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Abstract: With the widespread application of multimodal data in dialog emotion recognition,
effectively integrating text, audio, and visual information while addressing data heterogeneity
across multiple clients and ensuring user privacy has become a key research challenge. This paper
integrates a Transformer self-distillation model with attention scores and federated learning
algorithms to propose a multimodal emotion recognition framework. The framework employs
intra-modal and inter-modal Transformers to capture multimodal interactions, enhances modality
representations through attention weights, and incorporates a federated learning structure to
safeguard data privacy. A global model distance-weighted aggregation strategy is introduced to
mitigate model bias caused by heterogeneous data. Experimental results on the IEMOCAP dataset
demonstrate that the proposed framework achieves superior emotion recognition accuracy and
exhibits more stable model convergence compared to existing baseline models.

Keywords: multimodal emotion recognition; federated learning; transformer; attention scores;
heterogeneity

1. Introduction

Emotion Recognition in Conversations (ERC) aims to automatically identify the
emotional labels of each utterance within a dialogue [1]. Due to its wide range of
applications, such as opinion mining, healthcare, and the development of empathetic
dialogue systems, this task has become a significant research focus in recent years. Unlike
traditional context-independent sentence emotion recognition (ER), the core of ERC lies
in modeling contextual dependencies and speaker-sensitive interactions. This process
involves dynamically capturing the flow of dialogue and the evolution of emotional states
throughout the entire conversation [2,3].

Emotion Recognition in Conversations (ERC) is crucial for constructing robust
emotional analysis models. While existing research has primarily focused on capturing
context and speaker-sensitive dependencies within the textual modality, it often
overlooks the significance of multimodal information. Multimodal emotion recognition,
by integrating textual, acoustic, and visual information, can effectively enhance the
accuracy of emotional understanding in complex conversational environments.

However, two major challenges often arise in practical applications: first, the effective
fusion and representation enhancement of multimodal data; second, data privacy
protection and model training in heterogeneous environments. Traditional centralized
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training methods carry the risk of privacy leakage, while Federated Learning (FL),
although capable of protecting data privacy, often suffers from performance degradation
due to heterogeneous data distributions and varying device capabilities. To address these
issues, this paper proposes an innovative framework that integrates Transformer self-
distillation with federated learning. The framework employs Transformer structures on
the client side for multimodal feature fusion and enhancement, while leveraging a self-
distillation mechanism to improve single-modal representation capabilities. On the server
side, a federated learning approach is adopted, combined with distance correction and
weighted aggregation strategies to mitigate model bias caused by heterogeneity, thereby
achieving efficient and privacy-preserving multimodal emotion recognition.

2. Related Work

According to established psychological theories, individuals express emotions in
various ways, including through linguistic content, vocal cues, and facial expressions [4].
Consequently, multimodal information is considered more valuable than unimodal data
for achieving a comprehensive understanding of emotional states.

2.1. Multimodal Emotion Recognition

In recent years, Transformer-based multimodal fusion methods have demonstrated
remarkable performance in the field of emotion recognition. Early research on multimodal
fusion primarily focused on early fusion and late fusion strategies. Early fusion
approaches integrate features from different modalities at the initial input stage [5,6]. In
contrast, late fusion strategies construct separate models for each modality and
subsequently integrate their outputs through methods such as majority voting or
weighted averaging [7,8]. However, it has been observed that both of these fusion
methods fail to effectively capture complex intra-modal and inter-modal interactions [9].

Subsequently, model-based fusion gained popularity, leading to the development of
various specialized models. For instance, specific frameworks explicitly model unimodal,
bimodal, and trimodal interactions by computing the Cartesian product of features [10].
Other approaches utilize low-rank weight tensors for multimodal fusion to reduce the
complexity of the interaction modeling [9]. Furthermore, attention mechanisms have been
employed to learn cross-modal interactions while storing information over time through
multi-view gated memory structures [11]. Cross-modal transformers have also been
utilized to model long-range dependencies across different modalities [12]. Recent
advancements include the fine-tuning of large pre-trained transformer models for
multimodal language by designing a Multimodal Adaptive Gate (MAG) [13]. Other
methods employ a unimodal label generation strategy to obtain independent unimodal
supervision and then jointly learn multimodal and unimodal tasks [14]. Additionally,
transformer encoders have been adopted to model intra-modal and inter-modal
interactions within sequences of modalities [15].

However, analysis reveals that while these methods consider both intra-modal and
inter-modal information, they often fail to account for the varying degrees of contribution
from different modalities during the model fusion process. In practical applications, the
roles played by each modality in the fusion model are not identical. Specifically,
contextually linked textual and auditory information often plays a more critical role than
visual imagery in emotional expression.

2.2. Privacy-Preserving Federated Learning

Federated Learning (FL) achieves effective protection of user data privacy by training
models on distributed devices and aggregating their parameters. Consequently, it is
increasingly being adopted by research institutions in fields such as healthcare and
finance. FL is a distributed machine learning training framework. During the FL training
process, clients distributed across different geographical locations can train models based
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on their local datasets. These locally trained models are then sent to a central server, where
they are averaged and aggregated into a global model. Subsequently, the server
distributes the updated global model to a selected set of clients for the next round of FL
training [16]. In 2018, specific large-scale keyboard systems integrated multi-party user
data through Federated Learning, significantly enhancing prediction accuracy for users
with diverse input habits [17]. This distributed framework offers a feasible approach to
breaking down data silos while ensuring user privacy and security.

To address the issue of data heterogeneity in FL, research has suggested that
reducing the number of local training epochs and increasing the communication
frequency between clients and the server can partially mitigate the deviation between
local and global models. It has been pointed out that such deviation consists of two
components: accumulated historical gradient errors and data distribution errors from the
current iteration [18]. To tackle problems caused by data heterogeneity and system
heterogeneity in the FedAvg algorithm, the FedProx algorithm was proposed [19]. This
algorithm introduces a proximal term to the local objective and computes an inexact
solution to the local objective function, enabling heterogeneous devices to achieve
convergence more quickly and proceed to the global aggregation stage. However, it has
been noted that the naive averaging aggregation methods used in both FedAvg and
FedProx can indirectly lead to inconsistencies between local and global objectives, thereby
reducing the test accuracy of the model [20]. Furthermore, some argue that most federated
learning methods handling heterogeneous data rely on the transmission and aggregation
of gradient parameters, which can incur substantial communication overhead and risk
gradient leakage [21].

Alternative strategies have proposed the FedProto algorithm, which employs the
prototype concept to update local models, offering a new perspective for handling
heterogeneous data in federated learning [22,23]. However, the FedProto algorithm
requires a fixed workload for local training even with small-sample data, and
heterogeneity is more likely to lead to overfitting or underfitting of the model [24].
Moreover, the weighted aggregation method in FedProto treats all local prototypes
equally, without considering that some prototypes may have a greater influence on the
global prototype, resulting in local deviations from the global prototype. Additionally, the
feature extraction method of the prototype network embedding layer can easily cause
class embeddings to be compressed to a single point when the number of input training
samples is limited [25]. To address the issue of the collapse of different sample embedding
vectors into a single point, triplet loss contrastive learning was proposed, which aims to
bring features with the same label closer in spatial position while pushing those with
different labels farther apart [26]. However, since triplet loss essentially involves pairwise
similarity comparisons between samples, it is susceptible to the influence of sample size
and the selection of positive and negative samples [27]. If triplet loss alone is used to train
a network on a small-sample dataset, the model may converge to a suboptimal solution.

In summary, while existing FL algorithms possess certain strengths, they have not
adequately addressed the negative impacts of data sample and training heterogeneity on
model performance. Effectively handling heterogeneous data, utilizing prototypes to
transmit heterogeneous model parameters, and efficiently aggregating local models
remain ongoing challenges in the field of Federated Learning. Therefore, considering
specific contexts, especially the privacy protection requirements in multimodal emotion
recognition within healthcare settings—such as handling sensitive medical data—this
paper addresses the issue of data heterogeneity across clients. Building upon the FedMPD
algorithm, we propose a strategy based on distance optimization and aggregation to
achieve stable convergence during client-side multimodal training in heterogeneous
environments.

Would you like me to move on to the Methodology section or help you with the
Abstract and Conclusion using these same constraints?
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3. Method

The multimodal federated learning emotion recognition algorithm proposed in this
paper, designed for client-side speaker heterogeneous data, is broadly divided into two
phases: client-side multimodal modeling and server-side federated aggregation.

3.1. Client-Side Multimodal Intra-Modal and Inter-Modal Modeling

This section sequentially presents the definition of multimodal, the design of
modality encoders, multimodal fusion, and an introduction to the emotion classifier.

3.1.1. Client-Side Multimodal Definition

Let the conversation consist of N consecutive utterances {u,,u,,--,uy} and M clients,
assuming that each client represents a speaker {s;,s,, -, sy}. Each utterance u; is spoken
by a speaker S, where ¢ is a mapping between an utterance and its corresponding
speaker index. Each utteranceu;involves textual (t), acoustic (a), and visual (v) modalities.
We denote the sequences of textual, acoustic, and visual modalities for all utterances in
the conversation as U, = [uf;u$; --;uk] € RNt U, = [u%;ug; ++;u] € RN*9 and U, =
[u};u; -+-;ul] € RN*4V, respectively. The ERC task aims to predict the emotional label
DDDu; for each utterance from a predefined set of emotion categories. Each client
performs local training using a Transformer-based self-distillation model [28].

3.1.2. Modality Encoders

The primary function of the modality encoder is to learn intra-modal and inter-modal
interactions among conversational utterances by obtaining enhanced modality sequence
representations. To describe the intra-modal and inter-modal encoders more clearly, let
two modalities be denoted as m and n, with H,, and H,, representing the multimodal
utterance sequences corresponding to modalities m and n, respectively, where m €
{t.a,v}, n€{t,a,v} —{m}, and t,a,v stand for text, audio, and video, respectively.

-- For the intra-modal encoder, a Transformer-based model is employed, where the
query, key, and value are set to the same H,,,. The extraction of intra-modal information
can thus be expressed as Equation (1):

H,,., = Transformer(H,,,H,,, H,,) € RN*d (1)

This intra-modal transformer enhances the representation of the m-modal sequence
for capturing intra-modal interactions within the utterance sequence.

-- For the cross-modal transformer, with H,, as the query and H, as the key and
value, the inter-modal interaction information can be represented by Equation (2):

H,_,, = Transformer(H,,, H,,H,) € RN*d ()

This Transformer model enables the transfer of information from the m-modal to the
n-modal, capturing inter-modal interactions within the utterance sequence.

3.1.3. Multimodal Fusion Based on Attention Weight Scores

The main function of this module is to dynamically learn the weights of different
modalities and enhance the fused representation between them.

Let the output of the m-modal corresponding to text, audio, and visual be a d X 1
dimensional sequence vector X € RY*1 where d is an integer. The normalized Pearson
correlation coefficient between the previous modality and the current m-modal is denoted
as p € {0, ---, 1}. This coefficient is used as the initialized attention score, and the
modality vector X is then optimized by readjusting it based on the attention score.

Let W € R™VU be the trainable weight matrix corresponding to the three modalities
at the current moment, where U is the number of units in the intermediate layer (typically
a hyperparameter). tanh denotes the hyperbolic tangent activation function. According
to Equation (3), the nonlinear relationship of the extracted feature u; is:

u; = tanh(X - W) 3)
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Let V € RY*! be the training matrix from the previous modality. Using Equation (4),
the feature relationship can be transformed into a scalar score e; € RN*%:

eg=u;'V 4)

To prevent the attention scores e; from having an excessive range of values,
appropriate scaling is required. Let U denote the dimension of matrix V. The attention
weights a; are calculated by normalization using the softmax function:

a; = softmax (\7—%) (5)

Then, adjust the weight a; based on Equation (5) and the initial attention score p.
First, an anomaly factor f is introduced. To prevent the weight from becoming negative,
let the range of B be {—1,+]. When B = 0, it indicates no additional weight is added to
the data; when —1 < 8 < 0it indicates a reduction in the weight assigned to the data; and
when B > 0, it indicates an additional weight is added to the data. Using the correlation
coefficient p and the attention weight a;, the adjusted attention weight aj for the current
modality encoding X’ is calculated by the formula:

aj=p-(1+B-a) (6)

Each feature in the three-modality vector X is scaled using the adjusted attention
weight aj described above, resulting in:

X' =aj-X (7)

Thus, the feature data X of modality m has been scaled based on the adjusted
weights.

3.1.4. Emotion Classifier Module for Predicting Emotional Labels

To compute the probability of identifying emotion categories, the multimodal
sequence of conversational utterances obtained in the previous step can be fed into a
softmax classifier. The procedure can be referred to in reference [29].

Here, the Transformer self-distillation mechanism is employed to transfer knowledge
from the global model's soft labels and hard labels to each modality, thereby enhancing
the representation capability of individual modalities.

3.2. Distance-Optimized Server-Side Federated Aggregation

The server receives the locally computed feature centroids (i.e., the feature centers
for each category) uploaded by each client and performs distance-weighted aggregation.

(1) Feature Extraction: The client extracts features via an embedding network and
performs clustering locally to obtain local feature centers.

The core idea of the client-side embedding network is to transform high-dimensional
heterogeneous image inputs into low-dimensional embedded vector outputs through
multi-layer nonlinear transformations. Taking the image modality in the m-modality as
an example, the client speaker inputs the local heterogeneous image data x; into the
embedding network. After a series of transformations by convolutional layers and fully
connected layers, the embedded vector g, (x;) is obtained. This embedded vector is
mapped to a space of OUIDIM dimensions, where OUTDIM represents the
dimensionality of the embedded vector. In this space, feature vectors of samples from the
same category are tightly clustered together, while feature vectors of samples from
different categories are pushed apart to maintain sufficient distance, thereby enhancing
the discriminative capability of the features. Without loss of generality, each dimension of
the three modalities is processed in this manner.

Distance Correction: Distance correction is primarily reflected in the design of the
client-side loss function. By introducing a contrastive loss term, inter-class
discriminability is enhanced. In the FedMPD algorithm, the client-side loss function £(-)

is designed as shown in Equation (8):

IDil Dy tk
L(w) = By Lo (fi(0ix)y1) + AT THo, 2 Ll () ®)
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In Equation (8), w; represents the local model of the client, x; denotes the data
samples used by the client for model training, while f;(w;;x;) and y; correspond to the
predicted value and the true label of the sample, respectively. The second term on the
right-hand side of the equation is the regularization term of the original loss function in
Equation (8), which aims to mitigate the deviation between the local and global label class
prototypes. Here, ci(t’k),c(t'k) represent the local label class prototype and the global
prototype, respectively, and A is the regularization hyperparameter for this term, which
is set to a fixed value of 0.1 in this paper.

To ensure that prototypes that are close in distance but belong to different label
classes remain distinguishable, the FedMPD algorithm introduces a contrastive loss
regularization term Llr‘eg(ci(t’k),c(t'k) ), formulated as shown in Equation (9), in addition to
the supervised learning loss function Lg(fi(wyx;),y;) . This term encourages local
prototypes of the same label class to converge toward the global prototype, while local
prototypes of different label classes are pushed away from it, with a minimum separation
distance of r. As shown in Equation (9), the distance r is defined as the distance between
the k-th label class prototype and its nearest (k+ 1 —th) global prototype, ie., r=
min d(c(*¥,c(tk+1)), as expressed in Equation (9).

Lhg(c™,c®9) = 21, BK L d(e™,c®9) + Ty (max{o,r — (e, ctD)}) )

Weighted Aggregation: Weights are dynamically assigned based on the distance
between local and global, where closer distances correspond to larger weights, as shown
in Equation (10):

™10 = ContrScore - Y, XK_, v, (10)

3.3. Overall Training Procedure

Based on Sections 3.1 and 3.2 above, the overall workflow of the multimodal
federated learning emotion recognition algorithm for client-side speaker heterogeneous
data can be divided into four steps:

(1) Clients train the SDT model using local multimodal data;

(2) Clients upload the trained model parameters to the server;

(3) The server performs distance-weighted aggregation to update the global model;
(4) The global model is distributed to clients for the next round of training.

The detailed multimodal federated learning emotion recognition algorithmic process
is outlined in Table 1.

Table 1. Multimodal Federated Learning Emotion Recognition Algorithm.

For client i in round t of FL:

Input: Client's local multimodal dataset D;, global model c®9  number of clients i =
1, ...,n, hyperparameter for the contrastive loss regularization term 2, local model from
the previous round w{

Output: The client trains the Self-Distillation Transformer (SDT) model using local
multimodal data, producing the local model w{*! for round t
1 n client speakers participate in the training
2 The server sends the global model ¢®® to the client
3 The client receives the global model
4 The client performs the following operations:

5 Update the local model ¢ = |s._1k|Z(Xi,Yi)€Sik 8o (x1)

6 IF d(g,(x),ci™) + o < d(c{",c***V) THEN
7 Compute the loss

n n K
|D;| |D',k| tk
fn) = ) L@ y) +3)) ) FELl el o)
i=1

i= k=1

Vol. 3 No. 1(2026)



Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

8 Update the local model using gradient descent
6[;((1)1 ;Xi)

Jdw;
9 The local model is retained on the client side wi**

t+1

t
witt e wi—n

10 Upload the local model ci(t’k)to the server

11 The server performs distance-weighted aggregation to update the global prototype
c(t+1K)

n K
c(tHrk) — z z (F _ d(Ci(t'k),C(t’k)))Ci(t'k)

i=1 k=1
12 The server distributes the local model for round t + 1 denoted as c10,

4. Experiments

This paper implements the proposed model using PyTorch and compares it with the
following baseline models.

CMN: It uses two GRUs and memory networks to model contextual information for
two speakers but is only suitable for dyadic conversations [30].

ICON: An extension of CMN, it uses another GRU to capture emotional influence
between speakers. Similar to CMN, this model is designed for dyadic conversations. It
employs three different GRUs to track the speaker, context, and emotional state in the
conversation, respectively. The aforementioned models concatenate textual, acoustic, and
visual features to obtain multimodal utterance representations [31].

MMGCN: It constructs a conversational graph based on all three modalities and
designs a multimodal fusion graph convolutional network to model contextual
dependencies across multiple modalities [32].

dialogueTRM: It uses a hierarchical transformer to handle differentiated contextual
preferences within each modality and designs a multi-grained interactive fusion to learn
the varying contributions of an utterance across modalities [33].

MM-DEFN: It designs a graph-based dynamic fusion module to integrate multimodal
contextual features, reduce redundancy, and enhance complementarity between
modalities [34].

MMTr: It utilizes different bidirectional long short-term memory networks (Bi-
LSTMs) to learn contextual representations at both the speaker's self-context level and the
conversational context level, and designs a cross-modal fusion module to enhance
representations of weaker modalities [35].

For a fair comparison, we re-ran all baseline models.

4.1. Dataset and Settings

The multimodal emotion recognition training model for clients is primarily
evaluated on the IEMOCAP dataset. By simulating the heterogeneity of client data in
federated learning, the performance of the proposed model is assessed.

The federated learning framework follows the experimental approach outlined in
reference, with the local training epochs fixed at 50. The data is distributed across 20 node
devices, and the number of sample categories per device is generated using a random
number generator. During the training phase, the server prioritizes selecting "online"
clients and those with data volumes in the top 50% to participate in federated modeling
[36].

For client-side multimodal emotion recognition, Adam is used as the optimizer. The
initial learning rate for IEMOCAP is set to 1.0e™*, with a batch size of 16 and a
temperature T set to 1. For the 1D convolutional layers, the number of input channels for
the text, acoustic, and visual modalities (i.e., their corresponding feature dimensions) on
IEMOCAP is set to 1024, 1582, and 342, respectively. For all three modalities on the dataset,
the number of output channels and kernel size are set to 1024. For the Transformer
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encoder, its hidden size, number of attention heads, feedforward size, and number of
layers are set to 1024, 8, 1024, and 1, respectively. To prevent overfitting, the L2 weight
decay is set to 1.0e™°, and dropout is applied with a rate of 0.5. All results are averaged
over 10 runs [28].

4.2. Results and Analysis

The experiments show that Table 2 presents the performance of the baselines and the
proposed method on the IEMOCAP dataset. On the IEMOCAP dataset, the proposed
method outperforms all baselines, achieving improvements of 1.76% in overall accuracy
and 235% in weighted Fl-score compared to MMTr. Additionally, significant
improvements are observed in the F1-scores for most emotion categories.

Table 2. Performance of Various Models on the IEMOCAP Dataset.

IEMOCAP
happy sad neutral angry CXcited fnustrated
Modcls A A A
ACC AC F1 C F1 AC F1 C F1 CF1ACC F1 F1
C C
C C C
60
20.3 61.52.3 51. 57.61. 54.8 56.3
CMN 23.31 0 56.33 59 4 3] 60.76 71 19 75 72.46 62.27 7 3

32.3 66.372.1 56.9 58.5 68.4 66.2 70,9 68.0 75.9 65.0 62,8 62.2
o s 7 9 o0 1 9 o0 1 2 8 5 5
71.6 73.8 65.1 62.8 73.5 72.4 77.9 74.4 65.1 63.6 66.6 66.2
59 o0 1 3 3 3 2 9 3 1 5
85,4 80.4 66.2 68.5 76.4 65.9 75.1 76.1 51.3 58.0 68.5 68.2
o s 7 6 7 9 5 6 9 9 2 0
76.577.1 72.1 66.9 75.8 70.8 74.6 76.4 58.2 61.5 67.8 67.8
50 5 9 8 8 5 2 7 7 4 5
84.487.7 76.1 71.6 71.5 65.0 75.2 76.2 55.9 62.2 69.7 69.9
MMTr 67.64 54.67 9 7 4 6 9 4 4 6 1 9 7 1
67.1278.8 82.9 78.6 76.2 72.9 69.9 77.7 81.1 66.1 70.6 74.9 75.0

1 4 3 2 8 6 9 8 4 8 5 8

ICON 26.00
MMGCN 32.64 38.63
DialogueTRM  60.21 56.85

MM-DFN 34.44 45.41

Our method 73.81

Moreover, in heterogeneous environments, the model demonstrates more stable
convergence with smaller fluctuations. The proposed model does not require uploading
raw data, meaning the data never leaves the local devices—only model training
parameters are exchanged. This satisfies the privacy protection requirements of each client.

5. Conclusion

This paper proposes a federated learning-based multimodal emotion recognition
model that balances the efficient fusion of multimodal information with data privacy
protection. By employing intra-modal and inter-modal encoders, the model captures
interactions both within and across modalities in conversational utterances. To
dynamically learn the weights between different modalities, we designed an attention
mechanism-based fusion strategy. This allows the model to adjust the weights of different
modalities according to the context when uploading to the global model, further
enhancing overall performance. Experiments were conducted on the IEMOCAP dataset,
and the results demonstrate the high effectiveness, superiority, and privacy security of the
proposed method.

Through the experiments in this paper, we observed that, beyond optimizing the
model structure and adapting to the computational constraints of edge devices,
dynamically adjusting modality weights, enhancing the discriminative capability of
multimodal representations, and addressing low-correlation emotions under privacy
protection remain further challenges in emotion recognition. These aspects will be
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explored in future work. The framework presented in this paper offers a new perspective
at the intersection of multimodal emotion recognition and federated learning.
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