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Abstract: With the widespread application of multimodal data in dialog emotion recognition, 
effectively integrating text, audio, and visual information while addressing data heterogeneity 
across multiple clients and ensuring user privacy has become a key research challenge. This paper 
integrates a Transformer self-distillation model with attention scores and federated learning 
algorithms to propose a multimodal emotion recognition framework. The framework employs 
intra-modal and inter-modal Transformers to capture multimodal interactions, enhances modality 
representations through attention weights, and incorporates a federated learning structure to 
safeguard data privacy. A global model distance-weighted aggregation strategy is introduced to 
mitigate model bias caused by heterogeneous data. Experimental results on the IEMOCAP dataset 
demonstrate that the proposed framework achieves superior emotion recognition accuracy and 
exhibits more stable model convergence compared to existing baseline models. 
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1. Introduction 
Emotion Recognition in Conversations (ERC) aims to automatically identify the 

emotional labels of each utterance within a dialogue [1]. Due to its wide range of 
applications, such as opinion mining, healthcare, and the development of empathetic 
dialogue systems, this task has become a significant research focus in recent years. Unlike 
traditional context-independent sentence emotion recognition (ER), the core of ERC lies 
in modeling contextual dependencies and speaker-sensitive interactions. This process 
involves dynamically capturing the flow of dialogue and the evolution of emotional states 
throughout the entire conversation [2,3]. 

Emotion Recognition in Conversations (ERC) is crucial for constructing robust 
emotional analysis models. While existing research has primarily focused on capturing 
context and speaker-sensitive dependencies within the textual modality, it often 
overlooks the significance of multimodal information. Multimodal emotion recognition, 
by integrating textual, acoustic, and visual information, can effectively enhance the 
accuracy of emotional understanding in complex conversational environments. 

However, two major challenges often arise in practical applications: first, the effective 
fusion and representation enhancement of multimodal data; second, data privacy 
protection and model training in heterogeneous environments. Traditional centralized 
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training methods carry the risk of privacy leakage, while Federated Learning (FL), 
although capable of protecting data privacy, often suffers from performance degradation 
due to heterogeneous data distributions and varying device capabilities. To address these 
issues, this paper proposes an innovative framework that integrates Transformer self-
distillation with federated learning. The framework employs Transformer structures on 
the client side for multimodal feature fusion and enhancement, while leveraging a self-
distillation mechanism to improve single-modal representation capabilities. On the server 
side, a federated learning approach is adopted, combined with distance correction and 
weighted aggregation strategies to mitigate model bias caused by heterogeneity, thereby 
achieving efficient and privacy-preserving multimodal emotion recognition. 

2. Related Work 
According to established psychological theories, individuals express emotions in 

various ways, including through linguistic content, vocal cues, and facial expressions [4]. 
Consequently, multimodal information is considered more valuable than unimodal data 
for achieving a comprehensive understanding of emotional states. 

2.1. Multimodal Emotion Recognition 
In recent years, Transformer-based multimodal fusion methods have demonstrated 

remarkable performance in the field of emotion recognition. Early research on multimodal 
fusion primarily focused on early fusion and late fusion strategies. Early fusion 
approaches integrate features from different modalities at the initial input stage [5,6]. In 
contrast, late fusion strategies construct separate models for each modality and 
subsequently integrate their outputs through methods such as majority voting or 
weighted averaging [7,8]. However, it has been observed that both of these fusion 
methods fail to effectively capture complex intra-modal and inter-modal interactions [9]. 

Subsequently, model-based fusion gained popularity, leading to the development of 
various specialized models. For instance, specific frameworks explicitly model unimodal, 
bimodal, and trimodal interactions by computing the Cartesian product of features [10]. 
Other approaches utilize low-rank weight tensors for multimodal fusion to reduce the 
complexity of the interaction modeling [9]. Furthermore, attention mechanisms have been 
employed to learn cross-modal interactions while storing information over time through 
multi-view gated memory structures [11]. Cross-modal transformers have also been 
utilized to model long-range dependencies across different modalities [12]. Recent 
advancements include the fine-tuning of large pre-trained transformer models for 
multimodal language by designing a Multimodal Adaptive Gate (MAG) [13]. Other 
methods employ a unimodal label generation strategy to obtain independent unimodal 
supervision and then jointly learn multimodal and unimodal tasks [14]. Additionally, 
transformer encoders have been adopted to model intra-modal and inter-modal 
interactions within sequences of modalities [15]. 

However, analysis reveals that while these methods consider both intra-modal and 
inter-modal information, they often fail to account for the varying degrees of contribution 
from different modalities during the model fusion process. In practical applications, the 
roles played by each modality in the fusion model are not identical. Specifically, 
contextually linked textual and auditory information often plays a more critical role than 
visual imagery in emotional expression. 

2.2. Privacy-Preserving Federated Learning 
Federated Learning (FL) achieves effective protection of user data privacy by training 

models on distributed devices and aggregating their parameters. Consequently, it is 
increasingly being adopted by research institutions in fields such as healthcare and 
finance. FL is a distributed machine learning training framework. During the FL training 
process, clients distributed across different geographical locations can train models based 
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on their local datasets. These locally trained models are then sent to a central server, where 
they are averaged and aggregated into a global model. Subsequently, the server 
distributes the updated global model to a selected set of clients for the next round of FL 
training [16]. In 2018, specific large-scale keyboard systems integrated multi-party user 
data through Federated Learning, significantly enhancing prediction accuracy for users 
with diverse input habits [17]. This distributed framework offers a feasible approach to 
breaking down data silos while ensuring user privacy and security. 

To address the issue of data heterogeneity in FL, research has suggested that 
reducing the number of local training epochs and increasing the communication 
frequency between clients and the server can partially mitigate the deviation between 
local and global models. It has been pointed out that such deviation consists of two 
components: accumulated historical gradient errors and data distribution errors from the 
current iteration [18]. To tackle problems caused by data heterogeneity and system 
heterogeneity in the FedAvg algorithm, the FedProx algorithm was proposed [19]. This 
algorithm introduces a proximal term to the local objective and computes an inexact 
solution to the local objective function, enabling heterogeneous devices to achieve 
convergence more quickly and proceed to the global aggregation stage. However, it has 
been noted that the naive averaging aggregation methods used in both FedAvg and 
FedProx can indirectly lead to inconsistencies between local and global objectives, thereby 
reducing the test accuracy of the model [20]. Furthermore, some argue that most federated 
learning methods handling heterogeneous data rely on the transmission and aggregation 
of gradient parameters, which can incur substantial communication overhead and risk 
gradient leakage [21]. 

Alternative strategies have proposed the FedProto algorithm, which employs the 
prototype concept to update local models, offering a new perspective for handling 
heterogeneous data in federated learning [22,23]. However, the FedProto algorithm 
requires a fixed workload for local training even with small-sample data, and 
heterogeneity is more likely to lead to overfitting or underfitting of the model [24]. 
Moreover, the weighted aggregation method in FedProto treats all local prototypes 
equally, without considering that some prototypes may have a greater influence on the 
global prototype, resulting in local deviations from the global prototype. Additionally, the 
feature extraction method of the prototype network embedding layer can easily cause 
class embeddings to be compressed to a single point when the number of input training 
samples is limited [25]. To address the issue of the collapse of different sample embedding 
vectors into a single point, triplet loss contrastive learning was proposed, which aims to 
bring features with the same label closer in spatial position while pushing those with 
different labels farther apart [26]. However, since triplet loss essentially involves pairwise 
similarity comparisons between samples, it is susceptible to the influence of sample size 
and the selection of positive and negative samples [27]. If triplet loss alone is used to train 
a network on a small-sample dataset, the model may converge to a suboptimal solution. 

In summary, while existing FL algorithms possess certain strengths, they have not 
adequately addressed the negative impacts of data sample and training heterogeneity on 
model performance. Effectively handling heterogeneous data, utilizing prototypes to 
transmit heterogeneous model parameters, and efficiently aggregating local models 
remain ongoing challenges in the field of Federated Learning. Therefore, considering 
specific contexts, especially the privacy protection requirements in multimodal emotion 
recognition within healthcare settings—such as handling sensitive medical data—this 
paper addresses the issue of data heterogeneity across clients. Building upon the FedMPD 
algorithm, we propose a strategy based on distance optimization and aggregation to 
achieve stable convergence during client-side multimodal training in heterogeneous 
environments. 

Would you like me to move on to the Methodology section or help you with the 
Abstract and Conclusion using these same constraints? 
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3. Method 
The multimodal federated learning emotion recognition algorithm proposed in this 

paper, designed for client-side speaker heterogeneous data, is broadly divided into two 
phases: client-side multimodal modeling and server-side federated aggregation. 

3.1. Client-Side Multimodal Intra-Modal and Inter-Modal Modeling 
This section sequentially presents the definition of multimodal, the design of 

modality encoders, multimodal fusion, and an introduction to the emotion classifier. 

3.1.1. Client-Side Multimodal Definition 
Let the conversation consist of N consecutive utterances {u1, u2,⋯ , uN} and M clients, 

assuming that each client represents a speaker {s1, s2,⋯ , sN}. Each utterance ui is spoken 
by a speaker Sφ(ui), where φ is a mapping between an utterance and its corresponding 
speaker index. Each utteranceuiinvolves textual (t), acoustic (a), and visual (v) modalities. 
We denote the sequences of textual, acoustic, and visual modalities for all utterances in 
the conversation as Ut = [u1t ; u2t ;⋯ ; uNt ] ∈ RN×dt , Ua = [u1a; u2a;⋯ ; uNa ] ∈ RN×da , and Uv =
[u1v; u2v;⋯ ; uNn ] ∈ RN×dv , respectively. The ERC task aims to predict the emotional label 
DDD ui  for each utterance from a predefined set of emotion categories. Each client 
performs local training using a Transformer-based self-distillation model [28]. 

3.1.2. Modality Encoders 
The primary function of the modality encoder is to learn intra-modal and inter-modal 

interactions among conversational utterances by obtaining enhanced modality sequence 
representations. To describe the intra-modal and inter-modal encoders more clearly, let 
two modalities be denoted as m and n, with Hm and Hn representing the multimodal 
utterance sequences corresponding to modalities m and n, respectively, where m ∈
{t, a, v}, n ∈ {t, a, v}− {m}, and t, a, v stand for text, audio, and video, respectively. 

-- For the intra-modal encoder, a Transformer-based model is employed, where the 
query, key, and value are set to the same Hm. The extraction of intra-modal information 
can thus be expressed as Equation (1): 

Hm→m = Transformer(Hm, Hm, Hm) ∈ RN×d       (1) 
This intra-modal transformer enhances the representation of the m-modal sequence 

for capturing intra-modal interactions within the utterance sequence. 
-- For the cross-modal transformer, with Hm as the query and Hn as the key and 

value, the inter-modal interaction information can be represented by Equation (2): 
Hn→m = Transformer(Hm, Hn, Hn) ∈ RN×d        (2) 
This Transformer model enables the transfer of information from the m-modal to the 

n-modal, capturing inter-modal interactions within the utterance sequence. 

3.1.3. Multimodal Fusion Based on Attention Weight Scores 
The main function of this module is to dynamically learn the weights of different 

modalities and enhance the fused representation between them. 
Let the output of the m-modal corresponding to text, audio, and visual be a d × 1 

dimensional sequence vector X ∈ Rd×1, where d is an integer. The normalized Pearson 
correlation coefficient between the previous modality and the current m-modal is denoted 
as ρ ∈ {0，⋯，1} . This coefficient is used as the initialized attention score, and the 
modality vector X is then optimized by readjusting it based on the attention score. 

Let W ∈ RF×U be the trainable weight matrix corresponding to the three modalities 
at the current moment, where U is the number of units in the intermediate layer (typically 
a hyperparameter). tanh denotes the hyperbolic tangent activation function. According 
to Equation (3), the nonlinear relationship of the extracted feature ui is: 

ui = tanh(X ∙ W)            (3) 
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Let V ∈ RU×1 be the training matrix from the previous modality. Using Equation (4), 
the feature relationship can be transformed into a scalar score ei ∈ RN×1:  

ei = ui ∙ V             (4) 
To prevent the attention scores ei  from having an excessive range of values, 

appropriate scaling is required. Let U denote the dimension of matrix V. The attention 
weights ai are calculated by normalization using the softmax function: 

ai = softmax� ei
√U
�            (5) 

Then, adjust the weight ai based on Equation (5) and the initial attention score ρ. 
First, an anomaly factor β is introduced. To prevent the weight from becoming negative, 
let the range of β be {−1,+∞]. When β = 0, it indicates no additional weight is added to 
the data; when −1 < β < 0it indicates a reduction in the weight assigned to the data; and 
when β > 0, it indicates an additional weight is added to the data. Using the correlation 
coefficient ρ and the attention weight ai, the adjusted attention weight ai′ for the current 
modality encoding X’ is calculated by the formula: 

ai′ = ρ ∙ �1 + β ∙ ai�           (6) 
Each feature in the three-modality vector X is scaled using the adjusted attention 

weight ai′ described above, resulting in: 
X′ = ai′ ∙ X             (7) 
Thus, the feature data X  of modality m has been scaled based on the adjusted 

weights. 

3.1.4. Emotion Classifier Module for Predicting Emotional Labels 
To compute the probability of identifying emotion categories, the multimodal 

sequence of conversational utterances obtained in the previous step can be fed into a 
softmax classifier. The procedure can be referred to in reference [29]. 

Here, the Transformer self-distillation mechanism is employed to transfer knowledge 
from the global model's soft labels and hard labels to each modality, thereby enhancing 
the representation capability of individual modalities. 

3.2. Distance-Optimized Server-Side Federated Aggregation 
The server receives the locally computed feature centroids (i.e., the feature centers 

for each category) uploaded by each client and performs distance-weighted aggregation. 
(1) Feature Extraction： The client extracts features via an embedding network and 

performs clustering locally to obtain local feature centers. 
The core idea of the client-side embedding network is to transform high-dimensional 

heterogeneous image inputs into low-dimensional embedded vector outputs through 
multi-layer nonlinear transformations. Taking the image modality in the m-modality as 
an example, the client speaker inputs the local heterogeneous image data xi  into the 
embedding network. After a series of transformations by convolutional layers and fully 
connected layers, the embedded vector gϕ(xi)  is obtained. This embedded vector is 
mapped to a space of OUTDIM dimensions, where OUTDIM represents the 
dimensionality of the embedded vector. In this space, feature vectors of samples from the 
same category are tightly clustered together, while feature vectors of samples from 
different categories are pushed apart to maintain sufficient distance, thereby enhancing 
the discriminative capability of the features. Without loss of generality, each dimension of 
the three modalities is processed in this manner. 

Distance Correction： Distance correction is primarily reflected in the design of the 
client-side loss function. By introducing a contrastive loss term, inter-class 
discriminability is enhanced. In the FedMPD algorithm, the client-side loss function ℒ( ∙ ) 
is designed as shown in Equation (8): 

ℒ(ωi) = ∑ |Di|
N

n
i=1 ℒS(fi(ωi;xi),yi) + λ∑ ∑ �Di,k�

Nk
ℒregk (ci

(t,k),c(t,k)) K
k=1

n
i=     (8) 
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In Equation (8), ωi  represents the local model of the client, xi  denotes the data 
samples used by the client for model training, while fi(ωi;xi) and yi correspond to the 
predicted value and the true label of the sample, respectively. The second term on the 
right-hand side of the equation is the regularization term of the original loss function in 
Equation (8), which aims to mitigate the deviation between the local and global label class 
prototypes. Here, ci

(t,k),c(t,k)  represent the local label class prototype and the global 
prototype, respectively, and λ is the regularization hyperparameter for this term, which 
is set to a fixed value of 0.1 in this paper. 

To ensure that prototypes that are close in distance but belong to different label 
classes remain distinguishable, the FedMPD algorithm introduces a contrastive loss 
regularization term  ℒregk (ci

(t,k),c(t,k)), formulated as shown in Equation (9), in addition to 
the supervised learning loss function ℒS(fi(ωi;xi),yi) . This term encourages local 
prototypes of the same label class to converge toward the global prototype, while local 
prototypes of different label classes are pushed away from it, with a minimum separation 
distance of r. As shown in Equation (9), the distance r is defined as the distance between 
the k -th label class prototype and its nearest (k + 1 − th)  global prototype, i.e., r =
min d(c(t,k),c(t,k+1)), as expressed in Equation (9). 

ℒregk (ci
(t,k),c(t,k)) = ∑ ∑ d(ci

(t,k),c(t,k))K
k=1

n
i=1 + ∑ ( max�0,r− d(ci

(t,k),c(t,l))� )l≠k   (9) 
Weighted Aggregation： Weights are dynamically assigned based on the distance 

between local and global, where closer distances correspond to larger weights, as shown 
in Equation (10): 

c(t+1,k) = ContrScore ∙ ∑ ∑ ∇ci
(t,k)K

k=1
n
i=1 。       (10) 

3.3. Overall Training Procedure 
Based on Sections 3.1 and 3.2 above, the overall workflow of the multimodal 

federated learning emotion recognition algorithm for client-side speaker heterogeneous 
data can be divided into four steps: 

（1）Clients train the SDT model using local multimodal data; 
（2）Clients upload the trained model parameters to the server; 
（3）The server performs distance-weighted aggregation to update the global model; 
（4）The global model is distributed to clients for the next round of training. 
The detailed multimodal federated learning emotion recognition algorithmic process 

is outlined in Table 1. 

Table 1. Multimodal Federated Learning Emotion Recognition Algorithm. 

For client 𝐢𝐢 in round 𝐭𝐭 of FL: 
Input: Client's local multimodal dataset 𝒟𝒟i, global model c(t,k),  number of clients i =
1, … , n, hyperparameter for the contrastive loss regularization term λ, local model from 

the previous round wi
t 

Output: The client trains the Self-Distillation Transformer (SDT) model using local 
multimodal data, producing the local model wi

t+1 for round t 
1 n client speakers participate in the training 

2 The server sends the global model  c(t,k) to the client 
3 The client receives the global model 

4 The client performs the following operations: 
5 Update the local model ci

(t,k) = 1
�Si,k�

∑ gϕ(xi)(xi,yi)∈Si,k  

6 IF d(gϕ(xi),ci
(t,k)) + α < d(ci

(t,k),ci
(t,k+1)) THEN 

7 Compute the loss 

ℒ(ωi) = �
|𝒟𝒟i|

N

n

i=1

ℒS(ℱi(ωi;xi),yi) + λ��
�𝒟𝒟i,k�

Nk
ℒregk (ci

(t,k),c(t,k))
K

k=1

n

i=
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8 Update the local model using gradient descent 

wi
t+1 ← wi

t − η
∂ℒ�ωi;xi�

∂ωi
 

9 The local model is retained on the client side wi
t+1 

10 Upload the local model ci
(t,k)to the server 

11 The server performs distance-weighted aggregation to update the global prototype 
c(t+1,k) 

c(t+1,k) = �� (r− d(ci
(t,k),c(t,k)))ci

(t,k)
K

k=1

n

i=1

 

12 The server distributes the local model for round t + 1 denoted as c(t+1,k)。 

4. Experiments 
This paper implements the proposed model using PyTorch and compares it with the 

following baseline models. 
CMN: It uses two GRUs and memory networks to model contextual information for 

two speakers but is only suitable for dyadic conversations [30]. 
ICON: An extension of CMN, it uses another GRU to capture emotional influence 

between speakers. Similar to CMN, this model is designed for dyadic conversations. It 
employs three different GRUs to track the speaker, context, and emotional state in the 
conversation, respectively. The aforementioned models concatenate textual, acoustic, and 
visual features to obtain multimodal utterance representations [31]. 

MMGCN: It constructs a conversational graph based on all three modalities and 
designs a multimodal fusion graph convolutional network to model contextual 
dependencies across multiple modalities [32]. 

dialogueTRM: It uses a hierarchical transformer to handle differentiated contextual 
preferences within each modality and designs a multi-grained interactive fusion to learn 
the varying contributions of an utterance across modalities [33]. 

MM-DFN: It designs a graph-based dynamic fusion module to integrate multimodal 
contextual features, reduce redundancy, and enhance complementarity between 
modalities [34]. 

MMTr: It utilizes different bidirectional long short-term memory networks (Bi-
LSTMs) to learn contextual representations at both the speaker's self-context level and the 
conversational context level, and designs a cross-modal fusion module to enhance 
representations of weaker modalities [35]. 

For a fair comparison, we re-ran all baseline models. 

4.1. Dataset and Settings 
The multimodal emotion recognition training model for clients is primarily 

evaluated on the IEMOCAP dataset. By simulating the heterogeneity of client data in 
federated learning, the performance of the proposed model is assessed. 

The federated learning framework follows the experimental approach outlined in 
reference, with the local training epochs fixed at 50. The data is distributed across 20 node 
devices, and the number of sample categories per device is generated using a random 
number generator. During the training phase, the server prioritizes selecting "online" 
clients and those with data volumes in the top 50% to participate in federated modeling 
[36]. 

For client-side multimodal emotion recognition, Adam is used as the optimizer. The 
initial learning rate for IEMOCAP is set to 1.0e−4 , with a batch size of 16 and a 
temperature τ set to 1. For the 1D convolutional layers, the number of input channels for 
the text, acoustic, and visual modalities (i.e., their corresponding feature dimensions) on 
IEMOCAP is set to 1024, 1582, and 342, respectively. For all three modalities on the dataset, 
the number of output channels and kernel size are set to 1024. For the Transformer 
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encoder, its hidden size, number of attention heads, feedforward size, and number of 
layers are set to 1024, 8, 1024, and 1, respectively. To prevent overfitting, the L2 weight 
decay is set to 1.0e−5, and dropout is applied with a rate of 0.5. All results are averaged 
over 10 runs [28]. 

4.2. Results and Analysis 
The experiments show that Table 2 presents the performance of the baselines and the 

proposed method on the IEMOCAP dataset. On the IEMOCAP dataset, the proposed 
method outperforms all baselines, achieving improvements of 1.76% in overall accuracy 
and 2.35% in weighted F1-score compared to MMTr. Additionally, significant 
improvements are observed in the F1-scores for most emotion categories. 

Table 2. Performance of Various Models on the IEMOCAP Dataset. 

Modcls 

IEMOCAP 
happy sad neutral angry CXcited fnustrated  

ACC AC
C F1 

A
C
C 

F1 AC
C F1 

A
C
C 

F1 
A
C
C 

F1 ACC F1 F1 

CMN 23.31 20.3
0 56.33 61.

52 
52.3

4 
51.
31 60.76 

60
.1
7 

57.
19 

61.
75 72.46 62.27 54.8

7 
56.3

3 

ICON 26.00 32.3
0 

66.3
5 

72.1
7 

56.9
9 

58.5
0 

68.4
1 

66.2
9 

70,9
0 

68.0
1 

75.9
2 

65.0
8 

62,8
5 

62.2
5 

MMGCN 32.64 38.63 71.6
5 

73.8
9 

65.1
0 

62.8
1 

73.5
3 

72.4
3 

77.9
3 

74.4
2 

65.1
9 

63.6
3 

66.6
1 

66.2
5 

DialogueTRM 60.21 56.85 85,4
0 

80.4
5 

66.2
7 

68.5
6 

76.4
7 

65.9
9 

75.1
5 

76.1
6 

51.3
9 

58.0
9 

68.5
2 

68.2
0 

MM-DFN 34.44 45.41 76.5
5 

77.1
0 

72.1
5 

66.9
9 

75.8
8 

70.8
8 

74.6
5 

76.4
2 

58.2
7 

61.5
7 

67.8
4 

67.8
5 

MMTr 67.64 54.67 84.4
9 

87.7
7 

76.1
4 

71.6
6 

71.5
9 

65.0
4 

75.2
4 

76.2
6 

55.9
1 

62.2
9 

69.7
7 

69.9
1 

Our method 73.81 67.12 
 

78.8
1 

82.9
4 

78.6
3 

76.2
2 

72.9
8 

69.9
6 

77.7
9 

81.1
8 

66.1
4 

70.6
8 

74.9
5 

75.0
8 

Moreover, in heterogeneous environments, the model demonstrates more stable 
convergence with smaller fluctuations. The proposed model does not require uploading 
raw data, meaning the data never leaves the local devices—only model training 
parameters are exchanged. This satisfies the privacy protection requirements of each client. 

5. Conclusion 
This paper proposes a federated learning-based multimodal emotion recognition 

model that balances the efficient fusion of multimodal information with data privacy 
protection. By employing intra-modal and inter-modal encoders, the model captures 
interactions both within and across modalities in conversational utterances. To 
dynamically learn the weights between different modalities, we designed an attention 
mechanism-based fusion strategy. This allows the model to adjust the weights of different 
modalities according to the context when uploading to the global model, further 
enhancing overall performance. Experiments were conducted on the IEMOCAP dataset, 
and the results demonstrate the high effectiveness, superiority, and privacy security of the 
proposed method. 

Through the experiments in this paper, we observed that, beyond optimizing the 
model structure and adapting to the computational constraints of edge devices, 
dynamically adjusting modality weights, enhancing the discriminative capability of 
multimodal representations, and addressing low-correlation emotions under privacy 
protection remain further challenges in emotion recognition. These aspects will be 
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explored in future work. The framework presented in this paper offers a new perspective 
at the intersection of multimodal emotion recognition and federated learning. 
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