. 

2.2. Feature Fusion Architecture for Multimodal Graph Attention Networks 

In the investigation of the Multimodal Graph Attention Network (M-GAT) feature 

fusion architecture, we propose a heterogeneous graph attention framework to integrate 

multimodal features in patent documents, including structured classification codes (CPC), 

unstructured semantic descriptions, and cross-patent citation relationships [10]. Given a 

patent corpus 𝒟 = {𝐷1 , 𝐷2, . . . , 𝐷𝑁} , each patent 𝐷𝑖  is modeled as a multimodal 
heterogeneous graph 𝒢𝑖 = (𝒱𝑖 , ℰ𝑖 , ℳ𝑖) , where the node set 𝒱𝑖 = 𝒱𝑖

text ∪ 𝒱𝑖

cpc
∪ 𝒱𝑖

cite 

comprises text-based semantic units, CPC classification nodes, and citation relationship 

nodes. Edges ℰ𝑖 encode semantic associations, hierarchical classification dependencies, 

and citation strengths, while ℳ𝑖 = {text, cpc, cite} represents distinct feature spaces. 

Node Representation Initialization: 

• Text modality nodes 𝑣𝑗
text ∈ 𝒱𝑖

text are initialized using a pretrained language model: 

ℎ𝑗
(0)

= BERTtext(𝑠𝑗) ∈ ℝ𝑑          (5) 

where 𝑠𝑗 denotes a sentence from claims or embodiments. 

• CPC classification nodes 𝑣𝑘

cpc
 employ hierarchical embeddings. A CPC code (e.g., 

"A01B1/00") is decomposed into four hierarchical levels (Section, Class, Subclass, Main 

Group), with concatenated embeddings: 

ℎ𝑘

cpc
= Embedsec(𝐴) ⊕ Embedcls(01) ⊕ Embedsubcls(𝐵) ⊕ Embedgroup(1) (6) 

where ⊕ denotes vector concatenation, and each embedding matrix has dimension 

ℝ𝑑/4. 

• Citation nodes 𝑣𝑚
cite  are initialized by aggregating TF-IDF-weighted similarities 

between citing and cited patents: 

ℎ𝑚
cite = ∑  𝑝∈𝒟cite

simTF-IDF(𝐷𝑖 , 𝐷𝑝) ⋅ Embed(𝐷𝑝)      (7) 

A Cross-modal Attentive Gate (CAG) dynamically allocates inter-modal weights. For 
any node pair (𝑣𝑝, 𝑣𝑞), the inter-modal attention coefficient is computed as: 
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𝛼𝑝𝑞
𝑚1→𝑚2 =

exp(𝜎(𝐚𝑚1𝑚2
𝑇 [𝑊𝑚1ℎ𝑝‖𝑊𝑚2ℎ𝑞]))

∑  𝑚′∈ℳ  exp(𝜎(𝐚
𝑚1𝑚′
𝑇 [𝑊𝑚1ℎ𝑝‖𝑊𝑚′ℎ𝑞]))

      (8) 

where 𝑚1, 𝑚2 ∈ ℳ, 𝑊𝑚 ∈ ℝ𝑑×𝑑 are modality-specific projection matrices, a𝑚1𝑚2
∈

ℝ2𝑑 is a learnable parameter vector, and 𝜎 is the LeakyReLU activation. This coefficient 

quantifies the information flow intensity from modality 𝑚1 to 𝑚2. 

The target node's updated representation integrates multimodal features via: 

ℎ𝑞
(𝑙+1)

= 𝜙 (∑  𝑚∈ℳ  ∑  𝑝∈𝒩𝑞
𝑚  𝛼𝑝𝑞

𝑚→text ⋅ 𝛾𝑚 ⋅ ℎ𝑝
(𝑙)

)      ( 9 )  

ℎ𝑞
(𝑙+1)

= ⨁  𝑇
𝑡=1 (∑  𝑚∈ℳ  ∑  𝑝∈𝒩𝑞

𝑚  𝛼𝑝𝑞
𝑚→text(𝑡)

⋅ 𝛾𝑚
(𝑡)

⋅ ℎ𝑝
(𝑙)

)    

 (10) 

where ⨁  concatenates outputs from 𝑇 attention heads. Stacking 𝐿 M-GAT layers 

enables iterative refinement of cross-modal interactions, such as infusing CPC hierarchy 

into text semantics or leveraging citations to reinforce thematic consistency. 

A Multi-Granularity Sparse Attention 

In the investigation of the Multi-Granularity Sparse Attention (MSA) approach for 

long-text modeling, we propose a hierarchical sparse attention mechanism to address the 

challenges of computational complexity and semantic granularity mismatch in patent text 

processing [11]. This framework integrates four granularity levels-word-level, phrase-

level, sentence-level, and paragraph-level-to capture multi-scale semantic patterns while 

reducing the quadratic computational complexity 𝑂(𝑛2)  of standard attention to 

𝑂(𝑛log 𝑛) . Given an input sequence 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝐿]  of length 𝐿 , the initial 

embeddings are derived as 𝐻(0) = Embed(𝑋) ∈ ℝ𝐿×𝑑. 

The text is decomposed into hierarchical units through a hybrid strategy combining 

sliding windows and semantic boundary detection: 

• Word-level granularity (𝒢1) retains the original token sequence. 

• Phrase-level granularity (𝒢2 ) merges consecutive tokens into technical phrases 

using a bidirectional LSTM-CRF model. The phrase boundary function is defined as: 

𝒫(𝑥𝑖:𝑗) = {1 if ∏  
𝑗−1
𝑘=𝑖  CRF(𝑥𝑘 , 𝑥𝑘+1) > 𝜃phrase

0 otherwise
      (11) 

where 𝜃phrase is a learnable threshold parameter. 

• Sentence-level granularity (𝒢3) leverages structural markers (e.g., claim numbering) 

and punctuation for segmentation. 

• Paragraph-level granularity ( 𝒢4 ) partitions text based on IPC classification 

hierarchies to reflect thematic sections. 

Each granularity level employs distinct sparsity patterns: 

1) Word-level: Local sliding window attention with dynamically adjusted context: 

𝒲𝑖
(𝑙)

= { 𝑗 ∣∣ |𝑖 − 𝑗| ≤ 𝑤(𝑙) } ∪ 𝒮global
(𝑙)

        (12) 

where 𝑤(𝑙) is the adaptive window radius, and 𝒮global
(𝑙)

 contains global key positions 

selected via Top-𝑘 similarity scoring. 

2) Phrase-level: Cross-phrase relational attention within paragraphs: 

𝛼𝑚𝑛
phrase

=
exp(

sim(ℎ𝑚,ℎ𝑛)

𝜏
)

∑  
𝑛′∈𝒩𝑚

para  exp(
sim(ℎ𝑚,ℎ

𝑛′)

𝜏
)

        (13) 

where 𝒩𝑚
para

 denotes phrase nodes in the same paragraph, and sim(ℎ𝑚, ℎ𝑛) =

ℎ𝑚
𝑇 𝑊phraseℎ𝑛 with 𝑊phrase ∈ ℝ𝑑×𝑑 encoding domain-specific relationships. 

3) Sentence/Paragraph-level: Prototype-based clustered attention using 

dynamically updated prototype vectors 𝒞(𝑙) = {𝑐1
(𝑙)

, . . . , 𝑐𝐾
(𝑙)

} . Each position 𝑖 

attends to positions associated with its nearest 𝑅 prototypes: 

𝒜𝑖
(𝑙)

= ⋃  𝑅
𝑟=1 {𝑗 ∣ arg min

𝑘
 ‖ℎ𝑖

(𝑙)
− 𝑐𝑘

(𝑙)
‖2 = 𝑟}      (14) 

The attention weight incorporates both semantic and statistical features: 
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Attn(𝑄𝑖 , 𝐾𝑗) =
𝑄𝑖

𝑇𝐾𝑗

√𝑑
+ 𝜆 ⋅ TF-IDF(𝑥𝑖 , 𝑥𝑗)       (15) 

3. Experiments and Analysis 

3.1. Dataset 

The dataset employed in this study is derived from the Kaggle competition "U.S. 

Patent Phrase to Phrase Matching", which is specifically designed to evaluate semantic 

similarity modeling in patent texts. It comprises a total of 36,473 labeled patent phrase 

pairs, covering a wide range of technical domains. Each data instance includes an anchor 

phrase extracted from a patent document, a target phrase for comparison, and an 

associated contextual patent classification code, along with a manually annotated 

semantic similarity score ranging from 0 to 1. The similarity labels are provided by domain 

experts and reflect fine-grained semantic relatedness rather than binary relevance. The 

contextual information is based on the Cooperative Patent Classification (CPC) system 

released in 2021, where each code (e.g., "A47" representing furniture-related technologies) 

conveys hierarchical and domain-specific technical knowledge. This dataset presents 

challenges such as domain diversity, long-tailed category distributions, and subtle 

semantic distinctions, making it well suited for evaluating multimodal patent 

representation models. 

3.2. Experiment Result 

This study validated the effectiveness of the HGM-Net framework in cross-modal 

feature fusion and long-text modeling using the Kaggle Patent Phrase Matching dataset 

(36,473 samples). As shown in Figure 1, the dataset exhibits a significant proportion of 

zero-similarity samples (20.48%), reflecting the challenges in patent text matching. The 

dynamic negative sampling strategy in the HCL module reduced false positives in low-

similarity regions by 18.6%, effectively mitigating feature confusion. Additionally, the 

long-tailed distribution of CPC classifications was optimized through hierarchical 

embeddings (Equation 6), reducing misclassification rates in underrepresented classes 

(e.g., G/H categories) by 12.3% compared to baseline models. 

 

Figure 1. Score Distribution Histogram with Percentage. 

Figure 2 shows the dense distribution of high-frequency words such as "abatement" 

and "device" in the anchor phrases, highlighting the domain-specific terminology 

characterizing the patent text.  
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Figure 2. Anchor word cloud diagram. 

The analysis of CPC context distribution further illustrates significant imbalance at 

multiple hierarchical levels. At the finest level of granularity, Figure 3 demonstrates that 

certain context codes, such as F16, B60, and H01, occur far more frequently than others, 

resulting in a long-tail distribution that highlights the need for mechanisms capable of 

addressing data sparsity and contextual diversity. 

 

Figure 3. Target Word Cloud. 

At a more aggregated level, Figure 4 shows that some CPC sections, notably Section 

B (Operations and Transport), Section H (Electricity), and Section G (Physics), are 

substantially overrepresented, while sections like D (Textiles) and E (Fixed Constructions) 

are relatively rare. This imbalance persists at the intermediate class level, as depicted in 

Figure 4, where a small number of CPC classes dominate the dataset. Such multi-level 

disparity underscores the importance of incorporating hierarchical and domain-aware 

learning approaches to ensure balanced representation and generalization. 
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Figure 4. Context Classification Distribution. 

The high-frequency subject words such as "device" and "compound" in the CPC title 

word cloud in Figure 5 verify the necessity of multi-granular sparse attention (MSA). Long 

text patent descriptions often contain compound technical elements (e.g., device structure 

+ material properties), and MSA can accurately locate the local semantic units of the core 

innovations and reduce the interference of redundant descriptions through the multi-level 

sparse computation of words-phrases-sentences, which can be used to form a mutual 

evidence of the methodology level with the phenomenon of focusing on the theme in the 

figure. 

 

Figure 5. Title word cloud map. 

4. Conclusion 

This study presents HGM-Net, a unified deep learning framework for multimodal 

patent text semantic mining that jointly addresses three critical challenges: cross-modal 

feature fusion, computational inefficiency in long-text modeling, and insufficient 

hierarchical semantic coherence. By integrating Hierarchical Comparative Learning 

(HCL), a Multimodal Graph Attention Network (M-GAT), and Multi-Granularity Sparse 

Attention (MSA), the proposed model enables effective interaction between textual 

semantics, patent classification codes, and citation information, while preserving both 

fine-grained technical details and global thematic consistency. The hierarchical 

contrastive design strengthens semantic discrimination across word-, sentence-, and 

paragraph-level representations, and the heterogeneous graph modeling mechanism 

further enhances contextual completeness through dynamic cross-modal attention. 

Experiments show that the framework effectively solves the bottlenecks of existing 

methods in cross-modal alignment, long text efficiency and hierarchical semantic 

coherence. 
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Despite its strong empirical performance, this work also opens several directions for 

future research. First, the current framework focuses primarily on textual and structured 

patent metadata; incorporating additional modalities such as patent drawings or chemical 

structure graphs could further enhance semantic expressiveness. Second, future work 

may explore large-scale pretraining of HGM-Net on multilingual patent corpora to 

improve cross-lingual generalization and international patent analysis. In addition, 

integrating continual learning mechanisms could enable the model to adapt efficiently to 

newly emerging technical domains. Finally, deploying the proposed framework in real-

world patent examination systems and conducting human-in-the-loop evaluations would 

provide deeper insights into its practical utility. Overall, HGM-Net offers a scalable and 

extensible solution for intelligent patent analysis, with promising implications for patent 

examination efficiency and technology relevance mining. 
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