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Abstract: In digital scenarios, traditional linear causal inference models struggle to accurately depict
complex causal relationships due to the breadth of data sources and intricate environmental
dynamics. This study establishes a dynamic causal inference model suited to digital contexts based
on dynamic systems theory. The model comprises multiple layers: data input, generation and
evaluation of causal relationships, feedback and learning of causal relationships, and visualization
of outcomes. This model automatically adjusts and refines causal structures, exhibiting adaptability
and stability. Through time-varying modelling and machine learning optimization strategies, it
achieves greater flexibility and interpretability in high-dimensional, non-stationary data scenarios.
The research serves as a tool to address practical challenges in digital governance, intelligent
decision-making, and social science experimentation.
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1. Introduction

With the rapid advancement of the digital economy, data has become a critical
production factor. However, its high-frequency generation and complex interactive
characteristics pose new challenges for causal identification. Traditional causal inference
methods are often built upon static assumptions and linear relationships, making it
difficult to effectively capture the dynamic dependencies and feedback effects inherent in
digital data. How to achieve dynamic identification and optimization of causal
relationships within complex, heterogeneous, and time-varying environments has thus
become a significant research topic. This paper attempts to construct a self-learning, self-
evolving framework for digital dynamic causal inference at both systemic and
methodological levels, aiming to provide new theoretical underpinnings and application
insights for intelligent systems and data science research.

2. New Paradigms for Causal Inference in Digital Environments
2.1. Characteristics of Digital Data and Causal Complexity

Data in the digital era exhibits multi-source heterogeneity, high-dimensional
dynamics, and strong non-linearity. It is not only voluminous and frequently generated
but also diverse in origin, encompassing sensor recordings, social interactions,
transactional behaviors, and web logs. Such data possesses time-varying and feedback-
driven characteristics, with variables exhibiting multi-layered nesting and dynamic
coupling relationships. This results in causal chains that are non-stationary and uncertain.
Traditional causal identification methods based on static samples struggle to
accommodate this complexity, frequently overlooking factors such as temporal evolution,
system interventions, and environmental perturbations. Consequently, establishing
analytical frameworks capable of characterizing dynamic dependencies, capturing causal
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feedback loops, and accommodating adaptive evolution within digital environments has
become a crucial direction for causal inference research [1].

2.2. Limitations of Traditional Causal Inference Models

Traditional causal inference methods predominantly operate under assumptions of
fixed structure and static samples. Approaches such as structural equation modelling,
propensity score matching, or regression discontinuity design may reveal stable
relationships between certain variables, yet struggle to accommodate time-varying and
non-linear systemic environments. Granger causality analysis captures temporal
dependencies but relies excessively on stationarity assumptions, struggling to explain true
causal directions amid complex interactions. Faced with large-scale, multidimensional
datasets featuring frequent feedback loops, these models exhibit insufficient robustness
and generalizability. Causal analysis in digital contexts demands novel dynamic
modelling approaches, enabling causal relationships to adjust in real-time with data
changes while maintaining stable interpretations [2].

2.3. Theoretical Shift Towards Dynamic Causal Inference

The advent of dynamic causal inference signifies a shift in causal analysis research
from static assumptions towards evolutionary systems [3]. Dynamic causal inference
methods no longer treat causal relationships as fixed cause-and-effect pairs, but instead
emphasize the continuous variation in the strength, direction, and temporal sequencing
of interactions between variables. By incorporating temporal dimensions and feedback
mechanisms into models, researchers extend causal modelling into dynamic processes
that evolve with state changes. Within this theoretical framework, the interaction between
system state updates and external interventions jointly shapes causal pathways. The
dynamic model structure adapts parameters and weights in response to evolving data
flows. Drawing upon concepts from system dynamics, reinforcement learning, and
adaptive optimization, the theoretical system of dynamic causal inference provides a
more practically relevant analytical pathway for uncovering the generation and evolution
of causal relationships within complex systems [4].

3. Principles and Structural Design of Dynamic Causal Modelling
3.1. Foundations of Causal Modelling from a Dynamic Systems Perspective

Dynamic causal modelling centres on time series and system dynamics, emphasizing
the describability and computability of causal relationships as they evolve over time. The
state of a system at discrete time points is characterized by structural equations, whose
core form is:

Xe—1=f(Xp, A €, @D

Here, X, denotes the state vector at time t (which may contain multidimensional
features and lagged terms), A« represents external interventions or control inputs (such as
strategies, prices, or policy signals), and e: signifies unobserved disturbances. The function
f(.) maps the sequence "historical state - current intervention - random disturbance" to the
"next-period state", forming a recursive causal chain.

To assess intervention effects independently of state evolution, the causal impact of
outcome variable Yt on intervention At is typically measured by the average treatment
effect:

ATE = E[Y, | A, = 1] — E[Y; | A, = 0]. @)

This metric ATE corresponds to the outcome difference between different
intervention assignments under the same data generation mechanism. It requires
controlling for confounders and temporal dependencies in modelling to ensure
interpretability and robustness of the estimates. The dynamic perspective extends causal
identification from one-off estimation to sequential inference: state transitions characterise
structural evolution, while effect metrics quantify intervention impacts. Together, they
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underpin subsequent time-varying structure learning, adaptive correction, and closed-
loop feedback design, providing a methodological foundation for continuous decision-
making and online optimization in digital scenarios [5].

3.2. Time-Varying and Adaptive Modelling of Causal Structures

Within digital systems, causal relationships continuously adjust in response to
temporal shifts, environmental changes, and variations in input characteristics. Static
models, which assume fixed variable relationships, struggle to capture such dynamic
dependencies. To characterize the temporal evolution of structures, the dynamic causal
framework introduces an updatable causal weight matrix. This matrix represents the
changing causal strengths between variables within the system. Its update process can be
formalized as:

AW, = gW, —1,L,) 3)

Here, AW, denotes the weight change quantity, reflecting the adjustment magnitude
of the causal structure between consecutive time steps; We1 represents the weight matrix
at the previous time step; Lt denotes the learning loss or adaptive criterion of the system
at time step t; and the function g(.) defines the mapping between the old structure and the
learning criterion. Through this mechanism, the model can adaptively correct parameters
when data streams change, enabling continuous learning and updating of time-varying
patterns.

To further validate the model's time-varying characteristics, one may statistically
analyses the evolution of weight updates across different phases, thereby observing the
system's responsiveness within dynamic environments. Table 1 presents a comparison of
causal weight variation magnitude and stability across three distinct time intervals.

Table 1. Statistics on causal weight variation across different time periods.

Time Interval Average Weight Variance Stability Level Update
Change Range Frequency

T1-T2 0.042 0.007 High 3 times

T2-T3 0.061 0.012 Moderate 5 times

13-T4 0.037 0.006 Very High 2 times

It can be observed that the model exhibits the most pronounced weight changes
during the T2-T3 phase, indicating that when input data or external conditions become
more volatile, the system proactively adjusts its causal structure to maintain predictive
and interpretative capabilities. Conversely, during the T3-T4 phase, changes tend to
stabilize, suggesting that the model structure gradually converges and maintains a high
degree of stability. This outcome validates the effectiveness of time-varying causal
modelling within dynamic data environments.

3.3. Causal Optimization Mechanism of the Fusion Learning Algorithm

Within complex digital environments, data frequently exhibits high-dimensional,
non-linear, and noisy characteristics, rendering traditional causal models prone to bias in
parameter estimation and structural identification. To enhance the learning efficiency and
stability of dynamic causal modelling, the framework incorporates a fusion learning
algorithm. This combines deep representation learning with causal consistency
constraints to achieve a balance between predictive accuracy and interpretability. This
optimization approach is realized through the design of a composite loss function,
formulated as follows:

L= Lpred + ALcqusar 4)

Here, L denotes the overall loss function, Ly, represents the error term in the
model's predictive task, reflecting fitting accuracy; L.qusq constitutes the causal
consistency constraint term, penalizing deviations from causal direction during model
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learning; A serves as the trade-off coefficient, regulating the relative importance of both
loss components. When A is appropriately calibrated, the model maintains both predictive
performance and causal interpretability, achieving stable convergence of results.

In practical optimization, model parameter updates employ a gradient descent
mechanism, enabling iterative computation for self-learning adjustments to causal

weights. The update rule may be expressed as:

oL
Wi =W, — Ua_Wt @)

Here, W, denotes the causal weight matrix at time step t, while W, represents the

. N . . . . . aL
updated weights; 7 signifies the learning rate, controlling the step size per iteration; s

denotes the gradient with respect to the overall loss function, guiding the optimisation
direction. This update mechanism enables the model to progressively refine its weight
parameters through iterative refinement, strengthen causal constraints, and incrementally
enhance the accuracy and robustness of structural recognition.

The introduction of fusion learning algorithms endows dynamic causal models with
an intrinsic cyclical mechanism of "learning-correction-relearning". The model extracts
deep features from multi-source data inputs while maintaining structurally correct causal
directions through consistency constraints. This approach reduces noise interference and
enhances the system's generalisation capability. Compared to traditional static modelling,
this optimisation mechanism demonstrates superior convergence speed and adaptive
capacity in complex environments, providing algorithmic support for subsequent
feedback and closed-loop design.

3.4. Feedback and Closed-Loop Structures in Causal Inference

A core feature of the dynamic causal inference framework is the formation of a
"feedback-correction-relearning” closed-loop structure during modelling. Unlike
traditional static causal models, the closed-loop system not only identifies causal
directions between variables but also enables continuous self-correction of the model's
structure through feedback mechanisms. The introduction of feedback allows the model
to automatically update parameters when prediction biases arise, thereby maintaining the
dynamic stability of inference results.

In its operational mechanism, the system first assesses the discrepancy between
forecast outputs and actual observations. When the prediction error exceeds a
predetermined threshold, the feedback loop is triggered to compute the correction
quantity and apply it to parameter updates. This process may be formalised as follows:

F@t) = (Y, - 1) (6)

Here, F(t) denotes the feedback intensity, Y: represents the actual observed value,
Y, signifies the model-predicted value, and ¢() serves as the error mapping function,
which determines the feedback intensity and the direction of parameter adjustment. By
converting the error into a parameter correction signal, the system achieves self-regulation
through iteration, progressing from deviation identification to structural repair.

The advantage of closed-loop structures lies in their capacity to form a dynamic cycle
of continuous optimisation. Each feedback loop not only corrects parameter deviations
but, more significantly, acquires new structural parameters, providing crucial insights for
subsequent construction phases. As the number of iterations increases, the system
approaches equilibrium, progressively enhancing the precision of causal relationship
identification. This feedback-driven closed-loop modelling process transforms traditional
causal research from ‘'static deduction of causal relationships” to "dynamic
comprehension". The evolutionary trajectory, shaped by the model's self-adaptation, more
accurately reflects the actual direction of system change. Consequently, closed-loop causal
inference possesses three defining characteristics: continuous learning, dynamic
adaptation, and long-term stability. These form the foundation for intelligent analysis and
decision-making within complex digital systems.
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4. System Integration and Operational Mechanisms of the Digital Dynamic Causal
Framework

4.1. Framework Architecture and Module Synergy

The Digital Dynamic Causal Framework adheres to hierarchical and collaborative
principles, aiming to achieve systematic operation encompassing causal identification,
parameter learning, structural refinement, and visualised outcomes. The framework
comprises five modules: Data Input Layer, Causal Modelling Layer, Inference Execution
Layer, Feedback Regulation Layer, and Visualisation Output Layer. These layers
sequentially interconnect with complementary functions, collectively forming the
complete chain of dynamic causal inference.

Data flow serves as the central thread, with information sequentially transmitted
between layers to complete the entire process from data acquisition to inference output.
The data input layer provides standardised feature data. The modelling layer generates
network structures based on time-varying causal principles. The inference execution layer
then performs effect estimation and prediction accordingly. Inference results are
monitored and corrected by the feedback adjustment layer before returning to the
modelling stage, enabling parameter self-calibration and structural optimisation, thereby
forming a self-learning closed loop. Figure 1 illustrates the framework's structure and
operational logic, demonstrating a dynamic closed-loop system progressing from data to
cognition, and from inference to optimisation.

( Data Input Layer )

Aggregates multi-source heterogeneous data and performs
format unification, feature extraction, and noise suppression.

(A

( Causal Modeling Layer )

Builds a time-varying causal network structure to describe
dynamic relationships among variables.

e

( Inference Execution Layer )

Estimates and predicts causal effects to generate inference results.

(A

( Feedback Adjustment Layer )

Monitors errors in real time and performs structural self-correction
to achieve continuous optimization.

(A

( Visualization Layer )

Presents causal relationships and system evolution results through
charts and interactive interfaces.

Figure 1. Schematic Diagram of the Structure and Operation of the Digital Dynamic Causal
Framework.

Compared to static causal analysis, this framework introduces feedback pathways
and multi-layer coupling mechanisms, endowing the inference process with continuous
adjustment and dynamic learning capabilities. By maintaining information consistency
and parameter synchronisation across modules, the system enables real-time updates and
robust learning of causal relationships within complex data environments.
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4.2. Dynamic Execution Path of the Causal Inference Process

During system operation, the causal inference process dynamically unfolds along the
"input-modelling-estimation-correction" pathway. Each stage corresponds to distinct data
flow configurations and computational objectives. The input module integrates multi-
source features before transmitting them to the modelling layer, generating time-varying
causal networks. The execution layer calculates causal effects based on model parameters,
generally expressed as:

E[Y|A Xe] = [ f(Y|A, X)) p(XdX, )

Here, E[Y;|A;, X;] denotes the expected value of the outcome variable given the
intervention At and feature X,; f(Y;|A;, X,) represents the conditional probability density
function of the outcome distribution; and p(X;) isthe marginal distribution of the feature.
This formula embodies the propagation relationship of causal effects within the
conditional space, constituting the core computational logic of the inference process.

To stabilise operational trajectories, dynamic threshold buffers and gradient
detection capabilities are incorporated into the estimation process to capture model errors
and anomalous data. When errors exceed thresholds, the control process triggers
parameter adjustment logic, enabling the graphical model to achieve optimal operation
during cyclical phases. This dynamic execution flow integrates causal determination,
subsequent estimation, and structural evolution of the graphical model into a unified
computation, thereby sustaining the system's superiority.

4.3. Interpretability of Causal Outcomes and Intelligent Visualisation Presentation

Beyond pursuing accurate predictive outcomes, the digital dynamic causal
framework prioritises interpretability and presentation during causal inference. The
explanatory analysis module quantifies the influence of input variables on outcome
variables while exploring the model's internal logical structure and key effectors. It
calculates importance based on the principle of average variable contribution, expressed
in its fundamental form as:

0 = =20 (Vi = vie) ®)

Here, ¢; denotes the mean contribution value of the i-th variable, serving to measure
its overall impact on the model output; n represents the sample size or number of
computations; y,; indicates the model's predicted result when this variable is included
in the k-th computation; y, denotes the baseline output value for the corresponding
sample after removing this variable. The difference between the two reflects the average
incremental effect of this variable on the output result. When ¢; > 0, the variable exhibits
a positive relationship with the output; when ¢;<0, it demonstrates an inhibitory effect.
This metric comprehensively reflects the relative importance of different variables in
system prediction and interpretation.

Presenting interpretability analysis results through visual representations. The
system constructs causal path diagrams, contribution bar charts, and dynamic trend
curves based on variable importance, facilitating the display of significant causal
relationships, their intensity, and developmental trajectories. Utilizing these visualization
methods enables users to directly comprehend the model's reasoning process, identify
dominant factors and dynamic adjustments, and transform complex data into easily
readable and actionable knowledge. This provides a foundation for subsequent strategy
optimization and decision-making.

4.4. System Stability and Scalability Design

To ensure reliability under multi-source data streams and long-term operation, the
framework incorporates stability and scalability design at the system level. Stability is
enhanced through parameter normalization, dynamic regularization, and multi-cycle
evaluation methods to mitigate model bias. Regarding scalability, the system supports
concurrent deployment of multiple modules, enabling diverse computing nodes to
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participate in computations. Resource allocation occurs automatically based on data
volume and task complexity. To validate the system's performance, multiple simulation
trials compared traditional static causal models with this framework across varied
scenarios. Performance comparisons of the three models using identical datasets are
presented in Table 2.

Table 2. Comparison of Dynamic Causal Inference Performance Across Different Models.

Average Error Convergence - Interpretability
1T lity I
Model Type (RMSE) Speed Stability Index Score
Static Structural 0.081 Slow 072 063
Equation Model
Time-Series Granger
0.067 Moderate 0.79 0.70
Model

Digital Dynamic 0.042 Fast 0.91 0.88

Causal Framework

Results demonstrate that the digital dynamic causal framework outperforms
traditional models in terms of error, convergence, and stability, whilst significantly
enhancing interpretability metrics. The system maintains high operational precision and
robustness within complex, dynamic data environments.

5. Conclusion

Establishing a digital dynamic causal inference framework represents a substantial
extension of traditional causal analysis methodologies, especially in data-intensive and
rapidly evolving digital environments. Building on the model presented in this study-
which integrates data input, causal relationship generation and evaluation, iterative
feedback learning, and dynamic visualization-this conclusion synthesizes the key
theoretical insights and methodological contributions.

The findings highlight that causal relationships in digital contexts are not fixed but
time-varying, multi-layered, and highly sensitive to environmental perturbations. By
incorporating dynamic systems theory and leveraging machine learning-based
optimization strategies, the proposed framework enables causal structures to evolve in
response to new information. This confers a degree of adaptability and robustness that
traditional static or linear causal models cannot achieve. The framework's capacity for
continuous learning and self-correction ensures that it remains effective in managing
high-dimensional, heterogeneous, and non-stationary data streams that typify digital
ecosystems.

Moreover, the integration of dynamic modelling with algorithmic feedback loops
significantly enhances interpretability. Rather than treating causal inference as a one-time
analytical process, the framework promotes an ongoing interaction between data signals
and causal mechanisms, making it possible to reveal deeper structural patterns and
emergent dynamics. This dynamic interpretability is particularly valuable in digital
governance, intelligent decision-making, and computational social science, where causal
relationships often shift in real time.

Overall, the study contributes both conceptual and operational advancements.
Conceptually, it reframes causal inference as a fluid, adaptive, and continually updated
process. Operationally, it provides practical tools and methodological pathways for
implementing dynamic causal analysis in complex digital environments. The proposed
framework thus offers a forward-looking foundation for intelligent system analysis,
decision-support architectures, and the optimization of automated models that rely on
evolving streams of digital information. It not only strengthens the methodological toolkit
for understanding digital-era causal complexity but also establishes a durable direction
for future research on dynamic, interpretable, and responsive causal inference systems.
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