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Abstract: In digital platforms, understanding and mitigating user churn is crucial for sustaining 
long-term engagement and revenue. Traditional machine learning approaches often rely on 
correlation-based predictive models without explicitly accounting for causal relationships 
underlying user behavior. This study proposes DeepSeqCaus, a unified deep sequential causal 
inference framework that integrates sequence modeling and treatment effect estimation to enable 
accurate churn prediction and optimal retention intervention policy generation. DeepSeqCaus 
consists of a dual-branch architecture: (1) a Temporal Feature Encoder using gated convolution and 
bidirectional gated recurrent networks to extract multi-granular temporal representations from 
behavioral sequences; and (2) a Causal Effect Estimator based on counterfactual representation 
learning to estimate heterogeneous treatment effects (HTEs) for candidate interventions such as 
personalized notifications, discount offers, or content recommendations. Using large-scale user 
interaction logs from an online service, we conduct extensive experiments comparing DeepSeqCaus 
with conventional predictive models and causal inference baselines. The results showed that 
DeepSeqCaus outperformed the baseline model in all cases. The proposed framework provides 
actionable insights for targeted retention and demonstrates strong potential for deployment in 
intelligent customer management systems. 
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1. Introduction 
User churn prediction and retention intervention optimization have become essential 

components of modern digital platform operations, especially for mobile applications, 
online games, and e-commerce services that rely heavily on sustained user engagement. 
As markets become increasingly saturated and user acquisition costs continue to rise, 
understanding how users behave over time and determining which intervention can 
effectively reduce churn have emerged as core challenges for data-driven decision-
making. Traditional churn prediction methods-typically based on static user profiles or 
summary features-fail to capture the temporal dynamics inherent in click sequences, 
interaction patterns, and behavioral trajectories. Moreover, many existing approaches 
focus purely on correlation-driven prediction without accounting for the causal effects of 
platform actions such as push notifications, discounts, or personalized recommendations, 
which often results in biased estimates and suboptimal intervention decisions. 

Recent advances in deep learning have demonstrated strong capabilities in modeling 
complex sequential data through architectures such as recurrent neural networks, 
temporal convolutional networks, and attention-based models. Meanwhile, causal 
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inference techniques have been increasingly applied to estimate heterogeneous treatment 
effects and guide optimal decision policies. Nonetheless, the integration of deep 
sequential modeling with causal estimation for user retention remains insufficiently 
explored. To address these limitations, this study proposes DeepSeqCaus, a unified deep 
sequential causal inference framework that jointly models user behavior sequences and 
intervention effects. DeepSeqCaus incorporates a multi-scale temporal encoder to capture 
fine-grained and long-range user activity patterns, and a counterfactual representation 
learning module that disentangles true intervention impacts from spurious correlations. 
By combining predictive modeling with causal effect estimation, the framework produces 
personalized, explainable retention strategies aimed at maximizing user survival 
probability. 

The main contributions of this study are summarized as follows: 
1) We propose DeepSeqCaus, the first unified framework that integrates deep 

sequential modeling with counterfactual causal inference for simultaneous 
churn prediction and personalized intervention optimization. 

2) We design a multi-scale temporal encoder and causal representation module 
that capture both behavioral dynamics and heterogeneous treatment effects in 
a principled manner. 

3) We introduce a policy-generation mechanism that leverages estimated causal 
effects to recommend optimal, interpretable intervention strategies for 
individual users. 

4) We conduct extensive experiments on large-scale real-world datasets, 
demonstrating that DeepSeqCaus significantly outperforms state-of-the-art 
baselines in prediction accuracy, treatment effect estimation, and retention 
uplift. 

Overall, this work highlights the importance of combining sequential deep learning 
and causal inference to build next-generation user retention systems that are not only 
accurate but also actionable and interpretable. 

2. Related Work 
In recent years, the rapid expansion of digital platforms and the availability of large-

scale user interaction logs have led to substantial research on user churn prediction, 
sequential user modeling, causal inference for decision-making, and uplift-based 
intervention optimization. This section reviews the major streams of literature most 
relevant to this study, including deep learning-based churn prediction, sequential 
behavior modeling, causal inference and counterfactual modeling, and individualized 
intervention and uplift estimation. These works collectively motivate the development of 
DeepSeqCaus, which integrates deep sequential representation learning with causal effect 
estimation for generating optimal user retention strategies. 

2.1. Deep Learning-Based User Churn Prediction 
Early research on churn prediction primarily relied on static, feature-based models 

such as logistic regression and decision trees, which overlooked temporal patterns in user 
behavior [1]. With the development of deep learning, sequence-aware approaches have 
been increasingly investigated, employing recurrent neural networks (RNNs) and long 
short-term memory networks (LSTMs) to capture the dynamics of user activity over time. 
For example, some studies have applied gated multilayer neural networks to model 
fluctuations in user activity within mobile applications, while others have integrated 
RNNs with attention mechanisms, demonstrating that incorporating temporal features 
substantially improves prediction accuracy [2]. More recent work has introduced models 
that combine convolutional, residual, squeeze-and-excitation, and attention blocks to 
enhance predictive performance; after addressing data imbalance using SMOTE-style 
techniques, these models outperform previous benchmarks [3]. 
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Despite these advances, existing approaches have concentrated on predictive 
accuracy and have largely neglected the causal effects of interventions, which limits their 
practical applicability for informing retention strategy optimization. 

2.2. Sequential User Behavior Modeling 
Beyond churn prediction, many studies have explored deep learning approaches for 

modeling user behavior trajectories in recommender systems, advertising, and social 
platforms. Models such as GRU4Rec, SASRec, and BERT4Rec leverage recurrent neural 
networks or self-attention architectures to capture long-range dependencies and semantic 
patterns in behavior sequences [4-6]. These methods achieve strong performance in next-
item prediction and user preference modeling. However, they primarily focus on 
representation learning and do not consider interventions or treatment effects. Although 
effective at extracting temporal and contextual information from clickstreams, these 
models provide limited support for decision-making related to policy or personalized 
interventions. This limitation underscores the need to integrate sequential learning with 
causal reasoning, as implemented in the proposed DeepSeqCaus framework. 

2.3. Causal Inference and Counterfactual Modeling 
Causal inference has become a crucial methodology for evaluating the effectiveness 

of interventions on online platforms. Techniques such as propensity score weighting and 
causal forests are widely applied to estimate heterogeneous treatment effects [7,8]. More 
recent deep causal models incorporate representation learning for counterfactual 
estimation, improving the generalization of treatment effect predictions [9]. Additional 
approaches apply variational inference to balance latent confounders and reduce bias in 
observational datasets [10]. Despite their effectiveness in estimating causal effects, most 
existing methods lack temporal modeling capabilities and cannot process sequential user 
data directly. The DeepSeqCaus framework addresses this limitation by embedding 
causal estimation within a temporal encoder capable of capturing rich sequential 
dynamics. 

2.4. Uplift Modeling and Personalized Intervention Optimization 
A parallel line of research focuses on uplift modeling, which predicts the incremental 

benefit of interventions. Foundational frameworks for individualized uplift prediction in 
marketing and user retention have been established [11,12]. Uplift methods have 
demonstrated effectiveness in targeted advertising and customer relationship 
management, yet they often rely on static features and lack the representational power of 
modern deep sequence models. Moreover, most uplift frameworks do not generate 
personalized strategies across multiple intervention options. The DeepSeqCaus 
framework addresses these gaps by combining sequential behavioral representations with 
counterfactual treatment effect estimation, enabling the identification of the optimal 
intervention for each user. 

3. Methodology 
This section presents the proposed DeepSeqCaus framework, which integrates deep 

sequential modeling with counterfactual causal inference to jointly (i) predict user churn 
and (ii) generate optimal, personalized retention interventions. DeepSeqCaus is designed 
to capture multiscale patterns in user behavior sequences, learn treatment-invariant 
representations, estimate heterogeneous treatment effects, and output intervention 
policies that maximize the expected reduction in churn (see Figure 1). 
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Figure 1. Structure diagram of model. 

3.1. Problem Definition and Notation 
Let a user's behavioral history over 𝑇𝑇 steps be denoted as a sequence 
X = {𝑥𝑥1,𝑥𝑥2, . . . , 𝑥𝑥𝑇𝑇}          (1) 
where each 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑑𝑑 represents multi-dimensional features, including clicks, dwell 

time, session length, interaction context, and engagement metrics. The platform may 
expose the user to a discrete intervention 𝐴𝐴 ∈ {0,1, . . . ,𝐾𝐾}, where 0 denotes no intervention. 
The observed outcome 𝑌𝑌 ∈ {0,1} indicates churn (1) or retention (0). 

For counterfactual modeling, we consider potential outcomes 
𝑌𝑌(𝑎𝑎),         𝑎𝑎 ∈ {0,1, . . . ,𝐾𝐾}        (2) 
and aim to estimate the individual treatment effect (ITE): 
τa(X) = E[Y(0) − Y(a)  ∣  X]         (3) 
which quantifies the expected reduction in churn caused by intervention 𝑎𝑎. 
Given the estimated ITEs, the optimal intervention is derived as 
a∗(X) = arg min

a
E[Y(a)  ∣  X]         (4) 

DeepSeqCaus provides a unified modeling architecture for learning sequential 
representations, estimating counterfactual outcomes, and generating optimal intervention 
recommendations. 

3.2. Multi-Scale Sequential Encoder 
User behavior contains short-term bursts, mid-term engagement cycles, and long-

term temporal drift. To model these dynamics, DeepSeqCaus employs a multi-scale 
sequential encoder consisting of gated temporal convolutions and bidirectional recurrent 
layers. 
1) Gated Temporal Convolution Layer 

The temporal convolution module captures local behavioral fluctuations through 
dilated convolutions: 

ℎ𝑡𝑡
(𝑐𝑐) = 𝜎𝜎(𝑊𝑊𝑓𝑓 ∗ 𝑥𝑥1: 𝑡𝑡)⊙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑔𝑔𝑥𝑥1: 𝑡𝑡)       (5) 

where the gating mechanism stabilizes feature extraction across varying activity 
levels. 
2) Bidirectional Recurrent Layer 

To capture long-range dependencies, we apply a bidirectional GRU: 
ℎ�⃗ 𝑡𝑡 = 𝐺𝐺𝐺𝐺𝐺𝐺(ℎ𝑡𝑡

(𝑐𝑐),ℎ�⃗ 𝑡𝑡−1),         ℎ⃖�𝑡𝑡 = 𝐺𝐺𝐺𝐺𝐺𝐺(ℎ𝑡𝑡
(𝑐𝑐), ℎ⃖�𝑡𝑡+1)     (6) 

The combined representation is 
ℎ𝑡𝑡 = [ℎ�⃗ 𝑡𝑡; ℎ⃖�𝑡𝑡]           (7) 
This hierarchical encoding ensures robustness to sparse events and provides 

contextual embeddings for causal representation learning. 
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3.3. Counterfactual Representation Learning 
Modeling causal effects requires isolating behavioral patterns that influence both 

intervention assignment and outcomes. DeepSeqCaus adopts an adversarial 
counterfactual representation module inspired by domain-invariant learning. 

Let 
𝑧𝑧 = 𝑓𝑓𝜃𝜃(𝑋𝑋)            (8) 
denote the latent representation generated from the encoder. To satisfy treatment-

invariant representation learning, we minimize the discrepancy of latent distributions 
across treatment groups: 

𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼(𝑝𝑝(𝑧𝑧 ∣  𝐴𝐴 = 𝑎𝑎),          𝑝𝑝(𝑧𝑧 ∣  𝐴𝐴 = 𝑏𝑏))    (9) 
where IPM refers to an integral probability metric such as MMD or Wasserstein 

distance. 
By reducing covariate imbalance, the model approximates the assumption: 
𝑌𝑌(𝑎𝑎) ⊥ 𝐴𝐴 ∣  𝑧𝑧           (10) 
enabling more reliable counterfactual estimation. 
Counterfactual Outcome Heads 
For each possible intervention 𝑎𝑎, we define separate outcome prediction heads: 
𝑌𝑌�(𝑎𝑎) = 𝑔𝑔𝑎𝑎(𝑧𝑧)           (11) 
The counterfactual loss is computed as 
𝐿𝐿𝑐𝑐𝑐𝑐 = ∑ ℓ (𝑌𝑌𝑖𝑖 ,𝑌𝑌�𝑖𝑖(𝐴𝐴𝑖𝑖))𝑖𝑖           (12) 
where ℓ denotes binary cross-entropy. 
This architecture allows DeepSeqCaus to model nonlinear treatment effects across 

diverse user behavior trajectories. 

3.4. Heterogeneous Treatment Effect Estimation and Policy Generation 
Given outcome predictions 𝑌𝑌�(𝑎𝑎)  for each intervention level, the heterogeneous 

treatment effect is estimated as 
𝜏̂𝜏𝑎𝑎 = 𝑌𝑌�(0) − 𝑌𝑌�(𝑎𝑎)           (13) 
Lower predicted churn corresponds to more effective interventions. The final policy 

module computes: 
𝑎𝑎∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 min

𝑎𝑎
𝑌𝑌�(𝑎𝑎)          (14) 

1) Policy Regularization 
To avoid overly aggressive or costly interventions, we include a policy smoothness 

constraint: 
𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜆𝜆∑ 𝑐𝑐(𝑎𝑎) ⋅ 𝐼𝐼(𝑎𝑎 = 𝑎𝑎∗)𝑎𝑎          (15) 
where 𝑐𝑐(𝑎𝑎) denotes intervention cost or user experience penalty. 
2) Joint Objective 
The complete training objective is 
𝐿𝐿 = 𝐿𝐿𝑐𝑐𝑐𝑐 + 𝛼𝛼𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛽𝛽𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          (16) 
DeepSeqCaus is thus optimized end-to-end to jointly learn sequence representations, 

causal effects, and action policies, enabling accurate churn prediction and interpretable 
retention strategy generation. 

4. Experiment 
4.1. Dataset Preparation 

The dataset used in this study consists of large-scale longitudinal user interaction 
logs collected from a commercial digital service platform, including mobile applications 
and web-based portals. Data were obtained through the platform's event-tracking 
infrastructure, which records timestamped user activities during normal operation 
without requiring any experimental manipulation. All user identifiers were anonymized 
before analysis to ensure privacy. The observation window spans approximately six 
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months, during which millions of behavioral events were captured and aggregated into 
structured sequences for churn prediction and causal intervention analysis. 

Each record in the dataset corresponds to a specific user and contains a temporally 
ordered sequence of behavioral features that reflect engagement dynamics. These include 
daily activity frequency, session duration, click-through patterns, content consumption 
statistics, interaction depth, and in-app transaction history. Additional contextual features 
capture user demographics at a coarse level, device type, subscription tier, and temporal 
indicators such as weekday patterns or seasonal usage fluctuations. Treatment-related 
information is also present, including historical exposure to retention actions such as 
promotional messages, personalized notifications, discount offers, or recommendation 
prompts. For each treatment, the dataset provides binary or categorical indicators 
describing whether a user received a specific intervention on a given day. 

The outcome variable is defined as next-period churn, measured by a 7-day inactivity 
threshold. For each user, the final dataset contains an average sequence length of 25-40 
time steps, resulting in more than 10 million total sequence tokens. This rich, multi-modal 
behavioral dataset provides an appropriate foundation for sequential representation 
learning and counterfactual outcome estimation within the DeepSeqCaus framework. 

4.2. Experimental Setup 
The experiments were conducted on the large-scale user behavior dataset described 

earlier, covering six months of interaction logs from millions of users. All models were 
trained using an 80/10/10 split for training, validation, and testing, with temporal order 
strictly preserved to avoid information leakage. DeepSeqCaus and baseline models were 
implemented in PyTorch and optimized using Adam with a learning rate of 1e-3 and mini-
batches of 256 sequence samples. All sequential encoders were trained for up to 50 epochs 
with early stopping based on validation loss. Competing models include GRU, Bi-LSTM, 
Transformer, DeepFM, and state-of-the-art causal inference baselines such as TARNet, 
DragonNet, and CEVAE. For intervention policy evaluation, logged bandit feedback was 
used with doubly robust estimators to approximate real-world deployment conditions. 
All experiments were executed on a cluster equipped with NVIDIA A100 GPUs. 

4.3. Evaluation Metrics 
To comprehensively evaluate DeepSeqCaus, three groups of metrics were employed. 

For churn prediction, AUC, F1-score, and cross-entropy loss (CELoss) were used to assess 
discriminative accuracy. For treatment effect estimation, we measured PEHE and ATE 
error to quantify counterfactual estimation precision. For intervention policy generation, 
we evaluated uplift in retention rate and expected policy value estimated through off-
policy evaluation. This combination of predictive, causal, and policy-level metrics enables 
a holistic assessment of DeepSeqCaus across all tasks central to retention optimization. 

4.4. Results 
Table 1 presents a comprehensive comparison of alternative architectures on the 

churn prediction task. Among all metrics-AUC, F1, and Cross-Entropy Loss-
DeepSeqCaus consistently outperformed the baseline model in all cases. It achieves an 
AUC of 0.910, noticeably higher than the next-best Transformer (0.869), highlighting the 
benefit of integrating causal inference into sequential modeling to improve discriminative 
performance. 

Table 1. Churn Prediction Performance. 

Model AUC F1 CELoss 
GRU 0.842 0.611 0.412 

Bi-LSTM 0.857 0.624 0.397 
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Transformer 0.869 0.638 0.384 
DeepFM 0.832 0.598 0.431 

DeepSeqCaus (ours) 0.910 0.673 0.341 
DeepSeqCaus also attains the highest F1 score of 0.673, exceeding Bi-LSTM (0.624) 

and Transformer (0.638). This indicates a more balanced trade-off between precision and 
recall. Furthermore, the model records the lowest CELoss (0.341), indicating more stable 
optimization dynamics and better-calibrated prediction probabilities. Overall, the results 
demonstrate that the proposed framework significantly boosts predictive accuracy and 
robustness for churn prediction (see Table 2). 

Table 2. Treatment Effect Estimation. 

Model PEHE ATE Error 
TARNet 4.92 0.137 

DragonNet 4.51 0.121 
CEVAE 5.33 0.149 
CFR-Net 4.87 0.129 

DeepSeqCaus (ours) 3.99 0.107 
DeepSeqCaus achieves the lowest PEHE and ATE error among all baselines, with a 

11.4% improvement in PEHE over DragonNet. This validates the effectiveness of its 
counterfactual representation module and its capability to disentangle causal effects from 
behavioral confounders (see Table 3). 

Table 3. Treatment Effect Estimation. 

Model Retention Uplift (%) Policy Value 
Random Policy 2.1 0.023 
Heuristic Rules 4.8 0.041 

Uplift RF 6.2 0.052 
Causal Forest 6.9 0.058 

DeepSeqCaus (ours) 9.8 0.075 
The learned policies produced by DeepSeqCaus yield the highest uplift in user 

retention, outperforming the strongest baseline (Causal Forest) by 42%. This demonstrates 
that DeepSeqCaus does not simply predict churn or estimate causal effects, but also 
generates practical and high-impact retention strategies. 

Figure 2 illustrates the clear downward trajectory in training loss across 80 epochs. 
During the initial 20 epochs, the loss decreases rapidly, indicating the model efficiently 
learns the core patterns in the data. Then gradually stabilizes after approximately 50 
epochs. Although some minor oscillations arise in the middle of the training process, they 
are well contained, suggesting that the optimization is stable and the model shows no 
apparent overfitting. The loss starts to plateau around 0.25, demonstrates that the model 
converges reliably. Overall, the loss curve confirms the effectiveness and stability of the 
proposed training procedure. 
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Figure 2. Loss function during training process. 

4.5. Discussion 
The experimental results validate that DeepSeqCaus effectively integrates deep 

sequential modeling with causal inference, yielding improvements across prediction 
accuracy, counterfactual estimation quality, and policy optimization. The model's 
temporal encoder proves essential for capturing nuanced behavioral trends that precede 
churn, while the counterfactual learning component successfully reduces confounding 
biases present in observational intervention logs. The substantial gain in policy 
performance further underscores the practical value of modeling heterogeneous 
treatment effects at the sequence level, enabling personalized and context-aware retention 
actions. Although DeepSeqCaus demonstrates strong performance, its computational cost 
is higher than simpler baselines, and its effectiveness depends on the availability of rich 
behavioral histories. Future extensions may incorporate adaptive treatment timing or 
reinforcement learning to further enhance real-time decision-making. 

5. Conclusion 
This study aims to address the growing challenge of long-term engagement and 

revenue sustainability in digital platforms. Traditional approaches rely on static user 
profiles or summary features, failing to capture temporal dynamics or distinguish causal 
effects from confounding correlations. To overcome these limitations, this research 
introduces DeepSeqCaus, a unified framework that integrates deep sequential modeling 
with counterfactual causal inference to jointly predict churn and optimize personalized 
intervention strategies. The primary objective is to capture fine-grained user behavioral 
trajectories, estimate heterogeneous treatment effects, and generate actionable retention 
policies that maximize user survival probability. 

Through data analysis, we identified 3 key findings. First, multi-scale sequential 
encoder substantially improves the modeling of complex user behavior sequences. Second, 
Counterfactual representation learning allowing model nonlinear treatment effects across 
diverse user behavior trajectories, yielding more accurate treatment effect estimates. Third, 
the integrated policy-generation mechanism produces personalized, interpretable 
intervention recommendations that lead to significant retention uplift. These findings 
suggest that combining sequential learning with causal inference provides a powerful 
foundation for next-generation churn management systems. 

The results of this study have significant implications for the field of user churn 
prediction and retention intervention optimization. Firstly, the demonstrated 
effectiveness of deep sequential modeling offers new insights into how temporal 
dynamics shape churn behavior. Secondly, incorporating counterfactual causal estimation 
challenges traditional churn correlation-driven predictive methodologies and highlights 
the necessity of accounting for intervention effects when designing retention strategies. 
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Finally, the policy-generation mechanism opens new avenues for developing actionable, 
personalized intervention systems that are both interpretable and operationally feasible. 

Despite the important findings, this study has some limitations, such as the model 
incurs higher computational cost than simpler baselines and relies on sufficiently rich 
behavioral histories. Future research could further explore adaptive temporal modeling 
mechanisms and integrate reinforcement learning to support real-time, personalized 
recommendation decisions. 

In conclusion, this study, through deep sequential modeling and casual inference, 
reveals substantial improvements in churn prediction accuracy and personalized 
retention interventions, providing new insights for the development of next-generation 
intelligent customer management systems. 
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