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Abstract: The dynamic, evolving, and inherently non-stationary characteristics of modern network 
environments present a fundamental challenge to traditional intrusion detection systems that rely 
on static learning paradigms. As network traffic patterns, system usage behaviors, and threat 
manifestations continuously change over time, the statistical properties underlying detection data 
are prone to both explicit and implicit variations, commonly described as concept drift. Such drift 
leads to a gradual mismatch between previously learned models and current data distributions, 
resulting in performance degradation, delayed responses, and reduced practical effectiveness of 
fixed detection mechanisms. To address these limitations and support the construction of an 
intelligent defense system with long-term adaptability, this study conducts a systematic theoretical 
investigation into dynamic intrusion detection from the perspective of learning evolution. On this 
basis, a unified framework is proposed that tightly integrates concept drift detection mechanisms 
with incremental learning strategies, enabling models to identify distributional changes in a timely 
manner and update their knowledge without retraining from scratch. The framework emphasizes 
continuity, stability, and adaptability, aiming to balance detection accuracy with computational 
efficiency under continuously changing conditions. By clarifying the internal relationship between 
drift detection and incremental model updating, this work provides a structured theoretical 
foundation for the development of adaptive intrusion detection systems capable of maintaining 
robust performance in complex and evolving network scenarios. 
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1. Research Background 
Presently, information networks have become the core infrastructure underpinning 

societal operations, with their security and stability being of paramount importance. The 
security landscape within cyberspace is exhibiting increasingly severe complexity and 
dynamism. Attack techniques continually evolve, progressing from large-scale scanning 
and exploitation of known vulnerabilities to highly customized advanced persistent 
threats and covert attacks leveraging artificial intelligence. Concurrently, the network 
environment itself undergoes constant transformation due to the deployment of new 
services, equipment upgrades, and shifts in user behavior patterns. This dual dynamic 
evolution of attack methods and network environments gives rise to a fundamental issue: 
the concepts underlying network traffic data are not static but undergo drift over time [1]. 

Against this backdrop, traditional intrusion detection systems based on static 
learning paradigms face a fundamental theoretical dilemma. Data during training and 
deployment phases are assumed to follow identical probability distributions. However, 
the reality of concept drift utterly undermines this assumption. Over time, static models 
gradually become obsolete, their discriminative capabilities steadily deteriorating. This 
forces security administrators to periodically collect fresh data, retrain, and redeploy 
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models - a resource-intensive process with inherent latency that proves cumbersome and 
inefficient against rapidly evolving threats. 

Concept drift detection and incremental learning, as two key technological directions, 
each offer partial solutions. Concept drift detection aims to identify moments of 
significant shift in data distribution by monitoring data streams or model performance, 
its core value lying in providing awareness of when change occurs. Incremental learning 
focuses on how models can continuously learn new knowledge from incoming data 
without forgetting existing knowledge, its core value being the provision of adaptive 
updating capabilities. Consequently, constructing a dynamic intrusion detection system 
framework that deeply integrates concept drift detection and incremental learning 
theories holds urgent theoretical significance and practical value. Thoroughly exploring 
the theoretical foundations, coupling mechanisms, and coordination strategies for their 
fusion is not only the inevitable path to overcoming the limitations of current static 
detection models but also the key to enabling intelligent security systems to possess 
sustainable evolutionary capabilities. This lays a solid theoretical foundation for building 
a genuine cyber defense system. 
2. Theoretical Overview 
2.1. Theoretical Framework for Concept Drift Detection 

Within the context of network intrusion detection, the core objective of the theoretical 
framework for concept drift detection lies in constructing a mathematical and 
computational framework capable of automatically identifying fundamental shifts in data 
generation mechanisms [2]. This approach does not merely monitor fluctuations in 
network traffic metrics, but rather seeks to discern the underlying rules driving traffic 
generation. 

Fundamentally, concept drift detection theory follows two parallel logical pathways. 
The first involves direct monitoring based on data distribution. This approach assumes 
that during conceptually stable periods, observed network traffic characteristics or their 
latent representations fluctuate around a stable statistical distribution. A significant 
deviation from this underlying distribution signals potential new attack patterns or 
alterations in normal network behavior. The second approach involves indirect inference 
based on model performance. This theory employs the detection model itself as a probe, 
continuously evaluating its classification performance on the latest data. A sustained 
decline in model performance, particularly abrupt deterioration in specific categories, is 
regarded as compelling evidence of concept drift. This indicates that the decision 
boundaries relied upon by the model are no longer applicable to the current environment. 

Statistical process control theory treats data streams or model error rates as time-
varying sequences. By employing tools such as control charts, it establishes confidence 
intervals or control limits. Should the cumulative deviation or instantaneous value of the 
sequence exceed predefined theoretical thresholds, a drift alert is triggered. Its advantages 
lie in its formal simplicity and computational efficiency, rendering it particularly suited 
for detecting sudden, abrupt shifts-such as the abrupt emergence of novel attacks within 
a network [3]. 

Hypothesis testing formalizes drift detection as a rigorous statistical hypothesis 
testing problem. Its core involves constructing two data windows and proposing a null 
hypothesis that both windows originate from the same distribution. By calculating 
statistics such as the Kolmogorov-Smirnov test, chi-squared test, or distance-based 
metrics, it assesses the confidence level for rejecting the null hypothesis, thereby 
conferring statistical interpretability upon detection outcomes. 

Ensemble difference metric theory employs machine learning models themselves as 
sensors for distributional divergence. A typical approach involves using two or more 
learners to monitor performance differences between reference and new data, or directly 
training a classifier to distinguish between old and new data. The discriminative 
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capability of this classifier reflects the degree of distributional divergence between the two 
datasets, enabling capture of nonlinear changes in high-dimensional, complex feature 
spaces and demonstrating good sensitivity to gradual drift. 

2.2. Theoretical Framework of Incremental Learning 
From a formal definition perspective, incremental learning addresses an infinite or 

extremely lengthy data sequence. Upon receiving a new data batch at each time step, the 
model must complete its update immediately or within a finite timeframe, preparing to 
process the subsequent batch. Consequently, the core of incremental learning theory lies 
in investigating how to achieve efficient and stable knowledge accumulation under 
conditions where partial historical information is either missing or irreproducible [4]. 

The core theoretical challenge confronting this framework is the stability-plasticity 
dilemma. Stability denotes a model's capacity to retain acquired knowledge, while 
plasticity signifies its ability to adapt to new information. Excessive stability leads to 
rigidity, rendering the model incapable of learning emerging attack patterns; conversely, 
excessive plasticity induces forgetting, causing previously identified attacks to be 
misclassified as normal. 

Consequently, incremental learning theory has developed several core solution 
paradigms. Firstly, regularization-based approaches impose constraints on parameter 
updates by introducing additional regularization terms into the loss function. Their 
theoretical core lies in identifying and preserving parameters crucial for old tasks. 
Secondly, dynamic architecture-based approaches permit the model's structure to expand 
or adjust as new tasks or knowledge emerge. 

Thirdly, replay-based approaches. Systems maintain a finite-capacity memory buffer 
storing representative samples of past data or their features. When learning new data, 
samples from this buffer are mixed with fresh data for training, periodically replaying 
historical patterns. 

3. Theoretical Modelling of Framework Components for Dynamic Intrusion Detection 
3.1. Formalization of Intrusion Detection Problems in Dynamic Environments 

The theoretical modelling of traditional intrusion detection systems rests upon an 
idealized assumption that the world is static. At a specific point in time, sufficient network 
traffic data is collected to represent all future possible scenarios, from which a fixed, 
optimal discrimination rule is learned. Once established, these rules are deployed as static 
filters, expected to remain effective indefinitely. Consequently, the primary task in 
formalizing intrusion detection for dynamic environments is to abandon the assumption 
of a static, closed world entirely, instead acknowledging and embracing the reality of a 
dynamic, open world. Within this new theoretical paradigm, intrusion detection ceases to 
be a mathematical optimization problem solvable in a single instance, becoming instead a 
continuous, never-ending process of adaptation. 

Attack patterns exhibit non-stationarity. Novel attack vectors emerge from 
unforeseen directions, while established methods undergo camouflage and 
metamorphosis to evade detection. The set of anomalies or attack categories a system 
must recognize is not a static catalogue, but a dynamic collection where new members 
continually emerge and old ones may reappear in disguised forms. Natural drift in normal 
behavior baselines corresponds to deliberate alterations by attackers. The protected 
network environment itself undergoes legitimate, organic evolution. Deploying new 
applications, updating software versions, shifting user behavior patterns, and even 
adjusting network architecture all cause gradual yet persistent changes in the statistical 
characteristics of legitimate traffic. 
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3.2. Constructing Models for Network Flow Characteristics 
The high-dimensionality, strong correlations, and extreme imbalance inherent in 

network flow data present the primary theoretical challenge for drift detection. The 
feature space dimensions of network connections or flow records are typically extremely 
high, with complex nonlinear dependencies between features. More critically, the volume 
of normal traffic differs by several orders of magnitude from that of attack traffic. This 
extreme class imbalance renders drift detection methods based on global statistics highly 
susceptible to failure. Subtle distributional shifts occurring only in a minority of attack 
samples are drowned out by the dominant signal of normal traffic, leading to detection 
delays or complete false negatives. Consequently, theoretical models must possess the 
capability to capture the evolution of microscopic anomaly patterns within the macrocosm 
of data flow, maintaining sensitivity unaffected by the scarcity of a class. 

Moreover, the patterns of concept drift within network environments exhibit unique 
complexity and adversarial properties, demanding detection models that transcend mere 
identification of simple distribution shifts. The dynamism of cybersecurity stems not only 
from the natural evolution of technology but also from the ongoing strategic interplay 
between attackers and defenders. To evade detection, attackers deliberately execute 
evasive attacks, causing the traffic patterns they generate to drift slowly and purposefully 
from known anomaly zones towards normal regions. 

Adversarial concept drift and benign concept drift arising from business updates 
may appear similar superficially, yet their nature is fundamentally distinct. The former 
constitutes deliberate, targeted evasion by attackers, aimed at progressively blurring 
classification boundaries; the latter represents spontaneous, purposeless evolution of the 
environment. Consequently, theoretical models must not only detect changes but also 
possess the preliminary capability to distinguish the 'intent' behind them. This 
differentiation is crucial for subsequent adaptive decision-making: Malicious drift 
necessitates decisive, reinforced learning to fortify defenses; benign drift may require 
more cautious, incremental adjustments to prevent the model from being disrupted by 
irrelevant noise. 

To address these dual challenges, constructing a robust theoretical model must 
adhere to core design principles of hierarchical decoupling and collaborative monitoring. 
It should be deconstructed into distinct layers and groups, each equipped with sensitive 
detection submodules. Specifically, the model should undergo collaborative modelling 
across at least three logical layers: 

First, at the macro-level, the model must monitor the statistical distribution of 
fundamental network traffic characteristics, such as the evolution of aggregate metrics 
including overall traffic volume, protocol-port distribution, and connection duration. This 
layer is sensitive to large-scale, global changes-such as traffic surges triggered by new 
service launches or alterations in connection request patterns caused by novel scanning 
tools. The theoretical basis lies in the fact that even if attack traffic constitutes a minor 
proportion, certain attacks (such as DDoS) or large-scale scans will still leave detectable 
anomalous perturbations in macro-level statistics. 

Second, at the micro-level, the model must delve into the internal structure of traffic, 
focusing on the distributional stability of specific behavioral clusters or potential 
subspaces. This requires leveraging online clustering, community detection, or 
representation learning techniques to dynamically partition traffic into groups exhibiting 
similar behavioral patterns. Drift detection then operates within each independent cluster-
for instance, monitoring the behavioral profile of a 'normal web server cluster' or tracking 
the evolutionary characteristics of an anomaly cluster like 'suspected C&C 
communications'. The core theoretical advantage of this approach lies in transforming a 
global, imbalanced detection problem into a series of locally balanced or at least more 
manageable subproblems. This significantly enhances the model's sensitivity to subtle 
variations in rare attack patterns. 
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Thirdly, at the correlation and sequence level, the model should transcend the 
assumption of independent and identically distributed events, focusing instead on the 
evolution of temporal dependencies and causal relationships between network incidents. 
The essence of an attack often manifests in anomalous patterns of interconnected events 
(such as a successful intrusion potentially encompassing correlated activities across 
multiple stages: scanning, exploitation, privilege escalation, and data exfiltration). 
Theoretical models require integration of monitoring for time series, graph structures, or 
state transition probabilities. For instance, monitoring changes in the probability of 
behavioral sequences from specific source IPs to target service ports may detect tactical 
adjustments by Advanced Persistent Threats (APTs) earlier than monitoring isolated 
connection characteristics. 

Finally, a comprehensive theoretical model necessitates a meta-evaluation and 
decision fusion layer. This layer receives and synthesizes output signals from detection 
submodules across the aforementioned tiers (potentially including 'macro-metric 
anomalies,' 'shifts within specific anomaly clusters,' or 'ruptures in critical correlation 
patterns'). It must determine whether these signals indicate a single fundamental 
conceptual drift event based on predefined rules or learned experience, while assessing 
their overall confidence level and threat severity. Through this multi-perspective, multi-
evidence fusion and validation, the system can more reliably trigger adaptive learning 
mechanisms while providing richer contextual information. For instance: 'Current 
changes primarily centre on the gradual expansion of normal operations within category 
X, accompanied by minor evasion signs of known attacks within category Y.' This guides 
the incremental learning module to adopt precisely matched, refined update strategies. 

3.3. Theoretical Modelling of Adaptive Coordination Mechanisms 
The theoretical modelling of adaptive coordination mechanisms aims to construct an 

intelligent dispatch centre endowed with decision-making and regulatory capabilities. By 
receiving raw perceptual signals regarding environmental changes from the drift 
detection module, it transforms these through analysis, fusion, and inference into a series 
of executable, measurable control commands. This precisely guides the incremental 
learning module to execute the model update strategy most suited to the current context. 
Generally, this process comprises three component steps. 

The Context Parsing and Drift Semantic Understanding component processes the 
multidimensional signals output by the drift detection module. Its theoretical function 
involves signal fusion and semantic enhancement, providing an initial qualitative 
characterization of the drift's nature, which serves as the primary basis for subsequent 
decision-making. 

The Strategy Mapping and Knowledge Base Management component serves as the 
coordinator's "decision-making brain". It stores mappings between different drift 
scenarios and their corresponding incremental learning strategy combinations. This 
mapping is not static but undergoes self-optimization through a meta-learning loop: the 
system evaluates the long-term effects after each strategy execution and adjusts the 
preference of the strategy mapping accordingly. This enables the coordination mechanism 
to learn from historical decisions, continuously refining the effectiveness of its scheduling 
strategies. 

The execution control and feedback loop component is responsible for translating 
decisions into specific control parameters, issuing them to the incremental learning 
module for execution, and establishing a tightly coupled feedback loop. It not only 
initiates the learning process but also monitors resource consumption and immediate 
effects during learning, intervening dynamically when necessary. Simultaneously, it feeds 
back the model's preliminary performance on new data following learning completion to 
the coordinator. This data is utilized to update the system state and evaluate the 
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effectiveness of the current decision, thereby completing a full perception-decision-
execution-evaluation adaptive cycle. 

The dynamic decision-making process further necessitates the deep integration of 
resource awareness with multi-objective optimization theory. In real-world deployments, 
computational power, memory, and response time are finite resources. A theoretically 
optimal update strategy may prove impracticable under resource constraints. 
Consequently, the coordinator's decision model must incorporate a resource-constrained 
optimizer. For instance, when multiple drift signals are detected concurrently amidst 
resource scarcity, the coordinator must priorities resource allocation by ranking each drift 
based on its threat level, confidence score, and potential impact on the system's overall 
security posture. This necessitates that the coordinator not only comprehends security but 
also understands the system's operational state, making real-time Pareto-optimal trade-
offs between objectives such as detection performance, response velocity, and resource 
efficiency. 

The theoretical completeness of adaptive coordination mechanisms is further 
demonstrated through their design for interpretability and intervenability. As an 
autonomous decision-making hub, its logic must not constitute a black box. Theoretical 
models should output rational explanations for their decisions, such as: 'Strategy Y was 
selected for rapid model reconstruction due to detecting high-confidence mutations in 
feature cluster X, coupled with sufficient current system memory.' This explainability is 
crucial for establishing security analysts' trust in the system, while also providing a clear 
interface for analysts to intervene manually when necessary (e.g., vetoing a high-risk 
update or injecting domain-specific prior knowledge). Through this hybrid human-
machine collaborative decision-making model, the system's autonomy is combined with 
human expertise and overall control capabilities, forming a more reliable and robust 
dynamic defense system. 

4. Conclusions 
This study systematically constructs a theoretical framework integrating concept 

drift detection with incremental learning to address core challenges in intrusion detection 
within dynamic network environments. The research first elucidates the intrinsic 
mechanism by which traditional static detection models fail due to concept drift, thereby 
demonstrating the necessity and superiority of deeply integrating environmental 
awareness (drift detection) with self-renewal (incremental learning). By establishing a 
closed-loop 'detection-adaptation' theoretical model, this study provides a comprehensive 
paradigm for enabling autonomous, continuous evolution in dynamic intrusion detection 
systems. 

Incremental learning, whilst designed for efficient updates, still requires its 
computational and storage overhead to be strictly constrained in resource-constrained 
edge devices or high-throughput backbone network environments. Furthermore, after 
months or even years of continuous evolution, a model's internal knowledge structure 
may become exceptionally complex, potentially giving rise to 'cognitive debt'. Designing 
lightweight algorithms and periodic knowledge distillation and reconstruction 
mechanisms to maintain model simplicity and efficiency without sacrificing accumulated 
discriminative capabilities presents a theoretical and practical challenge for ensuring 
long-term robust system operation. 

Traditional intrusion detection evaluations rely on static dataset partitioning and 
fixed performance metrics, which prove wholly inadequate for assessing dynamic 
adaptive systems. Future developments necessitate the establishment of dynamic 
benchmarking platforms capable of simulating concept drift, attack evolution, and shifts 
in normal behavior. These should employ metrics that better reflect long-term efficacy, 
such as cumulative detection gain, average adaptation recovery time, and forgetting rate, 
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to scientifically measure a system's intelligence and robustness throughout its entire 
lifecycle. 

The theoretical significance of this research lies in shifting the focus of intrusion 
detection studies from pursuing static optimal solutions towards constructing viable 
adaptive learning systems. It not only provides systematic theoretical tools for addressing 
concept drift but, more importantly, outlines a feasible theoretical blueprint for the 'meta-
learning' capability-the ability to 'learn how to learn'-that future intelligent security 
systems should possess. Future research may build upon this framework to further 
explore theoretical mechanisms for handling complex drift patterns such as periodic or 
context-dependent shifts, investigate theories for rapid adaptation to novel threats under 
sparse sample conditions, and strive to enhance the interpretability of the entire adaptive 
process. Ultimately, this will propel dynamic intrusion detection theory towards a more 
mature and comprehensive stage of development. 
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