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Abstract: With the continuous expansion of electronic payment systems and the rapid evolution of 

sophisticated cyber-attack methodologies, traditional security measures are increasingly finding it 

difficult to address the multifaceted risk challenges of the modern era. Leveraging the high-

dimensional feature extraction and adaptive learning characteristics of artificial intelligence, this 

paper establishes a comprehensive AI-driven payment security and privacy protection framework. 

In terms of system security, the proposed architecture utilizes a residual attention mechanism for 

precise anomaly detection, while incorporating graph neural networks to analyze and cluster 

complex account relationship topologies. Furthermore, reinforcement learning is integrated to 

dynamically adjust risk control strategies in real-time, facilitating the construction of a collaborative 

defense system through the fusion of multi-source information. Regarding data privacy and 

integrity, the system adopts homomorphic encryption to enable complex model operations within 

an encrypted state, which is further combined with blockchain technology to ensure the rigorous 

traceability and immutability of the entire data flow. The implementation of this integrated 

technological architecture significantly enhances the intelligent defense capabilities of payment 

systems, providing a robust and scalable solution for safeguarding digital transactions and sensitive 

information in high-risk environments. This research not only offers a theoretical advancement in 

payment security but also provides a practical implementation roadmap for developing next-

generation resilient financial information systems. 
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1. Introduction 

In the contemporary financial landscape, the rapid proliferation of diverse electronic 

payment systems and the continuous expansion of online transaction environments have 
led to an increasingly sophisticated array of adversarial attack methodologies. Traditional 
security frameworks, which primarily rely on static rule-based strategies and single-

dimensional authentication methods such as conventional password protection, are 
becoming increasingly inadequate. These legacy systems struggle to meet the modern 

imperatives of high recognition accuracy, rapid detection speed, and robust model 
adaptability required to counteract evolving fraudulent behaviors. Consequently, the 
integration of advanced artificial intelligence (AI) technologies into security modeling has 

emerged as a transformative necessity. AI-driven approaches offer significant advantages 
in real-time threat detection, multi-dimensional risk evaluation, and the implementation 

of flexible policy-switching mechanisms, effectively serving as a primary driver in the 
construction of next-generation intelligent payment security systems. 

Furthermore, the synergy between artificial intelligence and cutting-edge privacy-

preserving technologies enables comprehensive protection across all stages of the data 
lifecycle, including collection, transmission, storage, and processing. By leveraging these 
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technologies, financial institutions can better safeguard sensitive information while 
maintaining operational efficiency. This article provides an in-depth study of the 

application of AI in enhancing the security of payment systems and fortifying user privacy 
protection. It elaborates on relevant architectural models and algorithmic strategies in 

detail, exploring the mechanisms behind intelligent anomaly detection and data 
encryption. Finally, the paper offers practical suggestions and a technical roadmap for the 
deployment of these systems, providing a solid theoretical and technical foundation for 

the sustainable and secure development of the digital payment ecosystem. 

2. Advantages of AI Technology 

Artificial intelligence technology has high adaptability and practicality in payment 

systems, and its core advantages are reflected in its ability to process complex data 
structures and construct dynamic models. The advantages of AI technology are shown in 
Figure 1. 

 

Figure 1. Advantages of AI Technology. 

Firstly, AI is capable of effectively parsing unstructured data, making it suitable for 

processing various types of data such as language, images, sequences, etc. Based on deep 
neural networks, the system can autonomously process massive volumes of transaction 
data, extract key features, and detect abnormal trends beyond human perception. 

Secondly, AI models have self-learning and continuous updating capabilities. Unlike 
fixed rule sets, it is possible to iterate its own parameters through past data to quickly 

adapt to new types of attacks and build a dynamic risk identification loop [1]. Thirdly, AI 
offers high timeliness and responsiveness. Through distributed computing architecture 
and model acceleration technology, AI algorithms can complete transaction behavior 

recognition and classification at the millisecond level, fully meeting the requirements of 
high-frequency trading environments. Lastly, AI can support edge computing and 

distributed deployment, providing flexible computing resources and risk isolation 
capabilities for large-scale, remotely deployed payment systems. 
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3. Path to Enhancing the Security of AI Driven Payment Systems 

3.1. Residual Attention Recognition of Abnormal Behavior 

In payment systems, numerous transactions are generated in chronological order, 
with large volumes of data and diverse types. Normal and abnormal operations usually 

have high similarity in nature, making them difficult to distinguish. By introducing 
residual neural networks and attention mechanisms to achieve deep discrimination, the 
model's ability to identify abnormal operations is improved. 

In the process of model construction, transaction activities arranged in chronological 
order are used as inputs, and convolutional layers extracts features from the raw data to 

obtain a preliminary encoded representation. Several residual modules, which are 
composed of two or more linear transformation stacks, are then added. Identity mapping 
is introduced to achieve hierarchical connectivity and prevent gradient vanishing in 

deeper neural network learning. On the basis of the above, an attention module is 
introduced, which can change in real-time to adapt to new recognition environments. For 

example, in detecting a specific type of abnormal transaction, changes in device 
fingerprint may be more discriminative than changes in transaction amount, prompting 
the model to adaptively allocate g attention weights to device characteristics. The 

calculation of attention weights is based on the mapping and normalization of embedded 
features, and the entire process can be briefly expressed using the following formula: 

Output = Attention(𝑋) + 𝑋          (1) 
Among them, X is the original feature output by the residual module, and Attention 

(X) represents the weighted result of the attention mechanism on it. This structure retains 
the information of the original feature structure while enhancing the influence of key 
dimensions, ultimately improving the model's ability to recognize minor and sudden 

abnormal behaviors. 

3.2. Graph Neural Network Clustering Account Relationships 

The interaction relationship between accounts in payment system can be represented 
as a heterogeneous graph structure. In this approach, a GNN based clustering method is 

used to cluster the account risk structure, which includes three core steps. 
Firstly, construct an account behavior graph. Using the account as the central node, 

transaction behavior, shared devices, and similar login methods as edges, to define a 
multi-dimensional associated graphical topology structure [2]. Each node has basic 
attributes such as transaction volume, device number change rate, IP displacement 

amplitude, etc. A feature matrix X and adjacency matrix A are constructed as data inputs 
for the next graph neural operation. 

Secondly, perform graph convolution to embed features. Based on graph 
convolutional network (GCN) for node embedding calculation, the joint modeling of 
structure and attributes is achieved through weighted aggregation of neighboring node 

features. Each layer of GCN can be embedded and updated through the following 
definition: 

ℎ𝑢 =
1

|𝒩(𝑢)|
∑ ℎ𝑣𝑣∈𝒩(𝑢)            (2) 

Among them, hu represents the output embedding of the target node, and 𝒩(u) 

represents its set of adjacent nodes. Through multiple iterations, each account node 
embeds its neighborhood structure and semantic information. 

Thirdly, conduct vector space clustering analysis. After embedding the nodes, 

unsupervised clustering methods such as K-means are used to group accounts in the 
embedding space, and accounts with similar transaction patterns are automatically 

clustered into similar categories. 
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3.3. Reinforcement Learning Optimization of Risk Control Strategies 

The core of risk control strategy lies in making real-time decisions on continuous 
trading behavior, reducing interference with users while avoiding risks. By utilizing 

reinforcement learning, an intelligent agent can be constructed to continuously learn 
optimal strategies through interactions with the environment, achieving flexible and 

contextualized risk control. This method is based on the ternary structure of state action 
reward, and simulates strategy functions through deep neural networks to optimize risk 
control operations in complex trading environments [3]. 

This system takes each transaction as a state model and has characteristic attributes 
such as transaction quantity, machine number, IP address, and user behavior trajectory. 

As a risk management system, intelligent agents generate corresponding actions based on 
the current situation, such as "allow", "refuse", or "require secondary verification". The 
results of these actions trigger system feedback, such as analyzing whether the transaction 

is a scam. Subsequently, the agent updates its policy function to make it more inclined to 
choose the optimal action when encountering similar states in the future. 

The entire learning process uses the Q-learning algorithm to update the state action 
value function Q (s, a), with the following update rules: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ⋅ (𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 (𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))     (3) 

Among them, 𝛼 is the learning rate, 𝛾 is the discount factor, and the proxy model 

is repeatedly trained based on this formula to optimize the strategy. 
In practical applications, Q-values can be fitted through deep neural networks, which 

have the ability to handle complex state spaces. The system can dynamically adjust the 

reward function through the risk scoring function to better meet the needs of enterprise 
risk control. 

3.4. Multi-Modal Fusion Construction of Linked Defense 

Single mode data (such as simple transaction behavior or equipment feature 

information) cannot provide a comprehensive risk score, so it is necessary to construct the 
integrated models and joint defense decision-making across multiple categories of 

information through multiple fusion paths. Transaction behavior, device features, user 
profiles, geographic locations, and other data are classified and encoded, with feature 
registration and fusion performed using deep neural networks to construct a 

comprehensive defense mechanism with high consistency and robustness. 
The system performs embedded encoding on various modal data. Time 

convolutional layers are used to extract momentum features in trading behavior; Device 
features are mapped into feature vectors through a fully connected layer; User profiles are 
unified in dimension through mapping layers. All modal feature vectors can be generated 

into a unified representation through stacking, averaging, and attention weighting. 
This process can be expressed using the following concise fusion formula: 

𝑧 = 𝑤1𝑥1 +𝑤2𝑥2+. . .+𝑤𝑛𝑥𝑛          (4) 
Among them, 𝑥𝑖  is the feature embedding of the i-th modality, 𝑤𝑖  is its fusion 

weight, and z is the fused output vector. By using automatic learning to obtain the 
corresponding weight allocation of different modalities under different attack conditions, 
the network can focus on key modal information. 

The fused unified feature vector will be passed to the classification device or risk 
assessment unit to determine whether to implement joint defense measures, such as 

freezing account usage rights, sending mobile phone verification codes, or restricting 
high-risk actions. 
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4. AI Driven User Privacy Protection Mechanism 

4.1. Differential Privacy Protection 

The differential privacy mechanism can protect personal information privacy by 
adding a certain amount of random noise during data analysis or model output. For 

example, in payment systems, differential privacy control modules can be designed into 
model training or query servers to add perturbations to the output of highly sensitive 
fields such as behavior frequency, location information, and transaction amount. 

Assuming the analysis function is 𝑓(𝑥), calculate its global sensitivity 𝛥𝑓, which is 
the maximum difference between any two sets of data with only one record difference. 

Noise can be inserted into the obtained calculation results, and these noises originate from 
Laplace distribution, with parameters determined by sensitivity and confidentiality 
budget parameter ε. 

The core mechanism of differential privacy is expressed as follows: 

ℳ(𝑥) = 𝑓(𝑥) + Lap(
𝛥𝑓

𝜀
)          (5) 

Among them, ℳ(𝑥) is the final output result, 𝑓(𝑥) is the original analysis function 

result, 𝛥𝑓  is the function sensitivity, 𝜀  is the privacy budget for controlling the 
disturbance amplitude, and Lap represents the noise value sampled from the Laplace 

distribution. These privacy budget values can be applied to query interfaces, model 
outputs, training gradients, or count statistics to perturb the original output. 

4.2. Federated Learning Training 

By distributing the model training process to multiple local clients, the centralized 

transmission of massive data is avoided. The system sends the pre-prepared model to 
each terminal, and the terminal inputs its own data for multiple rounds of learning and 
adjustment to obtain updated parameters. After completing the learning process, each 

terminal uploads the difference in model weights to the server. The server then fuses and 
updates the model based on the weight values uploaded by each node, and sends the 

updated model back to the client for the next stage of learning. 
The training process can support switching between asynchronous or synchronous 

modes, based on device stability and network latency configuration. Under the 

synchronization mechanism, the server waits for all clients to complete training before 
summarizing; Under asynchronous mechanism, only the training results of a certain node 

need to be received and updated immediately. This system can filter out nodes that are 
currently being trained or have insufficient data. Expressed as follows: 

𝑤 = ∑
𝑛𝑖

𝑛

𝑁
𝑖=1 𝑤𝑖            (6) 

Among them, 𝑤𝑖 represents the model parameters trained by the i-th client, 𝑛𝑖 is 
the number of local samples for that client, and w is the global model parameters 

generated after aggregation. 
The training process of each client is managed by its own optimizer (such as SGD or 

Adam), and the aggregation process is centrally managed by the central node. The 
parameter transmission adopts encrypted channels, and the consistency of data is verified 
through the checksum and signature of the model. The system supports technologies such 

as terminal pruning and quantization compression to improve communication 
performance. 

4.3. Homomorphic Encryption Inference 

The model inference interface deployed in the payment system can be connected to 

a homomorphic encryption module, allowing users to perform feature extraction, model 
inference, and other operations on data without decrypting it. All encryption operations 

are completed in the terminal device. The server receives the encrypted data vector, 
performs simple calculation operations such as addition, subtraction, multiplication, and 
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division, and finally sends the encrypted result back to the terminal for decryption and 
output through the terminal device. 

In the model deployment architecture, homomorphic encoders have been pre-placed 
before the input layer to perform numerical conversion and encrypted mapping on all 

data items. The inference module on the server side is an equivalent network that supports 
homomorphic operations, often constructed by limiting activation functions or using 
addition and multiplication gates to compute graphs. In order to meet the homomorphic 

environment, the model structure needs to avoid linear high-order operations or perform 
linear approximation processing on them. Taking addition homomorphism as an example, 

the calculation process between encrypted vectors is as follows: 
𝐸(𝑎 + 𝑏) = 𝐸(𝑎)⊕ 𝐸(𝑏)          (7) 
Among them, 𝐸(𝑎) and 𝐸(𝑏) are the encrypted results of plaintext data a and b, 

respectively. ⊕ represents homomorphic addition operation, and the output is still in 
ciphertext form. This operation is completed in the ciphertext domain, consistent with 

plaintext addition, and satisfies reversibility. 
The encryption scheme adopted by the system includes various architectures such as 

Paillier, BFV, and CKKS, and the specific choice depends on the accuracy requirements 

and computational efficiency. The server side only retains the public key and does not 
have the ability to decrypt raw data or intermediate states. 

4.4. Blockchain Audit Tracking 

With the help of blockchain, it is possible to form an immutable access record of users' 
access information, enabling effective tracking of the use of personal privacy information 
in payment systems. The system records information such as data source identification, 

behavior type, and behavior results in the form of blockchain. Each record includes the 
timestamp of execution, the identity of the initiator, data source identification, behavior 

type, and result summary. 
The system is built on a blockchain architecture, with each participating node jointly 

maintaining a distributed ledger. Use consistency protocols to authenticate data uploaded 

to the blockchain, ensuring that all nodes can access this data instantly and that record 
cannot be deleted. The audit logic is controlled by smart contracts, which automatically 

verify access permissions and operational legality, reject unauthorized behavior, and 
record violation attempts. 

The record structure adopts a hash chain approach, where each new block contains 

the hash value of the previous block and the summary information of the current 
operation data. Its basic structure is as follows: 

𝑐 = 𝐻(𝐻𝑛−1‖𝐷𝑛)            (8) 
Among them, 𝐻𝑛 represents the hash value of the current block, 𝐻𝑛−1 is the hash 

value of the previous block, 𝐷𝑛 is the summary of the current data access operation, and 

‖ represents the concatenation operation. 
Table 1 shows that different mechanisms have constructed a comprehensive system 

including data input, model processing, result supervision, and log tracking in terms of 
functional division and implementation path. With the linkage and cooperation of 
security identification and privacy protection modules, intelligent protection and 

compliance control of the entire transaction process have been achieved. 

Table 1. Comparison of Functions and Deployment Locations of Various AI Mechanisms in 
Payment Systems. 

Module name function 
Deployment 

location 

The required model 

type 

Residual attention 

recognition 

Detection of abnormal 

trading behavior 

Risk control front-

end model 

Deep convolution + 

attention network 
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Graph neural 

network clustering 

Account relationship 

modeling and gang 

identification 

Account behavior 

graph analysis 

layer 

Multi-layer graph 

convolutional network 

Strengthen learning 

risk control 

strategies 

Action decision and 

risk control 

Real-time strategic 

decision level 
Q-learning/DQN 

Multimodal fusion 

recognition 

Joint linkage judgment 

and behavior 

understanding 

Core analysis 

module of risk 

control engine 

Multi-input deep 

fusion model 

Differential privacy 

disturbance 
Output protection 

Model output and 

query interface 
Noise injectors 

Federal learning 

training 

Model is updated 

locally 

Client and edge 

devices 

SGD/Adam 

optimization model 

Homomorphic 

encryption 

reasoning 

Cryptography 
Server-side 

inference engine 
Paillier/BFV/CKKS 

Blockchain audit 

tracking 

Operation records are 

traceable 

Data access control 

and audit links 

Hash chain + smart 

contract system 

5. Conclusion 

The security and privacy control of the payment system is transitioning from a single 
technology application to a global collaborative approach. In the overall design, each 

functional unit is constructed based on the functional principles of division of 
responsibilities and closed-loop information flow. Anomaly recognition relies on the 

combination of residual networks and attention mechanisms; Account clustering employs 
graph neural networks for multidimensional correlation analysis; The risk control 
strategy utilizes reinforcement learning to achieve optimal action generation; Multimodal 

fusion promotes the structural unity and collaborative judgment of multi-source data. In 
the privacy protection process, four technologies including noise injection, joint modeling, 

encrypted inference, and traceability verification cover the entire process of data 
publishing, model training, and inference, forming an end-to-end protection system. This 
design emphasizes the practicality of algorithms, the quantifiability of indicators, and the 

traceability of processes, ensuring flexible deployment and stable operation in diverse 
trading scenarios, and meeting the technical requirements of a system that combines 

dynamic risk control and data protection. 
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