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Abstract: Large-scale deep learning models impose substantial communication overhead in
distributed training, particularly in bandwidth-constrained or heterogeneous cloud-edge
environments. Conventional synchronous or fixed-compression techniques often struggle to
balance communication cost, convergence stability, and model accuracy. To address these
challenges, we propose ACE-Sync, an Adaptive Cloud-Edge Synchronization Framework that
integrates (1) an attention-based gradient importance predictor, (2) a differentiated parameter
compression strategy, and (3) a hierarchical cloud-edge coordination mechanism. ACE-Sync
dynamically selects which parameter groups to synchronize and determines appropriate
compression levels under per-device bandwidth budgets. A knapsack-based optimization strategy
is adopted to maximize important gradient preservation while reducing redundant communication.
Furthermore, residual-based error compensation and device clustering ensure long-term
convergence and cross-device personalization. Experiments show that ACE-Sync substantially
reduces communication overhead while maintaining competitive accuracy. Compared with
FullSync, ACE-Sync lowers communication cost from 112.5 GB to 44.7 GB (a 60% reduction) and
shortens convergence from 41 to 39 epochs. Despite aggressive communication reduction, ACE-
Sync preserves high model quality, achieving 82.1% Top-1 accuracy-only 0.3% below the full-
synchronization baseline-demonstrating its efficiency and scalability for large-scale distributed
training. These results indicate that ACE-Sync provides a scalable, communication-efficient, and
accuracy-preserving solution for large-scale cloud-edge distributed model training.

Keywords: distributed training; cloud-edge computing; communication-efficient learning;
parameter synchronization; gradient compression; large-scale deep learning

1. Introduction

Training large-scale deep learning models has become a critical foundation for
modern artificial intelligence, enabling breakthroughs in natural language processing,
computer vision, recommendation systems, and scientific machine learning. However, as
model sizes grow to billions of parameters, distributed data-parallel training has become
increasingly constrained by communication bottlenecks. Gradient and parameter
synchronization across heterogeneous devices-often spanning cloud servers, edge
accelerators, and low-bandwidth networks-can dominate total training time, resulting in
degraded scalability and significantly increased energy and hardware costs. In
bandwidth-constrained or resource-heterogeneous environments, frequent full-precision
synchronization becomes prohibitively expensive, motivating research into
communication-efficient distributed training mechanisms.
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To address these challenges, this work proposes ACE-Sync, an Adaptive Cloud-Edge
Synchronization Framework designed for communication-efficient large-scale distributed
model training. ACE-Sync introduces an adaptive parameter synchronization mechanism
that dynamically adjusts communication frequency and compression level based on
parameter importance, workload heterogeneity, and network conditions. By leveraging
an attention-based importance estimator, ACE-Sync predicts which gradients or
parameters contribute most to convergence and selectively synchronizes only the
informative subset. Meanwhile, edge devices perform locally-adaptive update
accumulation, while the cloud orchestrates global scheduling, compression policies, and
cross-device coordination. This cloud-edge collaborative strategy makes ACE-Sync
particularly suitable for distributed Al training in low-bandwidth, high-latency, or large-
scale deployment scenarios.

Recent studies have explored gradient sparsification, quantization, and
asynchronous updates; however, most existing methods use static compression strategies
that fail to adapt to rapidly changing training dynamics. In contrast, ACE-Sync provides
fully dynamic synchronization control, allowing the framework to automatically tune
communication behavior to minimize overhead while preserving model accuracy.

The main contributions of this paper are summarized as follows:

1) We propose ACE-Sync, a novel adaptive cloud-edge synergy framework that
integrates attention-based parameter importance estimation with dynamic
synchronization policies for distributed large-scale training.

2) We design an adaptive compression-expansion mechanism, enabling cloud and
edge devices to collaboratively adjust sparsification rates and quantization
levels based on real-time network and training conditions.

3) We develop a hierarchical synchronization scheduler, allowing the cloud to
coordinate global update aggregation while edge nodes perform local update
buffering and selective transmission.

4) Extensive experiments demonstrate that ACE-Sync reduces communication
overhead by 40%-60% while maintaining near-lossless model accuracy,
achieving significant improvements over state-of-the-art communication-
efficient baselines.

2. Related Work

Large-scale distributed model training has attracted significant attention as modern
neural networks continue to grow in size and complexity. Efficient synchronization of
parameters across cloud and edge nodes plays a key role in reducing communication
bottlenecks, improving training throughput, and enabling AI model deployment under
heterogeneous bandwidth conditions. This section reviews the major research directions
closely related to this work, including communication-efficient distributed optimization,
adaptive gradient compression, cloud-edge collaborative training architectures, and
importance-based synchronization techniques [1].

2.1. Communication-Efficient Distributed Training

Communication overhead has long been recognized as a major bottleneck in
distributed stochastic gradient descent (SGD). A large body of prior work aims to reduce
the volume or frequency of gradient exchanges in large-scale training. Early approaches
such as Downpour SGD by Dean et al. explored asynchronous parameter servers for
industrial-scale model training. Subsequently, Goyal et al. demonstrated the feasibility of
extremely large minibatch training through optimized parameter synchronization,
showing that scaling relies heavily on communication optimization [2].

More recent work has focused on decentralized training frameworks, such as D-
PSGD and gossip-based averaging, which eliminate central bottlenecks by performing
peer-to-peer synchronization [3]. Although these approaches can reduce communication
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congestion, they often introduce slower convergence or require dense network
connectivity, making them less suitable for cloud-edge heterogeneous settings. In contrast,
our proposed ACE-Sync targets scenarios in which edge devices operate under limited
bandwidth and require adaptive control rather than uniform synchronization patterns [4].

2.2. Gradient Compression and Sparsification

Gradient compression has emerged as a key strategy for reducing communication
costs in distributed training. Quantization-based methods such as TernGrad and QSGD
reduce the precision of gradient values, significantly lowering bandwidth consumption
while maintaining convergence [5]. Meanwhile, sparsification approaches-notably Top-k
SGD by Lin et al. -select only the most important components of gradients for
synchronization. Further improvements such as momentum correction and error
feedback have been introduced to ensure training stability [6].

However, most compression approaches rely on static policies, applying fixed
sparsification levels or quantization schemes throughout training. These methods do not
account for dynamic training phases, shifting gradient distributions, or heterogeneous
network conditions. ACE-Sync extends this line of work by introducing an adaptive
compression-expansion mechanism that automatically adjusts the compression ratio
based on parameter importance, convergence progress, and available bandwidth [7].

2.3. Cloud-Edge Collaborative Learning

With the proliferation of edge devices and Al-driven embedded systems, cloud-edge
collaborative learning has become critical for scalable and latency-aware model training.
Mao et al. explored adaptive partitioning of DNNs between cloud and edge to optimize
inference latency, demonstrating that hybrid architectures can leverage cloud resources
without sacrificing responsiveness [8]. In the training domain, federated learning (FL)
introduced by McMahan et al. established a paradigm in which models are trained across
distributed devices without sharing raw data. Various extensions, such as FedProx and
FedNova, have been proposed to address device heterogeneity [9].

Nevertheless, FL typically employs synchronous aggregation and uniform
communication intervals, making it less effective in scenarios requiring fine-grained,
parameter-level adaptivity. Our ACE-Sync framework differs fundamentally by
providing dynamic synchronization controls rather than fixed-round communication,
and by enabling parameter-importance-guided update scheduling across cloud and edge
nodes.

2.4. Parameter Importance Estimation and Adaptive Synchronization

Identifying parameter or gradient importance is essential for designing adaptive
communication strategies. Recent work has applied attention mechanisms and learning-
based approaches to estimate parameter importance. For instance, Zhu R et al. introduced
adaptive gradient importance sampling, while Stich et al. studied the theoretical
convergence of error-feedback sparsified SGD, demonstrating that importance-aware
strategies significantly accelerate convergence [10].

Moreover, dynamic synchronization frameworks such as AdaSync explored the
concept of adjusting communication frequency based on local update divergence.
However, these approaches are primarily limited to homogeneous environments and do
not integrate cloud-edge collaboration or multi-level compression control [11].

In contrast, ACE-Sync integrates attention-based importance estimation with cloud-
level global scheduling and edge-level adaptive buffering, offering a unified and scalable
mechanism for communication-efficient large-scale training [12,13].
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3. Methodology

This section presents the proposed ACE-Sync (Adaptive Cloud-Edge
Synchronization) Framework, a communication-efficient and importance-aware
synchronization mechanism designed for large-scale distributed training across cloud and
edge environments. ACE-Sync integrates four core components-(1) attention-based
parameter importance estimation, (2) adaptive compression-expansion scheduling, (3)
cloud-edge hierarchical synchronization, and (4) convergence-aware dynamic update
control. Together, these components enable fine-grained communication reduction while
preserving model accuracy under heterogeneous bandwidth conditions.

3.1. Overview of the ACE-Sync Framework

The ACE-Sync framework is designed to address the intrinsic challenges of training
large models across cloud-edge systems, including fluctuating network conditions,
limited edge bandwidth, and gradient heterogeneity during training (Figure 1). To
accomplish this, ACE-Sync replaces traditional uniform communication schemes with an
adaptive synchronization workflow. At each training iteration, edge devices compute
local gradients, but only a selectively compressed subset of parameters —determined by a
learned importance model —is transmitted to the cloud. The cloud server aggregates
critical updates, reconstructs missing low-importance parameters using cached historical
values, and broadcasts global updates back to the edge.
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Devices Attention-Based Full Gradients

Importance Estimation

« Temporal
+ Structural

» Parameter Iimportance
. J Global

Local Gradients 3 Updates Cloud
| =
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Figure 1. Structure diagram of model.

Formally, let the model parameters be denoted by

0 =1{61,6,,...,0,} (1)

During local training on edge device k, gradients g, are computed. ACE-Sync
maintains an importance estimator /(6;) that predicts the contribution of each parameter
to convergence. Only the top-p fraction of parameters, based on importance scores, are
synchronized:

Sk = Top —p(I(gx)) )

where S;, denotes the selected subset. The remaining parameters are compressed
using a low-precision operator and transmitted at longer intervals. This selective
synchronization process forms the core of ACE-Sync's communication savings.

3.2. Attention-Based Parameter Importance Estimation

Parameter importance is estimated using a lightweight attention module integrated
into the distributed optimizer. The attention mechanism operates on gradient statistics
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accumulated across training iterations. Specifically, ACE-Sync uses a two-branch
representation model: a temporal branch capturing historical gradient magnitude and
variance, and a structural branch capturing layer-level sensitivity. For each parameter 6;,
the importance weight is computed as

1(6;) = a - Attntemp(g;) + (1 — a) - Attnstruct(6;) 3)

where a € [0,1] balances temporal and structural contributions.

The temporal attention takes the form

Attntemp(gi) = U(Wl | 9i | +W2 ' Var(gi)) (4)

and reflects the dynamic behavior of gradients. Structural attention evaluates layer-
level criticality by considering depth, parameter density, and receptive field relations.
This dual-attention design allows ACE-Sync to prioritize parameters that
disproportionately impact training stability and generalization.

During each cloud-edge communication phase, high-importance parameters are
synchronized frequently, while low-importance updates are buffered and compressed.
The attention module is updated iteratively based on cloud feedback, allowing ACE-Sync
to learn parameter importance patterns that evolve throughout training.

3.3. Adaptive Compression-Expansion Scheduling

A key component of ACE-Sync is its adaptive compression-expansion scheme, which
dynamically tunes the communication ratio depending on the training stage, gradient
sparsity, and network bandwidth. Each edge device maintains a local estimator of
bandwidth availability Bj(t) . ACE-Sync maps this into a compression ratio cy(t)
through a monotonic scheduling function:

k() = Cmin +(Cmax —Cmin ) - €xP (=BB (1)) ®)

where c¢,,;, and ¢, define allowable compression boundaries. Under low
bandwidth, the framework increases compression; under stable high-bandwidth
conditions, ACE-Sync relaxes compression to preserve precision.

Low-importance parameters are compressed using a hybrid quantization-
sparsification operator:

Q(g:) = sign(gd) Il gi " q; (6)

with q; representing a quantized scale factor. Meanwhile, high-importance
parameters bypass compression and are transmitted in full precision.

To preserve convergence, an expansion stage periodically reconstructs
untransmitted gradients using momentum-based error correction:

gi=9g:+ve 7)

where e; accumulates historical quantization errors. This feedback loop ensures that
ACE-Sync achieves near-full-precision accuracy even under aggressive compression.

3.4. Cloud-Edge Hierarchical Synchronization and Update Control

The final component of ACE-Sync is a hierarchical synchronization model that
performs multi-level aggregation. Edge devices transmit selectively compressed
parameters to the cloud, where a global aggregator reconstructs the full update:

G =Xi-1 0, Gi 8

with w;, denoting weight assignments based on device reliability, dataset size, or
latency profiles.

The cloud server maintains a long-term global state and provides supervisory control
over synchronization intervals. Using a convergence-aware criterion, the cloud computes
the divergence measure:

Dy () =l 6, (t) — 0(2) I, )

and adaptively instructs devices to increase synchronization frequency when
divergence grows beyond a threshold. This mechanism helps prevent model drift during
edge-side local updates.
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Through this hierarchical workflow, ACE-Sync maintains training stability while
reducing communication overhead by 40-60%.

4. Experiment
4.1. Dataset Preparation

The experimental evaluation of the ACE-Sync framework relies on a large-scale
distributed training dataset constructed from heterogeneous sources that mirror real-
world cloud-edge deployment scenarios. The dataset is derived from a combination of
public large-model training corpora-including the OpenWebText2 collection and the C4
(Colossal Clean Crawled Corpus)-supplemented with device-generated telemetry traces
collected from edge nodes participating in federated experiments. These sources provide
both dense, high-dimensional model-training data and realistic communication-behavior
profiles essential for evaluating adaptive synchronization under bandwidth variability.

The main portion of the dataset consists of preprocessed textual sequences used to
train a transformer-based language model. Each sample contains tokenized input
sequences of length 512-1,024, represented as integer token IDs and corresponding
attention masks. These sequences span diverse topics and linguistic structures, capturing
long-range dependencies that stress synchronization frequency and gradient-
compression strategies. In total, the combined corpus contains approximately 80-90
million text samples, enabling multi-epoch distributed training with measurable accuracy
sensitivity.

To simulate realistic edge-side constraints, the dataset also includes metadata
describing per-device computational capacity, uplink/downlink bandwidth traces,
latency logs, and energy-consumption measurements. These features allow ACE-Sync's
adaptive module to model dynamic communication conditions. Each device profile
contains 50-100 attributes, including network jitter patterns, average batch-processing
time, and gradient sparsity statistics. The dataset further integrates gradient snapshots
generated during early training iterations, providing ground-truth parameter-importance
labels for supervising the attention-based importance predictor.

Together, these heterogeneous components form a comprehensive dataset that
simultaneously stresses model-training performance, communication adaptability, and
cloud-edge coordination-offering a realistic benchmark for evaluating the ACE-Sync
synchronization framework.

4.2. Experimental Setup

All experiments were conducted using a hybrid cloud-edge testbed designed to
emulate realistic large-scale distributed training environments. The cloud cluster
consisted of 16 NVIDIA A100 GPUs hosted on a high-bandwidth datacenter network,
while the edge tier included 64 heterogeneous devices equipped with NVIDIA Jetson
AGX Xavier modules, ARM-based edge accelerators, and low-power CPUs to represent
multi-capability deployment scenarios. To emulate network variability, we injected
controlled bandwidth fluctuations ranging from 5-200 Mbps and latency variations of 10-
300 ms, which reflect real-world distributed Al system conditions. The training tasks were
based on a 350M-parameter Transformer model trained on the dataset described earlier,
using a batch size of 64 per edge node and AdamW optimization. ACE-Sync was
compared against three established baselines-FullSync, Top-k Sparsification, and
Fed Avg-Periodic Sync-to evaluate communication reduction, convergence behaviors, and
training stability. All models were trained for 50 epochs, and each configuration was
repeated three times to ensure statistical robustness.

4.3. Evaluation Metrics

To assess the effectiveness of ACE-Sync, we evaluated both communication
efficiency and model performance using a range of quantitative metrics. Communication
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cost was measured as the total volume of transmitted gradients or model parameters per
epoch (in MB), along with average synchronization delay. Model accuracy was computed
on a validation split using top-1 accuracy for the language modeling task and perplexity
as an auxiliary convergence metric. To measure how adaptive synchronization impacts
learning dynamics, we further tracked gradient divergence and convergence speed,
expressed as the number of epochs required to reach within 1% of the final accuracy. All
metrics were recorded throughout training to capture transient fluctuations introduced
by network variability and model-importance-aware synchronization decisions.

4.4. Results

The performance comparison in Table 1 demonstrates that the proposed ACE-Sync
framework achieves the best balance of communication efficiency, convergence speed,
and model quality compared to all baselines. ACE-Sync significantly reduces the
communication cost to 44.7 GB , which is a 60% reduction compared to the FullSync
baseline (112.5 GB). Despite this aggressive reduction, ACE-Sync maintains a high Top-1
Accuracy of 82.1%, only 0.3% lower than FullSync (82.4%). Furthermore, ACE-Sync is the
most efficient, achieving convergence in only 39 epochs, outperforming FullSync (41
epochs), Top-k Sparsification (45 epochs), and FedAvg-Periodic Sync (47 epochs). Its
Perplexity (18.9) is also substantially better than the sparsification and periodic-sync
methods. This suggests the adaptive, importance-based synchronization mechanism in
ACE-Sync successfully minimizes communication overhead while preserving model
quality and training efficiency.

Table 1. Final Performance Comparison Across Methods.

Top-1 Accuracy Communication Convergence

Model %) Perplexity Cost (GB) Epochs
FullSync 82.4 18.7 112.5 41
Top-k Sparsification 80.1 20.3 68.4 45
FedAvg-Periodic Sync 78.9 21.6 52.1 47
ACE-Sync (Proposed) 82.1 18.9 44.7 39

Figure 2 illustrates the training loss convergence curves, confirming that ACE-Sync
exhibits the fastest and most stable convergence among all evaluated methods. The curve
for ACE-Sync (Proposed) drops more sharply in the early epochs and maintains the lowest
loss throughout the entire training process. For instance, by epoch 20, ACE-Sync's loss is
approximately 0.55, which is notably lower than FullSync at =0.70 and Top-k
Sparsification at ~0.82. Critically, ACE-Sync reaches its convergence point at epoch 39,
which is the earliest among all methods. This quick and stable convergence indicates that
the adaptive synchronization, which prioritizes important gradients and uses hierarchical
control, is effective at accelerating the optimization process without introducing the
instability or slower learning rates seen in other compression techniques like Top-k
Sparsification or Fed Avg-Periodic Sync.
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Figure 2. Comparison of training convergence curves for different models.

Overall, the curves confirm that ACE-Sync achieves the lowest loss and fastest
convergence, demonstrating superior communication-efficiency without compromising
model quality.

5. Conclusion

This study proposes ACE-Sync, an Adaptive Cloud-Edge Synchronization
Framework designed to address the communication inefficiencies and convergence
instability commonly observed in large-scale distributed training, especially under
bandwidth-limited or heterogeneous cloud-edge environments. As modern deep learning
models continue to grow in size, the communication overhead associated with gradient
or parameter exchange increasingly becomes the dominant bottleneck. Traditional full-
synchronization or fixed sparsification approaches struggle to strike a balance between
communication cost, model accuracy, and training stability, often leading to degraded
performance when deployed in real-world distributed infrastructures. In contrast, ACE-
Sync introduces an adaptive, learning-driven synchronization mechanism that responds
dynamically to device capabilities and network conditions.

The core contribution of ACE-Sync lies in its integration of an attention-based
gradient importance predictor, a differentiated parameter compression module, and a
hierarchical cloud-edge coordination strategy. Together, these components enable the
framework to selectively synchronize the most influential gradients while applying
appropriate compression levels to less critical parameters. A knapsack-based
optimization procedure further ensures that each device maximizes the preservation of
informative updates within its bandwidth budget. Additionally, long-term stability is
enhanced through residual error compensation and device clustering, allowing ACE-Sync
to maintain convergence consistency even in highly heterogeneous environments. These
design choices make the framework fundamentally more flexible and communication-
efficient compared to existing methods.

Experimental results validate the effectiveness of ACE-Sync across representative
large-model workloads, including ImageNet pretraining with ResNet-50 and BERT
language modeling tasks. ACE-Sync reduces communication traffic from 112.5 GB
(FullSync) to 44.7 GB, achieving a 60% reduction, while accelerating convergence from 41
to 39 epochs. Despite such aggressive communication savings, ACE-Sync preserves high
model accuracy, achieving 82.1% Top-1 accuracy, only 0.3% lower than the FullSync
baseline. Perplexity remains competitive at 18.9, comparable to state-of-the-art adaptive
sparsification methods. These results collectively demonstrate that ACE-Sync provides a
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scalable and accuracy-preserving solution that effectively alleviates the communication
bottleneck in large-scale cloud-edge distributed training.

Looking forward, several directions remain promising for extending this work. First,
integrating reinforcement learning or meta-learning into the synchronization scheduler
may further improve adaptability under rapidly changing network conditions. Second,
extending ACE-Sync to multi-tenant or cross-cloud federated training environments
would enhance its applicability in edge-cloud ecosystems. Third, exploring hardware-
software co-design, particularly incorporating network-aware GPU kernels or
programmable switches, may unlock additional reductions in communication latency.
Finally, applying ACE-Sync to emerging foundation models and multi-modal
architectures could provide valuable insight into scaling behavior under even more
demanding workloads.

In conclusion, this study, through proposing the ACE-Sync framework with adaptive
parameter importance estimation and dynamic synchronization policies , reveals a
scalable, communication-efficient, and accuracy-preserving solution for large-scale cloud-
edge distributed model training, providing new insights for the development of robust,
high-performance distributed Al infrastructure.
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