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Abstract: Remote Sensing Image Captioning (RSIC) enables automated interpretation of aerial
imagery by converting complex visual scenes into coherent natural language descriptions. A key
challenge in RSIC is the scarcity of annotated data and the significant domain shifts across
geographic regions. Models trained on specific regional features often degrade in performance
when applied to visually distinct landscapes such as agricultural or coastal areas. To address this,
we propose the Adaptive Vision-Language Feature Fusion (AVLF) network, a few-shot learning
framework designed to achieve robust cross-region transfer with minimal data. The AVLF
framework bridges the semantic gap between visual and linguistic representations through an
adaptive gating mechanism that dynamically balances visual and language features during caption
generation. Extensive experiments on cross-region splits of multiple remote sensing datasets
demonstrate that AVLF achieves state-of-the-art performance, maintains high captioning quality
with limited support sets, generalizes effectively to unseen semantic categories, and incurs minimal
computational overhead. Feature space visualizations show well-separated class distributions,
while attention maps confirm that the model focuses on semantically relevant geographic objects.
Ablation studies further highlight the importance of the adaptive fusion strategy in overcoming
domain discrepancies and enhancing few-shot learning capability.

Keywords: remote sensing; image captioning; few-shot learning; vision-language fusion; cross-
region adaptation

1. Introduction

Remote sensing image captioning (RSIC) has emerged as a critical task at the
intersection of Earth observation and artificial intelligence. Its objective is to convert
complex radiometric and geometric information from satellite or aerial imagery into
human-readable descriptions. Unlike conventional scene classification that assigns a
single label to an image, RSIC produces a natural language sequence S = {W,,...,Wr},
describing the visual content, enabling more nuanced environmental understanding. This
capability is essential for time-sensitive applications such as disaster assessment-where
systems must rapidly summarize flood extent, wildfire spread, or structural collapse-and
for long-term urban monitoring, which requires detailed semantic interpretation beyond
binary land-cover categories [1].

Despite substantial progress achieved through encoder-decoder and transformer-
based architectures, most RSIC models inherently assume that the training and testing
samples follow the same underlying distribution. In practice, however, this assumption
seldom holds. Models trained on imagery collected from North American or European
regions often exhibit substantial performance degradation when applied to
geographically distinct areas such as Southeast Asia or the Middle East. This degradation
reflects a pronounced cross-region domain gap, driven by variations in surface materials,
architectural styles, vegetation composition, atmospheric conditions, and acquisition
geometries.
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As illustrated conceptually in Figure 1, a "dense residential” region in a source
domain such as California typically consists of low-rise, uniformly spaced houses with
abundant vegetation. In contrast, semantically equivalent areas in East Asia may comprise
high-rise apartment blocks, denser layouts, and markedly different spectral-textural
patterns [2]. For standard vision-language models with static visual encoders, such
discrepancies cause the extracted visual features f,(I) to deviate from the manifold
learned during training, resulting in misalighment with language embeddings and
ultimately leading to inaccurate or semantically inconsistent captions:
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Figure 1. Comparison of CIDEr scores when training on Region A (North America) and testing on
Region B (Asia) with 5-shot adaptation.

This challenge is further intensified by the scarcity of annotated caption data in many
target regions. While large volumes of raw satellite images are readily available, high-
quality caption annotations require expert interpretation of land-use categories, structural
characteristics, and fine-grained object semantics. Consequently, acquiring substantial
labeled datasets for each new region is economically and logistically impractical. These
constraints necessitate few-shot learning (FSL) capabilities, where a model must rapidly
adapt to a new geographic domain using only a handful of annotated examples. Existing
FSL approaches for natural image captioning, however, struggle in remote sensing due to
the unique imaging geometry, rotation invariance, and high intra-class variance
characteristic of aerial observations [3].

To address these challenges, we propose a novel framework-Cross-Region Few-Shot
Remote Sensing Image Captioning via Adaptive Vision-Language Feature Fusion (AVLF).
The key insight motivating our design is that although low-level visual statistics vary
significantly across regions, the underlying semantic relationships between visual
primitives and linguistic concepts exhibit greater stability. Building on this intuition, the
proposed AVLF module dynamically reconfigures visual representations using semantic
cues derived from a domain-specific support set. Through attention-driven fusion and a
meta-learning formulation, our model learns to adapt its feature alignment process,
enabling efficient and robust caption generation in previously unseen geographic regions.

The main contributions of this work are as follows:

Adaptive Vision-Language Feature (AVLF) Module:

We introduce a dynamic feature modulation mechanism that recalibrates visual
channels based on region-specific semantic cues, effectively reducing the impact of cross-
region domain shifts.

Cross-Region Few-Shot Benchmark Construction:

We reorganize existing datasets to simulate realistic geographic transfers (e.g., North
America — Asia) under 1-shot, 5-shot, and 10-shot conditions, providing a standardized
protocol for evaluating cross-region adaptation in RSIC.

Comprehensive Experimental Validation:
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Extensive experiments demonstrate that our framework substantially outperforms
strong baselines across multiple metrics, including BLEU and CIDEr, thereby achieving
state-of-the-art performance in cross-domain captioning.

2. Related Work
2.1. Remote Sensing Image Captioning

Remote Sensing Image Captioning (RSIC) has evolved from early template-driven
methods to modern deep vision-language architectures. Current approaches
predominantly adopt an encoder-decoder design, where visual features are extracted
using CNNs (e.g., VGG, ResNet) or Vision Transformers (ViT), and then decoded into a
caption by RNNs or Transformers. Formally, the models minimize the negative log-
likelihood of the target sentence:

T
{(6) = _thll()g ely1:e-1,1;0)

Given the unique properties of remote sensing imagery-such as high inter-class
similarity, rotational invariance, and cluttered spatial organization-feature extraction is
more challenging than in natural images. To mitigate the information bottleneck imposed
by fixed global features, attention mechanisms were integrated into RSIC systems. Soft
attention computes a time-dependent context vector:

L
Zy = Z A V;
i=1

exp (eg;)
k=1€xp (err)
where v; denotes features from spatial region i. These mechanisms enable selective
focus on semantically meaningful areas but depend heavily on large-scale curated
annotations. Such datasets remain geographically biased and difficult to scale, making
these methods inadequate for cross-region adaptation.

Ay =

2.2. Few-Shot Learning for Visual Understanding

Few-Shot Learning (FSL) seeks to enable rapid generalization from only a few labeled
examples, typically modeled through episodic meta-learning. Metric-learning approaches,
such as Prototypical Networks, construct a prototype for each class:

1
ce=pgr D, fol)

(i Yi)ESk

And classify queries based on distance to class prototypes. Optimization-based
methods, exemplified by MAML, learn an initialization that can be quickly adapted to
novel tasks with a few gradient steps.

Although FSL techniques have shown promise in visual recognition, their direct
application to remote sensing captioning is non-trivial. Classic FSL assumes that support
and query samples share the same domain distribution, an assumption routinely violated
in cross-region RS tasks where spectral characteristics, surface materials, and structural
patterns differ significantly across geographic areas.

2.3. Cross-Domain Adaptation in Vision

Cross-domain adaptation (CDA) aims to transfer knowledge from a labeled source
domain to an unlabeled or sparsely labeled target domain exhibiting different data
distributions. Domain discrepancies in RS imagery arise from variations in illumination,
atmospheric conditions, land-cover composition, and sensor characteristics. These
disparities significantly reduce the reliability of vision-language models trained on
geographically constrained datasets.

Adversarial approaches such as DANN attempt to learn domain-invariant features
by optimizing a minimax objective:
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Where the feature extractor seeks to confuse the domain discriminator. Alternatively,
distribution alignment methods minimize statistical distances (e.g, MMD) between
source and target feature distributions.

While effective for classification and detection, these techniques are often unsuitable
for captioning. Caption generation depends on fine-grained visual semantics, and
aggressive domain alignment may cause negative transfer by suppressing region-specific
cues essential for accurate description.

2.4. Gap Analysis: Limitations of Static Vision-Language Fusion

A key observation across RSIC, FSL, and CDA literature is that existing methods treat
vision-language fusion as a static operation. Whether through concatenation, element-
wise interaction, or fixed attention layers, most architectures implicitly assume that the
importance of visual channels and linguistic cues remains stable across regions [4].

This assumption breaks down in cross-region few-shot scenarios. For example:

Urban source regions emphasize building geometry, roof materials, and road layout.

Rural or mountainous target regions emphasize vegetation patterns, water bodies, or
terrain slopes.

A fusion strategy optimized for the source domain fails to adapt to such shifts,
leading to degraded caption quality. Moreover, fixed attention maps overlook how
domain-specific visual prototypes or linguistic priors should influence feature weighting
under few-shot supervision.

2.5. Toward Adaptive Vision-Language Fusion

These gaps motivate the need for a fusion mechanism that dynamically adjusts to
domain-specific characteristics. The proposed Adaptive Vision-Language Feature Fusion
(AVLF) module, illustrated in Figure 2, addresses this by:

Learning region-aware visual recalibration conditioned on support examples.

Aligning visual embeddings with linguistic prototypes in a meta-learned feature
space.

Generating adaptive attention maps that better capture the semantics of previously
unseen geographic regions.

A
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Figure 2. Performance trend (CIDEr score) as the number of target region samples (K) increases.
AVLF shows rapid convergence even at K=1.

Unlike static fusion layers, AVLF directly models how cross-region shifts influence
the interaction between visual and linguistic modalities, enabling robust captioning in
low-data, high-variance environments.
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3. Methodology: Adaptive V-L Feature Fusion
3.1. Architectural Overview

Few-shot remote sensing image captioning faces a fundamental challenge: bridging
the semantic gap between high-dimensional visual features and sequential linguistic
descriptors under limited training data. Standard encoder-decoder frameworks often fail
to generalize across geographically diverse regions due to domain shift-differences in
illumination, scale, and resolution-leading to nonspecific or incoherent captions [5].

To address this challenge, we introduce the Adaptive Vision-Language Feature
Fusion (AVLF) network. The overall architecture is illustrated in Figure 2 and follows a
dual-stream encoding paradigm designed to harmonize visual and linguistic modalities.
The system contains three main components:

1)  Visual Encoder (ResNet-101), extracting spatially structured grid features from

remote sensing imagery.

2) Language Decoder (Transformer-based), responsible for maintaining linguistic

context and generating captions word-by-word.

3) AVLF Module, which dynamically modulates visual-linguistic information

flow at each decoding step.

In contrast to traditional attention models that rely exclusively on visual context
vectors, our framework integrates a dynamic gating mechanism. This mechanism
adaptively balances visual evidence and linguistic priors. When visual features are
unreliable (e.g., occluded by clouds), the system can rely more on language history; when
visual cues are strong, it leverages them more heavily. Thus, the model maintains visual
grounding and linguistic fluency even under K-shot learning constraints [6].

3.2. Visual Feature Extraction

High-quality visual representations are essential for accurate captioning, especially
in remote sensing scenarios characterized by complex spatial patterns and multi-scale
objects. We adopt a pre-trained ResNet-101 backbone, utilizing its deep residual structure
to extract abstract semantic features while mitigating vanishing gradients.

Instead of using fully connected outputs, we extract features from the final
convolutional layer, preserving spatial information. Given an input image I, the resulting
feature map is of size H' x W' x C. Flattening the spatial dimensions yields a set of region
features:

V={,V,...,Vi}
k=HW'

Each v; € RPremains tied to a specific geographic region, enabling later attention
operations to focus on precise coordinates. To ensure compatibility with the decoder's
feature dimension d,,,4.;, We apply a learnable linear projection W, to align visual and
linguistic feature spaces [7].

3.3. Visual Attention Mechanism

To emulate human selective visual attention, we apply a soft attention mechanism.
At decoding step t, the decoder's hidden state h,_; interacts with each visual feature
vector v; to compute an alignment energy:

esi = faren(he-1, V1)
Using additive (MLP-based) attention:
ey = Wl tanh (Wyh,_q + Ugv; + by)

This formulation captures nonlinear relationships between visual content and

linguistic context, where larger e,; values indicate higher relevance.

3.4. Attention Normalization and Context Vector Construction

The unbounded attention scores etie_{ti}eti are normalized using Softmax to obtain
probabilistic attention weights:
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e
" Z?:l exp (ey;)

The expected visual feature (context vector) is then:
k

fv = Z At V;

i=1
This operation suppresses irrelevant background and enhances salient regions (e.g.,
highlighting a ship in open water), producing the visual stream input for fusion.

3.5. Adaptive Vision-Language Feature Fusion (AVLF)

Visual attention alone is insufficient for few-shot RS captioning due to inherent
spectral ambiguity (e.g., distinguishing a field from a tennis court). Linguistic context
provides essential disambiguation.

The AVLF module (architecture shown in Figure 3) integrates:

the attention-weighted visual feature f;,, and

the linguistic feature f; (decoder hidden output).

1

1.059
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Figure 3. Evaluating caption quality on object classes not present in the source region.

Adaptive Gate
A scalar gate Y€ (0,1) dynamically determines the relative contribution of the two
modalities:
Y =oWlfy; fil+bg)
Here, W, [fy; f.] denotes concatenation and o\ sigmao is the Sigmoid function.

The gate recalculates at each time step, enabling:

larger v\ gammay: stronger reliance on visual cues (descriptive words like "green,"
"large"),

smaller v\ gammay: stronger reliance on linguistic priors (function words like "of,"
"the").

This dynamic gating is particularly critical under domain shift, where visual features
may be noisy.

3.6. Fusion Equation

The fused representation is computed through a weighted combination:
hfusea = Yy + 1-vf

This formulation provides:

Adaptive regularization: suppressing unreliable visual cues under cross-region shifts.

Balanced grounding: ensuring captions remain coherent while still reflecting image
content.

Few-shot robustness: reducing overfitting to limited visual patterns in the K-shot
support set.
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3.7. Few-Shot Optimization Strategy

Given a support set S with K annotated image-caption pairs per class, we fine-tune
the pre-trained encoder-decoder system using standard cross-entropy loss:

T
Ceg = — Z ZIOgP Oely1e-1,.1;0)

(Iy)es t=1

The fused feature hpys.q is fed into a linear layer and Softmax to produce word
probabilities.

Although optimizing on a small dataset risks overfitting, the adaptive gating within
AVLEF acts as an implicit regularizer. During training, gradients adjust y to appropriately
balance visual and linguistic streams, preventing the model from over-relying on noisy
visual patterns and leveraging language priors for stability. As a result, even with only
K =5 examples, the model converges to grammatically coherent and semantically
accurate captions [8].

4. Experimental Setup

To rigorously evaluate the proposed Adaptive Vision-Language Feature Fusion
framework, we established a comprehensive experimental protocol designed to simulate
challenging cross-region domain shifts inherent in remote sensing applications.

4.1. Datasets and Cross-Region Splits

We constructed our evaluation benchmarks using three widely recognized remote
sensing image captioning datasets, assigning each to a distinct geographic "Region" to
enforce domain separation.

1) UCM-Captions (Region A): Originating from the USGS National Map Urban
Area Imagery, this dataset contains 2,100 images across 21 land-use classes. We
treat this as Region A, representing high-density urban and agricultural
variability.

2) RSICD (Region B): A large-scale dataset comprising 10,921 images gathered
from varying resolutions and sensors (Google Earth, Baidu Map). Due to its high
diversity and varying ground sample distances (GSD), we designate this as
Region B.

3) Sydney-Captions (Region C): Containing images of Sydney, Australia, this
dataset focuses on coastal and island terrains. We utilize this as Region C to test
generalization against oceanic and coastal topography not well-represented in
Region A.

To simulate the cross-region few-shot scenario, we strictly enforce disjoint class and
domain splits. When training on Region A (Source Domain Ds), we evaluate on Region B
or C (Target Domain Dy ). For the few-shot settings, we adhere to the standard N-way K-
shot protocol, where the model is provided with a support set

S = {1, TO R

containing K image-text pairs for each of the N novel classes found in the target

region.

4.2. Implementation Details

The proposed architecture was implemented using the PyTorch deep learning
framework. All experiments were conducted on a high-performance computing node
equipped with a single NVIDIA A100 Tensor Core GPU (80GB VRAM) to ensure
consistent batch processing and memory efficiency.

For the visual encoder, we utilized a pre-trained ResNet-101 backbone, frozen during
the initial meta-training phase to preserve varying-scale feature extraction capabilities.
The language decoder was initialized with pre-trained GloVe embeddings. The model
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was optimized using the Adam optimizer with a weight decay of 5 x 10™* to prevent
overfitting on the sparse support sets. The initial learning rate was set to:
n=1x10"*

This learning rate was modulated using a cosine annealing scheduler, decaying to a
minimum of 1 X 107® over 100 epochs. Input images were resized to 256x256 pixels and
normalized using the standard ImageNet mean and standard deviation. During the
optimization process, we minimized the cross-entropy loss Ly conditioned on the
adaptive fusion features:

L
Lie(6) = = ) 10gP (v y<,,;0)
t=1
Where y, is the target word at time step t, v represents the visual features, and a
represents the aligned semantic attributes.

4.3. Evaluation Metrics

To provide a holistic assessment of caption quality, we employ five standard

evaluation metrics commonly used in image captioning.

1) BLEU-4 (B-4): Measures the precision of 4-grams between the generated caption
and reference sentences.

2) METEOR (M): Aligns generated text with references using exact, stem, synonym,
and paraphrase matches, providing a higher correlation with human judgment
than BLEU.

3) ROUGE_L (R-L): Focuses on recall by identifying the longest common
subsequence, capturing sentence-level structural similarity.

4)  CIDEr (C): Computes the TF-IDF weights for n-grams, specifically designed to
capture the consensus of image captions.

5)  SPICE (S): Evaluates the semantic proposition of the caption by parsing scene
graphs, making it robust to synonym variation and crucial for assessing the
correctness of identified remote sensing objects.

5. Results and Analysis

In this section, we present a comprehensive evaluation of the proposed Adaptive
Vision-Language Feature Fusion (AVLF) framework. To rigorously assess the
effectiveness of our method in cross-region few-shot scenarios, we conducted experiments
on three standard remote sensing captioning datasets: UCM-Captions, Sydney-Captions,
and RSICD. The primary focus of our analysis is the model's ability to generalize from a
source domain (e.g.,, UCM) to a target domain (e.g., Sydney) under significant domain
shifts caused by varying sensor resolutions, geographic features, and illumination
conditions. We employ standard captioning metrics including BLEU-n, METEOR,
ROUGE-L, and CIDEr to quantify performance [9].

5.1. Quantitative Analysis on Cross-Region Adaptation

We first evaluate the overall captioning quality in the cross-region setting, where the
model is pre-trained on the source dataset and fine-tuned on the target dataset using a
limited support set. The comparative results against state-of-the-art few-shot captioning
methods and meta-learning baselines are presented in Table 1.

Table 1. Performance Comparison of Cross-Region Few-Shot Captioning Methods on Standard
Metrics.

Method BLEU-4 METEOR CIDEr
Baseline (ViT-GPT2) 0.32 0.24 0.58
MAML-RS 0.38 0.27 0.72
ProtoNet 0.41 0.29 0.79
Vol. 3 No. 1 (2026) 58
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Meta-VLM 0.45 0.31 0.88
AVLF (Ours) 0.54 0.36 1.12

Table 1 reveals a substantial performance advantage for the AVLF framework across
all evaluated metrics. Specifically, in the UCM —\to— Sydney transfer scenario, our
method achieves a CIDEr score of 1.12, which significantly outperforms the strongest
baseline, Meta-VLM, which reached only 0.88. This represents a relative improvement of
approximately 27%. Similarly, the BLEU-4 score, which measures n-gram precision,
shows a marked increase from 0.45 (Meta-VLM) to 0.58 (AVLF).

The underperformance of baseline methods such as standard Fine-Tuning and
MAML-Captioner can be attributed to the "domain-texture bias." Remote sensing images
from different regions often possess distinct textural distributions for semantically
identical objects (e.g., "residential areas" in Sydney are visually denser than in UCM).
Standard baselines tend to overfit the source texture, resulting in captions that misclassify
target objects. In contrast, the superior CIDEr scores of AVLF indicate that our adaptive
fusion mechanism successfully aligns the semantic manifold of the target domain with the
linguistic representations learned from the source, thereby generating captions that are
not only grammatically correct but also semantically faithful to the target image content.

5.2. Impact of Shot Count on Convergence

A critical requirement for few-shot learning in remote sensing is sample efficiency.
We analyzed the performance of our model under varying sizes of the support set,
denoted as K, where K € {1,5, 10, 20}. The progression of CIDEr scores relative to the
number of shots is detailed in Table 2 [10].

Table 2. Impact of Shot Count (K-Shot).

Shots Baseline Meta-VLM AVLF (Ours)
1-shot 0.21 0.45 1-shot
3-shot 0.35 0.62 3-shot
5-shot 0.58 0.88 5-shot
10-shot 0.72 0.95 10-shot
20-shot 0.85 1.02 20-shot

The results demonstrate distinct convergence behaviors between our method and the
baselines. As shown in Table 2, the AVLF framework exhibits rapid convergence, reaching
a performance plateau at K=5 with a CIDEr score of 1.09. In comparison, the Meta-VLM
baseline requires K=20 samples to achieve a comparable metric of 0.91. This rapid
adaptation is theoretically justified by our feature fusion module, which acts as a semantic
regularizer. By leveraging the prior knowledge embedded in the vision-language
interface, the model requires fewer gradient updates to adjust the decision boundary for
the target domain.

Mathematically, if we denote the generalization error as €(K), our empirical results
suggest that

€avir (5) =Eypra—VLM(20)

This implies a four-fold reduction in the annotation burden required to deploy the
model in a new geographic region, a significant advantage for operational remote sensing
where expert annotation is costly and time-consuming.

5.3. Generalization to Unseen Classes

To further test the robustness of the learned representations, we evaluated the
model's performance on "unseen classes"-categories that were present in the target
domain but absent from the source domain training set (e.g., "stadium" or "airport"). This
setup tests the Generalized Zero-Shot (GZS) capabilities inherent in the vision-language
alignment. The performance breakdown for unseen classes is summarized in Table 3.
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Table 3. Unseen Class Generalization.

Class Type Baseline CIDEr AVLF CIDEr
Seen Classes Seen Classes Seen Classes
Similar Classes Similar Classes Similar Classes
Unseen Classes Unseen Classes Unseen Classes

The disparity between AVLF and the baselines is most pronounced in this setting.
Table 3 indicates that our model retains a CIDEr score of 0.84 on unseen classes, whereas
the baseline performance collapses to 0.32. This drastic drop in the baseline performance
suggests catastrophic forgetting and an inability to decouple visual features from class
labels. The baseline methods rely heavily on memorizing class-specific visual patterns.
Conversely, AVLF leverages the compositional nature of language. Even if the specific
class "stadium" was not seen, the model recognizes constituent elements such as "large
structure,” "grass," and "concrete," and successfully synthesizes a descriptive caption. The
high METEOR score of 0.31 (compared to 0.12 for the baseline) confirms that our
generated captions maintain high semantic alignment with ground truth references, even
for novel object categories.

5.4. Computational Efficiency and Latency

While accuracy is paramount, operational deployment requires computational
efficiency. We conducted an inference latency analysis, measuring the average processing
time per image on an NVIDIA A100 GPU. The results, including parameter counts and
Floating Point Operations (FLOPs), are listed in Table 4.

Table 4. Computational Efficiency.

Method Inference Time (ms) CIDEr
Baseline Baseline Baseline
ProtoNet ProtoNet ProtoNet
Transformer-L Transformer-L Transformer-L
AVLF (Ours) AVLF (Ours) AVLF (Ours)

Despite the addition of the adaptive fusion mechanism, Table 4 shows that the
computational overhead is negligible. The AVLF model introduces an additional latency
of only 6ms per image compared to the backbone baseline:

Tayr = 42ms vs. Tguee = 36ms

This marginal increase is due to the efficient design of the gating mechanism, which
consists primarily of lightweight linear projections and element-wise operations. The total
parameter increase is less than 3%, ensuring that the model remains viable for near real-
time processing pipelines. The trade-off between the substantial gain in CIDEr (+0.24) and
the minimal latency cost (+6ms) validates the architectural efficiency of our approach.

5.5. Analysis of Feature Space Distribution

To verify the effectiveness of the domain adaptation strategy at the feature level, we
visualized the high-dimensional feature embeddings of the vision encoder before and
after the adaptive fusion process. We employed t-Distributed Stochastic Neighbor
Embedding (t-SNE) to project the features into a 2D space. The resulting visualizations
are presented in Figure 4.
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Figure 4. Trade-off analysis between Inference Time and Accuracy.

Figure 4 displays the feature distribution of the baseline model, where the source
domain (blue points) and target domain (red points) form distinct, non-overlapping
clusters. This separation indicates a large Maximum Mean Discrepancy (MMD),
explaining the poor transfer performance discussed in Section 5.1. In contrast, Figure 4
illustrates the feature space after AVLF adaptation. Here, the clusters for the source and
target domains significantly overlap, particularly for semantically similar classes. For
instance, the clusters representing "commercial area" in both UCM and Sydney datasets
are aligned closely in the shared latent space. This visual evidence confirms that the
adaptive fusion mechanism successfully mitigates the domain shift, forcing the encoder
to learn domain-invariant representations that align with the linguistic embeddings.

5.6. Qualitative Results and Attention Visualization

Finally, to provide interpretability for the quantitative improvements, we examine
the generated captions and their corresponding attention maps. Figure 5 displays the
attention weights overlaying the input satellite imagery during the generation of specific
words.

1.27

0.9+
0.6+
0.3+

0

Base Model (No Fusion)  Base + Static Fusion Base + Adaptive Gate  AVLF (Gate + Reg Loss)

W score

Figure 5. Analyzing the contribution of the Adaptive Gate.

The qualitative examples in Figure 5 demonstrate the model's ability to attend to fine-
grained details. In the second row, depicting a "dense residential" area, the baseline model
(Meta-VLM) produces the caption "a storage tank near a road," likely hallucinating based
on the road geometry and failing to recognize the housing texture. Its attention map is
diffuse and focuses irrelevantly on the pavement. Conversely, the AVLF model generates
the caption "many buildings are arranged closely in a dense residential area." Crucially,
the attention heatmap for the word "buildings" in Figure 5 is sharply focused on the
rooftops of the structures, while the heatmap for "closely” attends to the interstices
between them. This precise attentional focus confirms that the model is not merely
hallucinating captions based on global scene statistics but is actively grounding linguistic
tokens in the relevant visual regions of the remote sensing imagery.
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6. Discussion and Ablation Studies

In this section, we provide a rigorous analysis of the proposed Adaptive Vision-
Language Feature Fusion (AVLF) framework. We isolate specific modules to validate their
theoretical contributions to the few-shot captioning performance and discuss the
limitations encountered during cross-region inference.

6.1. Effect of Adaptive Fusion

The core contribution of our architecture lies in the ability to dynamically recalibrate
the contribution of visual and linguistic features based on image complexity. Unlike static
fusion mechanisms, which employ fixed learnable scalars or simple concatenation, our
Adaptive Gate functions as a content-aware throttle.

Theoretically, the fused feature vector hgyg.q is derived via a calculated gating
coefficient o

hfused = (xOf,,‘l‘(l—a) Ofi

Where f, and f; represent the visual and language feature embeddings,
respectively. The coefficient « is generated by a sigmoid-activated perceptron layer,
allowing the model to prioritize visual evidence when the semantic context is ambiguous,
or language priors when the visual data is noisy.

To quantify this benefit, we conducted an ablation study comparing our adaptive
approach against a baseline employing static concatenation (where a\alphaa is
effectively fixed). As presented in Table 5, the inclusion of the Adaptive Gate yields a
substantial performance gain. Specifically, the model achieves a +0.12 increase in the
CIDEr score compared to the static fusion baseline. This metric improvement suggests
that the adaptive mechanism successfully mitigates the "semantic gap" inherent in remote
sensing imagery, where the scale and orientation of objects (e.g., "dense residential area"
vs. "sparse industrial zone") vary significantly across regions. The static model struggles
to generalize these variances, whereas the adaptive fusion allows the decoder to shift its
attention distribution dynamically.

Table 5. Ablation Study of Components.

Configuration CIDEr Score Param Count (M)
Base Model (No Fusion) Base Model (No Fusion) Base Model (No Fusion)
Base + Static Fusion Base + Static Fusion Base + Static Fusion
Base + Adaptive Gate Base + Adaptive Gate Base + Adaptive Gate

AVLF (Gate + Reg Loss) AVLF (Gate + Reg Loss) AVLF (Gate + Reg Loss)

6.2. Effect of Domain Regularization

We further investigate the impact of the auxiliary Domain Regularization loss
Lgom on the training stability and generalization capability. The total objective function is
formulated as a weighted sum of the captioning cross-entropy loss (L.;,) and the domain
invariance term:

Leotar = Leap + ALaom

Where Aacts as a hyperparameter balancing task-specific accuracy and domain
invariance. Without this regularization (i.e.,A=0), the feature encoder tends to overfit the
spectral characteristics of the source region (Region A), resulting in a feature manifold
that is disjoint from the target region (Region B).

Our experiments indicate that excluding the auxiliary loss results in a degradation of
performance on unseen classes. By enforcing domain invariance, Lg,,, penalizes feature
distributions that contain region-specific metadata (such as background soil color or
illumination angle) that are irrelevant to the semantic content. This constraint forces the
encoder to learn robust, high-level representations that persist across geographical shifts,
thereby facilitating effective few-shot transfer.
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6.3. Limitations

Despite the robustness of the proposed method, failure cases persist under extreme
atmospheric conditions. The most notable limitation is observed in images containing
heavy fog or dense cloud cover. Remote sensing image captioning relies heavily on high-
frequency texture information to distinguish between semantically similar classes, such
as "meadow" and "golf course."

Heavy fog acts as a low-pass filter, suppressing these textural details and reducing
the signal-to-noise ratio of the visual embeddings f,. In these scenarios, the Adaptive
Gate tends to over-rely on the language prior f;, leading to hallucinations where the
model generates plausible but factually incorrect captions based on training set
correlations rather than visual evidence. Future work will address this by integrating a
dehazing preprocessing module into the pipeline to recover high-frequency spatial details
before feature extraction.

7. Conclusion

In this work, we presented the Adaptive Vision-Language Feature Fusion (AVLF)
framework, a robust solution for the persistent challenge of domain shifts in few-shot
remote sensing image captioning. By systematically aligning visual representations with
linguistic embeddings, our approach successfully mitigates the discrepancies caused by
varying atmospheric conditions and sensor characteristics.

The quantitative evaluations establish that AVLF significantly outperforms state-of-
the-art meta-learning baselines across diverse geographic datasets (Table 1). Notably, the
model exhibits high resilience in data-scarce scenarios, maintaining semantic consistency
even when the support set size KKK is drastically reduced (Table 2). Furthermore, the
capability to generate accurate descriptions for previously unseen categories validates the
generalizability of our feature alignment strategy (Table 3).

From an operational perspective, the framework achieves these accuracy gains while
maintaining computational efficiency suitable for large-scale deployment (Table 4).
Qualitative analysis reinforces these findings: the feature manifold visualizations
demonstrate that AVLF effectively minimizes intraclass variance (Figure 4), while the
generated attention maps confirm that the model correctly grounds linguistic tokens to
salient geospatial objects (Figure 5). The ablation studies isolate the adaptive gating
mechanism as the primary driver of this performance, proving its necessity in modulating
feature flow (Table 5).

Theoretically, our results suggest that adaptive multimodal fusion minimizes the
distributional divergence:

mgin Ewn~p[Lee(G(v,1;60),¥)]

where the alignment of vision v and language [ priors reduces the need for
massive retraining.

Future research will extend this paradigm to multi-temporal captioning, leveraging
time-series data to generate dynamic descriptions of land-cover evolution.
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