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Abstract: In digital platforms, understanding and mitigating user churn is crucial for sustaining
long-term engagement and revenue. Traditional machine learning approaches often rely on
correlation-based predictive models without explicitly accounting for causal relationships
underlying user behavior. This study proposes DeepSeqCaus, a unified deep sequential causal
inference framework that integrates sequence modeling and treatment effect estimation to enable
accurate churn prediction and optimal retention intervention policy generation. DeepSeqCaus
consists of a dual-branch architecture: (1) a Temporal Feature Encoder using gated convolution and
bidirectional gated recurrent networks to extract multi-granular temporal representations from
behavioral sequences; and (2) a Causal Effect Estimator based on counterfactual representation
learning to estimate heterogeneous treatment effects (HTEs) for candidate interventions such as
personalized notifications, discount offers, or content recommendations. Using large-scale user
interaction logs from an online service, we conduct extensive experiments comparing DeepSeqCaus
with conventional predictive models and causal inference baselines. The results showed that
DeepSeqCaus outperformed the baseline model in all cases. The proposed framework provides
actionable insights for targeted retention and demonstrates strong potential for deployment in
intelligent customer management systems.

Keywords: user churn prediction; causal inference; sequential modeling; deep learning;
heterogeneous treatment effect; user retention strategy; intervention optimization

1. Introduction

User churn prediction and retention intervention optimization have become essential
components of modern digital platform operations, especially for mobile applications,
online games, and e-commerce services that rely heavily on sustained user engagement.
As markets become increasingly saturated and user acquisition costs continue to rise,
understanding how users behave over time and determining which intervention can
effectively reduce churn have emerged as core challenges for data-driven decision-
making. Traditional churn prediction methods-typically based on static user profiles or
summary features-fail to capture the temporal dynamics inherent in click sequences,
interaction patterns, and behavioral trajectories. Moreover, many existing approaches
focus purely on correlation-driven prediction without accounting for the causal effects of
platform actions such as push notifications, discounts, or personalized recommendations,
which often results in biased estimates and suboptimal intervention decisions.

Recent advances in deep learning have demonstrated strong capabilities in modeling
complex sequential data through architectures such as recurrent neural networks,
temporal convolutional networks, and attention-based models. Meanwhile, causal
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inference techniques have been increasingly applied to estimate heterogeneous treatment
effects and guide optimal decision policies. Nonetheless, the integration of deep
sequential modeling with causal estimation for user retention remains insufficiently
explored. To address these limitations, this study proposes DeepSeqCaus, a unified deep
sequential causal inference framework that jointly models user behavior sequences and
intervention effects. DeepSeqCaus incorporates a multi-scale temporal encoder to capture
fine-grained and long-range user activity patterns, and a counterfactual representation
learning module that disentangles true intervention impacts from spurious correlations.
By combining predictive modeling with causal effect estimation, the framework produces
personalized, explainable retention strategies aimed at maximizing user survival
probability.

The main contributions of this study are summarized as follows:

1) We propose DeepSeqCaus, the first unified framework that integrates deep
sequential modeling with counterfactual causal inference for simultaneous
churn prediction and personalized intervention optimization.

2) We design a multi-scale temporal encoder and causal representation module
that capture both behavioral dynamics and heterogeneous treatment effects in
a principled manner.

3) We introduce a policy-generation mechanism that leverages estimated causal
effects to recommend optimal, interpretable intervention strategies for
individual users.

4) We conduct extensive experiments on large-scale real-world datasets,
demonstrating that DeepSeqCaus significantly outperforms state-of-the-art
baselines in prediction accuracy, treatment effect estimation, and retention
uplift.

Overall, this work highlights the importance of combining sequential deep learning

and causal inference to build next-generation user retention systems that are not only
accurate but also actionable and interpretable.

2. Related Work

In recent years, the rapid expansion of digital platforms and the availability of large-
scale user interaction logs have led to substantial research on user churn prediction,
sequential user modeling, causal inference for decision-making, and uplift-based
intervention optimization. This section reviews the major streams of literature most
relevant to this study, including deep learning-based churn prediction, sequential
behavior modeling, causal inference and counterfactual modeling, and individualized
intervention and uplift estimation. These works collectively motivate the development of
DeepSeqCaus, which integrates deep sequential representation learning with causal effect
estimation for generating optimal user retention strategies.

2.1. Deep Learning-Based User Churn Prediction

Early research on churn prediction primarily relied on static, feature-based models
such as logistic regression and decision trees, which overlooked temporal patterns in user
behavior [1]. With the development of deep learning, sequence-aware approaches have
been increasingly investigated, employing recurrent neural networks (RNNs) and long
short-term memory networks (LSTMs) to capture the dynamics of user activity over time.
For example, some studies have applied gated multilayer neural networks to model
fluctuations in user activity within mobile applications, while others have integrated
RNNs with attention mechanisms, demonstrating that incorporating temporal features
substantially improves prediction accuracy [2]. More recent work has introduced models
that combine convolutional, residual, squeeze-and-excitation, and attention blocks to
enhance predictive performance; after addressing data imbalance using SMOTE-style
techniques, these models outperform previous benchmarks [3].
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Despite these advances, existing approaches have concentrated on predictive
accuracy and have largely neglected the causal effects of interventions, which limits their
practical applicability for informing retention strategy optimization.

2.2. Sequential User Behavior Modeling

Beyond churn prediction, many studies have explored deep learning approaches for
modeling user behavior trajectories in recommender systems, advertising, and social
platforms. Models such as GRU4Rec, SASRec, and BERT4Rec leverage recurrent neural
networks or self-attention architectures to capture long-range dependencies and semantic
patterns in behavior sequences [4-6]. These methods achieve strong performance in next-
item prediction and user preference modeling. However, they primarily focus on
representation learning and do not consider interventions or treatment effects. Although
effective at extracting temporal and contextual information from clickstreams, these
models provide limited support for decision-making related to policy or personalized
interventions. This limitation underscores the need to integrate sequential learning with
causal reasoning, as implemented in the proposed DeepSeqCaus framework.

2.3. Causal Inference and Counterfactual Modeling

Causal inference has become a crucial methodology for evaluating the effectiveness
of interventions on online platforms. Techniques such as propensity score weighting and
causal forests are widely applied to estimate heterogeneous treatment effects [7,8]. More
recent deep causal models incorporate representation learning for counterfactual
estimation, improving the generalization of treatment effect predictions [9]. Additional
approaches apply variational inference to balance latent confounders and reduce bias in
observational datasets [10]. Despite their effectiveness in estimating causal effects, most
existing methods lack temporal modeling capabilities and cannot process sequential user
data directly. The DeepSeqCaus framework addresses this limitation by embedding
causal estimation within a temporal encoder capable of capturing rich sequential
dynamics.

2.4. Uplift Modeling and Personalized Intervention Optimization

A parallel line of research focuses on uplift modeling, which predicts the incremental
benefit of interventions. Foundational frameworks for individualized uplift prediction in
marketing and user retention have been established [11,12]. Uplift methods have
demonstrated effectiveness in targeted advertising and customer relationship
management, yet they often rely on static features and lack the representational power of
modern deep sequence models. Moreover, most uplift frameworks do not generate
personalized strategies across multiple intervention options. The DeepSeqCaus
framework addresses these gaps by combining sequential behavioral representations with
counterfactual treatment effect estimation, enabling the identification of the optimal
intervention for each user.

3. Methodology

This section presents the proposed DeepSeqCaus framework, which integrates deep
sequential modeling with counterfactual causal inference to jointly (i) predict user churn
and (ii) generate optimal, personalized retention interventions. DeepSeqCaus is designed
to capture multiscale patterns in user behavior sequences, learn treatment-invariant
representations, estimate heterogeneous treatment effects, and output intervention
policies that maximize the expected reduction in churn (see Figure 1).
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Figure 1. Structure diagram of model.

3.1. Problem Definition and Notation

Let a user's behavioral history over T steps be denoted as a sequence

X={xy,x5,..., %7} (1)

where each x, € R? represents multi-dimensional features, including clicks, dwell
time, session length, interaction context, and engagement metrics. The platform may
expose the user to a discrete intervention A4 € {0,1,..., K}, where 0 denotes no intervention.
The observed outcome Y € {0,1} indicates churn (1) or retention (0).

For counterfactual modeling, we consider potential outcomes

Y(a), a€e{01,...,K} 2)
and aim to estimate the individual treatment effect (ITE):
Ta(X) = E[Y(0) = Y(a) | X] @)

which quantifies the expected reduction in churn caused by intervention a.

Given the estimated ITEs, the optimal intervention is derived as

a*(X) = arg mainE[Y(a) | X] 4)

DeepSeqCaus provides a unified modeling architecture for learning sequential
representations, estimating counterfactual outcomes, and generating optimal intervention
recommendations.

3.2. Multi-Scale Sequential Encoder

User behavior contains short-term bursts, mid-term engagement cycles, and long-
term temporal drift. To model these dynamics, DeepSeqCaus employs a multi-scale
sequential encoder consisting of gated temporal convolutions and bidirectional recurrent
layers.

1) Gated Temporal Convolution Layer

The temporal convolution module captures local behavioral fluctuations through
dilated convolutions:

b = oWy *x1,0) © tanh (Wyxy,,) (5)

where the gating mechanism stabilizes feature extraction across varying activity
levels.

2) Bidirectional Recurrent Layer
To capture long-range dependencies, we apply a bidirectional GRU:

he = GRU(R” k1), he = GRU(h heya) (6)
The combined representation is
he = [he; he] @)

This hierarchical encoding ensures robustness to sparse events and provides
contextual embeddings for causal representation learning.
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3.3. Counterfactual Representation Learning

Modeling causal effects requires isolating behavioral patterns that influence both
intervention assignment and outcomes. DeepSeqCaus adopts an adversarial
counterfactual representation module inspired by domain-invariant learning.

Let

2= fo(X) ®)

denote the latent representation generated from the encoder. To satisfy treatment-
invariant representation learning, we minimize the discrepancy of latent distributions
across treatment groups:

Lipw =IPM(p(z | A=a),  p(z | A=Db)) ©)

where IPM refers to an integral probability metric such as MMD or Wasserstein
distance.

By reducing covariate imbalance, the model approximates the assumption:

Y(a)LA | z (10)

enabling more reliable counterfactual estimation.

Counterfactual Outcome Heads

For each possible intervention a, we define separate outcome prediction heads:

Y(a) = ga(2) (11)
The counterfactual loss is computed as
ch =it (Yi'?i(Ai)) (12)

where £ denotes binary cross-entropy.
This architecture allows DeepSeqCaus to model nonlinear treatment effects across
diverse user behavior trajectories.

3.4. Heterogeneous Treatment Effect Estimation and Policy Generation

Given outcome predictions Y(a) for each intervention level, the heterogeneous
treatment effect is estimated as

t, =Y(0) - Y(a) (13)

Lower predicted churn corresponds to more effective interventions. The final policy
module computes:

a’ = arg min Y(a) (14)

1)  Policy Regularization

To avoid overly aggressive or costly interventions, we include a policy smoothness
constraint:

Lpolicy = /IZa C(a) ’ I(a = a*) (15)

where c(a) denotes intervention cost or user experience penalty.

2)  Joint Objective

The complete training objective is

L=Lc+ aLipy + BLypoiicy (16)

DeepSeqCaus is thus optimized end-to-end to jointly learn sequence representations,
causal effects, and action policies, enabling accurate churn prediction and interpretable
retention strategy generation.

4. Experiment
4.1. Dataset Preparation

The dataset used in this study consists of large-scale longitudinal user interaction
logs collected from a commercial digital service platform, including mobile applications
and web-based portals. Data were obtained through the platform's event-tracking
infrastructure, which records timestamped user activities during normal operation
without requiring any experimental manipulation. All user identifiers were anonymized
before analysis to ensure privacy. The observation window spans approximately six
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months, during which millions of behavioral events were captured and aggregated into
structured sequences for churn prediction and causal intervention analysis.

Each record in the dataset corresponds to a specific user and contains a temporally
ordered sequence of behavioral features that reflect engagement dynamics. These include
daily activity frequency, session duration, click-through patterns, content consumption
statistics, interaction depth, and in-app transaction history. Additional contextual features
capture user demographics at a coarse level, device type, subscription tier, and temporal
indicators such as weekday patterns or seasonal usage fluctuations. Treatment-related
information is also present, including historical exposure to retention actions such as
promotional messages, personalized notifications, discount offers, or recommendation
prompts. For each treatment, the dataset provides binary or categorical indicators
describing whether a user received a specific intervention on a given day.

The outcome variable is defined as next-period churn, measured by a 7-day inactivity
threshold. For each user, the final dataset contains an average sequence length of 25-40
time steps, resulting in more than 10 million total sequence tokens. This rich, multi-modal
behavioral dataset provides an appropriate foundation for sequential representation
learning and counterfactual outcome estimation within the DeepSeqCaus framework.

4.2. Experimental Setup

The experiments were conducted on the large-scale user behavior dataset described
earlier, covering six months of interaction logs from millions of users. All models were
trained using an 80/10/10 split for training, validation, and testing, with temporal order
strictly preserved to avoid information leakage. DeepSeqCaus and baseline models were
implemented in PyTorch and optimized using Adam with a learning rate of 1le-3 and mini-
batches of 256 sequence samples. All sequential encoders were trained for up to 50 epochs
with early stopping based on validation loss. Competing models include GRU, Bi-LSTM,
Transformer, DeepFM,, and state-of-the-art causal inference baselines such as TARNet,
DragonNet, and CEVAE. For intervention policy evaluation, logged bandit feedback was
used with doubly robust estimators to approximate real-world deployment conditions.
All experiments were executed on a cluster equipped with NVIDIA A100 GPUs.

4.3. Evaluation Metrics

To comprehensively evaluate DeepSeqCaus, three groups of metrics were employed.
For churn prediction, AUC, F1-score, and cross-entropy loss (CELoss) were used to assess
discriminative accuracy. For treatment effect estimation, we measured PEHE and ATE
error to quantify counterfactual estimation precision. For intervention policy generation,
we evaluated uplift in retention rate and expected policy value estimated through off-
policy evaluation. This combination of predictive, causal, and policy-level metrics enables
a holistic assessment of DeepSeqCaus across all tasks central to retention optimization.

4.4. Results

Table 1 presents a comprehensive comparison of alternative architectures on the
churn prediction task. Among all metrics-sAUC, F1, and Cross-Entropy Loss-
DeepSeqCaus consistently outperformed the baseline model in all cases. It achieves an
AUC of 0.910, noticeably higher than the next-best Transformer (0.869), highlighting the
benefit of integrating causal inference into sequential modeling to improve discriminative
performance.

Table 1. Churn Prediction Performance.

Model AUC F1 CELoss
GRU 0.842 0.611 0.412
Bi-LSTM 0.857 0.624 0.397
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Transformer 0.869 0.638 0.384
DeepFM 0.832 0.598 0.431
DeepSeqCaus (ours) 0.910 0.673 0.341

DeepSeqCaus also attains the highest F1 score of 0.673, exceeding Bi-LSTM (0.624)
and Transformer (0.638). This indicates a more balanced trade-off between precision and
recall. Furthermore, the model records the lowest CELoss (0.341), indicating more stable
optimization dynamics and better-calibrated prediction probabilities. Overall, the results
demonstrate that the proposed framework significantly boosts predictive accuracy and
robustness for churn prediction (see Table 2).

Table 2. Treatment Effect Estimation.

Model PEHE ATE Error
TARNet 4.92 0.137
DragonNet 4.51 0.121
CEVAE 5.33 0.149
CFR-Net 4.87 0.129
DeepSeqCaus (ours) 3.99 0.107

DeepSeqCaus achieves the lowest PEHE and ATE error among all baselines, with a
11.4% improvement in PEHE over DragonNet. This validates the effectiveness of its
counterfactual representation module and its capability to disentangle causal effects from
behavioral confounders (see Table 3).

Table 3. Treatment Effect Estimation.

Model Retention Uplift (%) Policy Value
Random Policy 2.1 0.023
Heuristic Rules 4.8 0.041

Uplift RF 6.2 0.052
Causal Forest 6.9 0.058
DeepSeqCaus (ours) 9.8 0.075

The learned policies produced by DeepSeqCaus yield the highest uplift in user
retention, outperforming the strongest baseline (Causal Forest) by 42%. This demonstrates
that DeepSeqCaus does not simply predict churn or estimate causal effects, but also
generates practical and high-impact retention strategies.

Figure 2 illustrates the clear downward trajectory in training loss across 80 epochs.
During the initial 20 epochs, the loss decreases rapidly, indicating the model efficiently
learns the core patterns in the data. Then gradually stabilizes after approximately 50
epochs. Although some minor oscillations arise in the middle of the training process, they
are well contained, suggesting that the optimization is stable and the model shows no
apparent overfitting. The loss starts to plateau around 0.25, demonstrates that the model
converges reliably. Overall, the loss curve confirms the effectiveness and stability of the
proposed training procedure.
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Figure 2. Loss function during training process.

4.5. Discussion

The experimental results validate that DeepSeqCaus effectively integrates deep
sequential modeling with causal inference, yielding improvements across prediction
accuracy, counterfactual estimation quality, and policy optimization. The model's
temporal encoder proves essential for capturing nuanced behavioral trends that precede
churn, while the counterfactual learning component successfully reduces confounding
biases present in observational intervention logs. The substantial gain in policy
performance further underscores the practical value of modeling heterogeneous
treatment effects at the sequence level, enabling personalized and context-aware retention
actions. Although DeepSeqCaus demonstrates strong performance, its computational cost
is higher than simpler baselines, and its effectiveness depends on the availability of rich
behavioral histories. Future extensions may incorporate adaptive treatment timing or
reinforcement learning to further enhance real-time decision-making.

5. Conclusion

This study aims to address the growing challenge of long-term engagement and
revenue sustainability in digital platforms. Traditional approaches rely on static user
profiles or summary features, failing to capture temporal dynamics or distinguish causal
effects from confounding correlations. To overcome these limitations, this research
introduces DeepSeqCaus, a unified framework that integrates deep sequential modeling
with counterfactual causal inference to jointly predict churn and optimize personalized
intervention strategies. The primary objective is to capture fine-grained user behavioral
trajectories, estimate heterogeneous treatment effects, and generate actionable retention
policies that maximize user survival probability.

Through data analysis, we identified 3 key findings. First, multi-scale sequential
encoder substantially improves the modeling of complex user behavior sequences. Second,
Counterfactual representation learning allowing model nonlinear treatment effects across
diverse user behavior trajectories, yielding more accurate treatment effect estimates. Third,
the integrated policy-generation mechanism produces personalized, interpretable
intervention recommendations that lead to significant retention uplift. These findings
suggest that combining sequential learning with causal inference provides a powerful
foundation for next-generation churn management systems.

The results of this study have significant implications for the field of user churn
prediction and retention intervention optimization. Firstly, the demonstrated
effectiveness of deep sequential modeling offers new insights into how temporal
dynamics shape churn behavior. Secondly, incorporating counterfactual causal estimation
challenges traditional churn correlation-driven predictive methodologies and highlights
the necessity of accounting for intervention effects when designing retention strategies.
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Finally, the policy-generation mechanism opens new avenues for developing actionable,
personalized intervention systems that are both interpretable and operationally feasible.

Despite the important findings, this study has some limitations, such as the model
incurs higher computational cost than simpler baselines and relies on sufficiently rich
behavioral histories. Future research could further explore adaptive temporal modeling
mechanisms and integrate reinforcement learning to support real-time, personalized
recommendation decisions.

In conclusion, this study, through deep sequential modeling and casual inference,
reveals substantial improvements in churn prediction accuracy and personalized
retention interventions, providing new insights for the development of next-generation
intelligent customer management systems.
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