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Abstract: Large language models have achieved remarkable capabilities in natural language 
processing, yet their inference cost remains a significant challenge due to high computation, 
memory usage, and latency. This study presents a cross-layer co-optimization framework that 
integrates algorithmic, compiler, and system-level strategies to enhance inference efficiency. 
Algorithmic techniques, including structured pruning, sparsity, quantization, and dynamic 
inference, reduce computational workload and memory footprint. Compiler optimizations, such as 
operator fusion, graph rewriting, and layout specialization, translate algorithmic improvements 
into hardware-efficient execution. System-level strategies, encompassing parallel execution, 
memory management, and KV cache optimization, further improve resource utilization and reduce 
latency. The framework synergistically coordinates these layers, providing a theoretically grounded 
approach for reducing FLOPs, memory consumption, and inference latency. Its adaptability extends 
to cloud, edge, and interactive deployment scenarios, offering a unified methodology for efficient 
and scalable large-model inference. This work contributes a systematic and extensible pathway for 
accelerating model inference without relying on empirical performance measurements. 
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1. Introduction 
1.1. Research Background 

Large-scale pretrained models (Large Language Models, LLMs) have achieved 
significant breakthroughs in natural language processing, multimodal understanding, 
and various human-AI interaction applications. However, as their parameter sizes 
continue to expand, the computational burden during the inference stage has increased 
dramatically. This growth results in substantial memory consumption, higher latency, 
and elevated energy costs, all of which directly restrict the practical deployment of LLMs 
in real-world systems [1]. 

At the same time, the demands for efficient inference have become increasingly 
diverse across different application scenarios. Cloud-based services emphasize high 
throughput and stable performance, while edge and mobile environments face stricter 
constraints on energy consumption and hardware resources. In interactive applications 
such as real-time translation, conversational agents, and intelligent customer service 
systems, low-latency responses are essential for ensuring user experience. Consequently, 
improving inference efficiency has become a central challenge for enabling the 
widespread adoption of large models. 
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1.2. Existing Challenges 
Despite the rapid progress in LLM architecture and system support, achieving high-

performance inference remains a difficult problem, mainly due to limitations at three 
different layers: 

1) Algorithmic inefficiencies. 
Redundant computation and the rapid expansion of the Key-Value (KV) cache lead 

to large memory overhead and limited throughput, especially in autoregressive decoding 
scenarios. 

2) Compiler-level constraints. 
Current compiler stacks often struggle to fully exploit hardware potential for LLM 

inference. Issues such as suboptimal operator fusion, insufficient support for low-bit 
quantization, and limited handling of dynamic shapes all hinder performance. 

3) System-level bottlenecks. 
System challenges, including memory scheduling, kernel dispatch overhead, and 

inefficient runtime architectures, further limit inference speed. These bottlenecks become 
more pronounced when serving multiple concurrent requests or deploying models on 
resource-limited devices. 

Overall, the separation of optimization efforts across algorithms, compilers, and 
systems prevents the formation of a unified optimization pipeline, leading to suboptimal 
inference efficiency [2]. 

1.3. Research Objectives and Contributions 
To address the limitations described above, this study investigates a cross-layer 

optimization paradigm that integrates techniques across the algorithm, compiler, and 
system levels. The main contributions of this paper are as follows: 

1) A unified perspective on three-layer co-optimization. 
The paper systematically analyzes the interactions between algorithmic techniques, 

compiler behaviors, and system runtime mechanisms, highlighting the necessity of 
coordinated design. 

2) A collaborative framework for efficient inference. 
A conceptual optimization framework is proposed to bridge the three layers, 

enabling information flow and performance feedback across them to achieve more 
effective inference acceleration. 

3) A theoretical analysis of performance benefits.  
Although no empirical experiments are conducted, the study provides a detailed 

theoretical evaluation showing how the proposed framework can reduce computation, 
memory usage, and latency in typical LLM inference scenarios. 

2. Inference Computation Characteristics 
2.1. Bottlenecks in Inference Computation 

Large Transformer models face significant computational and memory challenges. 
The self-attention mechanism introduces quadratic complexity with respect to sequence 
length L, and feed-forward networks contribute additional computation proportional to 
the hidden dimension d. The per-layer computational cost can be expressed as 

FLOPSlayer = 𝑂𝑂(𝐿𝐿2𝑑𝑑 + 𝑑𝑑2), 
highlighting that long sequences dramatically increase operations. Memory 

consumption is dominated by the KV cache, which grows linearly with sequence length 
and number of layers N: 

MemoryKV = 𝑂𝑂(𝐿𝐿 ∙ 𝑑𝑑 ∙ 𝑁𝑁). 
These expressions reveal why reducing sequence length, hidden dimension, or 

sparsifying computation is critical to improving efficiency [3]. 
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2.2. Transformer Block Critical Path 
Within each Transformer block, the critical path consists of multi-head attention, 

residual connections, normalization layers, and feed-forward networks. From a 
computational perspective, attention dominates for long sequences, while feed-forward 
layers dominate for very wide hidden dimensions. Formally, the total operations per 
block can be estimated as 

FLOPSblock = 𝑂𝑂(𝐿𝐿2𝑑𝑑 + 𝑑𝑑2), 
which matches the per-layer cost previously described. Memory bottlenecks follow 

a similar pattern, as intermediate activations and cached keys and values require storage 
proportional to 

Memoryblock = 𝑂𝑂(𝐿𝐿 ∙ 𝑑𝑑) + 𝑂𝑂(𝑑𝑑2), 
indicating that both computation and memory must be jointly considered when 

designing optimization strategies. 

2.3. Theoretical Formulation and Computational Complexity 
The computational characteristics of Transformer inference can be further 

understood through a theoretical analysis of its core operations. For a model with hidden 
size d, number of attention heads h, and sequence length L, the dominant cost arises from 
the self-attention mechanism. In autoregressive decoding, the query vector for the current 
token must attend to all previously generated tokens, resulting in a computational 
complexity of O(Ld) per layer for attention score computation and O(Ld) for the weighted 
aggregation of values. When extended across all layers, the total attention complexity 
becomes O(LdN), where N denotes the number of layers. The feed-forward network 
contributes an additional cost of approximately O(d2) per token due to its two-layer 
structure with an intermediate expansion dimension. While this component is compute-
intensive, its cost remains constant with respect to sequence length and therefore becomes 
relatively less dominant during long-context inference. 

Memory complexity also plays a crucial role. The KV cache requires storing key and 
value vectors of dimension d/h for each head across every layer, producing a memory 
footprint proportional to O(LdN). Accessing this cache during decoding introduces 
substantial bandwidth demand, as each new token triggers repeated retrieval of cached 
tensors across all layers. This repeated access often becomes the primary latency source 
on modern accelerators, where memory throughput limits overall performance more 
sharply than raw FLOPs. Together, these formulations reveal that the inference cost grows 
linearly with sequence length but multiplies across deep model stacks, underscoring why 
optimizing either computation or memory in isolation is insufficient. Instead, effective 
acceleration requires coordinated reduction of arithmetic operations, memory footprint, 
and data movement across the entire inference pipeline. 

3. Algorithmic Optimization Methods 
3.1. Pruning, Sparsification, Quantization, and Dynamic Inference 

Algorithmic optimization has emerged as one of the most active research directions 
for accelerating large-model inference, and existing studies have proposed a variety of 
approaches to reduce computational cost without fundamentally altering the Transformer 
architecture. Among them, pruning constitutes an important line of work. By eliminating 
parameters or structural components that contribute minimally to model predictions, 
pruning reduces both the computational load and memory footprint. Structured pruning 
methods, such as removing attention heads or reducing intermediate dimensions of feed-
forward networks, provide predictable latency benefits and are well aligned with 
hardware execution patterns. In contrast, unstructured pruning can achieve higher 
sparsity levels but often requires additional runtime support to fully exploit fine-grained 
sparsity. Despite these challenges, pruning consistently demonstrates that significant 
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redundancy exists in large models, making it a practical pathway for inference 
acceleration. 

Sparsification extends this idea by introducing explicit sparse patterns into matrix 
multiplications and attention operations. Research in this direction shows that enforcing 
block-sparse or head-sparse structures can substantially reduce multiply-accumulate 
operations, particularly in attention layers where computation scales with context length. 
However, sparsity must be carefully designed to ensure hardware-friendly execution; 
otherwise, the overhead of managing sparse indices can offset theoretical gains. Recent 
techniques explore learnable sparsity patterns or rely on routing-based architectures that 
selectively activate a subset of computation paths, thereby balancing accuracy and 
efficiency. 

Quantization represents another widely used strategy to improve inference 
efficiency. By reducing the numerical precision of model weights and activations from 
floating-point formats to lower-bit representations, quantization directly decreases 
memory bandwidth requirements and accelerates matrix multiplication on specialized 
hardware. Studies have demonstrated that 8-bit and even 4-bit quantization can maintain 
high accuracy when combined with calibration or post-training correction techniques. 
More advanced approaches perform mixed-precision quantization, assigning different bit 
levels to different layers or tensor types according to their sensitivity. The key challenge 
lies in managing quantization-induced numerical instability during attention 
computation and normalization, but ongoing research continues to push the boundary of 
ultra-low-bit inference [3]. 

Dynamic inference methods further enhance efficiency by reducing unnecessary 
computation at runtime. Instead of relying on static model structures, dynamic 
approaches adjust computational paths based on input difficulty, model confidence, or 
context characteristics. Examples include early exiting mechanisms that stop computation 
when intermediate representations yield sufficiently confident predictions, as well as 
dynamic token or layer skipping strategies that exploit redundancy among successive 
tokens. For large language models in particular, several studies highlight that many 
tokens contribute limited new information to the attention mechanism, making dynamic 
sparsity or selective KV cache updates effective in reducing both computation and 
memory usage. These methods shift the focus from static compression to adaptive 
resource allocation, enabling inference to scale more efficiently with input complexity. 

Overall, pruning, sparsification, quantization, and dynamic inference represent four 
complementary algorithmic directions that collectively illustrate the substantial 
redundancy present in large language models. When combined, these techniques can 
reduce arithmetic operations, shrink memory consumption, and mitigate latency, forming 
the algorithmic foundation for multi-layer inference optimization. 

3.2. Mechanisms of Computational Reduction in Algorithmic Optimization 
The effectiveness of algorithmic optimization techniques lies not only in their ability 

to compress model parameters but also in the specific computational mechanisms through 
which they reduce the arithmetic intensity and memory traffic of Transformer inference. 
Pruning achieves efficiency by directly eliminating redundant components from the 
model's computational graph. When entire attention heads, neurons, or feed-forward 
channels are removed, the corresponding matrix multiplications shrink proportionally, 
thereby reducing the dimensionality of intermediate tensors. This structural 
simplification shortens the critical computational path, lowers FLOPs, and decreases data 
movement, making inference both faster and more memory-efficient. Even when pruning 
is performed at a fine-grained level, the reduction in effective non-zero weights translates 
into fewer multiply-accumulate operations, provided that the underlying runtime system 
can exploit the resulting sparsity. 
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Sparsification reduces computation through deliberate introduction of structured or 
semi-structured zero patterns. By ensuring that large portions of query-key similarity 
matrices or feed-forward weight matrices do not require multiplication, sparsification 
lowers the number of active operations during attention and matrix transformation. 
Importantly, the computational savings arise when sparsity is aligned with hardware-
friendly patterns such as block-level or head-level sparsity, enabling accelerators to skip 
entire blocks of operations without expensive index handling. In the context of long-
context inference, sparse attention designs-such as local, blockwise, or dilated patterns-
reduce the quadratic dependency on sequence length by limiting each token's receptive 
field, thereby transforming the theoretical complexity from O(L2) toward sub-quadratic 
or even linear forms. 

Quantization reduces computation primarily by compressing numerical precision, 
which decreases both arithmetic cost and memory bandwidth requirements. Lower-bit 
integer operations require fewer hardware cycles than floating-point computation and 
allow more values to be packed into a single memory transaction, improving data 
throughput and cache utilization. At the algorithmic level, quantization shrinks the 
volume of data transferred between compute units and memory, thereby addressing the 
memory-bound nature of attention and feed-forward layers. Mixed-precision 
quantization further enhances efficiency by allocating low precision to computationally 
dominant but error-tolerant components, while preserving higher precision where 
numerical stability is critical. This selective reduction in precision yields substantial end-
to-end latency benefits without proportionally degrading model accuracy [4]. 

Dynamic inference reduces unnecessary computation by adapting the computational 
workload to input-specific characteristics. Mechanisms such as early exiting shorten the 
effective depth of the model by skipping later layers when intermediate representations 
already produce confident predictions. Similarly, dynamic token skipping reduces the 
number of tokens that must be processed through the full attention mechanism, while 
adaptive KV cache updates prevent redundant recomputation of representations that 
contribute minimally to the model's output. These strategies exploit the observation that 
many decoding steps-especially those involving predictable or repetitive patterns-do not 
require full-capacity computation. As a result, dynamic inference converts what would 
otherwise be a fixed computational cost into a variable one, aligning resource 
consumption with task difficulty and significantly lowering average-case latency. 

Collectively, these mechanisms demonstrate that algorithmic optimization reduces 
computation not merely by compressing models but by reshaping the distribution of 
computational work across time, layers, and tensor dimensions. This multi-faceted 
reduction lays the groundwork for deeper co-optimization with compiler and system 
layers, enabling further acceleration in practical deployment environments. 

3.3. Integrated Algorithmic Strategies for End-to-End Inference Efficiency 
While individual techniques such as pruning, sparsity, quantization, and dynamic 

inference each target specific inefficiencies within the model, recent research increasingly 
emphasizes the importance of combining these methods to achieve end-to-end 
performance gains. Integrated optimization approaches treat the model as a coupled 
system in which reductions in parameter count, activation footprint, and arithmetic 
precision reinforce one another rather than function as isolated enhancements. For 
example, structured pruning can reduce the dimensionality of matrix multiplications, 
which in turn lowers the sensitivity of subsequent quantization and enables more 
aggressive bit-width reduction without degrading accuracy. Similarly, dynamic inference 
mechanisms such as adaptive computation or early-exit schemes become more effective 
when applied to sparsified or quantized representations, because the reduced 
computational load per layer amplifies the benefits of conditional execution. These 
synergies reshape both the arithmetic and memory profiles of the model, allowing the 
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inference path to be re-designed around lighter-weight kernels, smaller intermediate 
tensors, and lower memory traffic. As a result, integrated algorithmic strategies 
increasingly form the foundation of efficient LLM inference pipelines, enabling 
substantial speedups even before compiler and system-level optimizations are introduced 
[5]. 

4. Compiler Techniques for High-Performance Model Inference 
4.1. Graph Optimization, Operator Fusion, and Layout Specialization 

Compiler-level optimizations serve as a crucial bridge between algorithmic advances 
and hardware execution efficiency, and modern deep learning compilers increasingly rely 
on graph-level transformations to streamline the inference pipeline. Graph optimization 
restructures the computation graph by eliminating redundant operations, simplifying 
expression chains, and reordering independent kernels to expose greater parallelism 
while preserving semantic correctness. Within this optimized graph, operator fusion 
becomes a key mechanism for reducing overhead by merging sequential operations-such 
as linear projection, bias addition, and activation-into unified kernels that minimize 
intermediate memory writes and lower kernel-launch latency. In parallel, layout 
specialization adapts tensor memory layouts to the specific dataflow patterns of the 
underlying hardware, ensuring that frequently accessed dimensions are contiguous, 
aligned, and cache-friendly. This optimization is particularly critical for attention and 
feed-forward modules, where poor layouts can amplify memory bottlenecks despite high 
arithmetic throughput. Ultimately, the combination of graph rewriting, fusion strategies, 
and layout-aware transformations creates a more compact and hardware-efficient 
execution plan, allowing large models to better exploit available compute units and 
memory bandwidth. 

4.2. Scheduling Optimization and Memory-Efficient Execution 
Scheduling optimization within the compiler is essential for maximizing hardware 

utilization during LLM inference, as it determines the exact ordering, parallelization 
strategy, and resource allocation for each operation in the computation graph. Modern 
compilers employ techniques such as loop tiling, pipelining, and parallel thread mapping 
to ensure that compute units remain fully occupied while minimizing pipeline stalls 
caused by data dependencies. These scheduling strategies are tightly coupled with 
memory-efficient execution mechanisms, which aim to reduce the overall memory 
footprint and mitigate bandwidth bottlenecks. Key techniques include minimizing the 
lifetime of intermediate tensors through buffer reuse, strategically placing prefetching 
instructions to overlap computation with memory access, and splitting large kernels into 
cache-friendly tiles that reduce off-chip memory transactions. For attention-heavy 
workloads, compilers further apply KV cache-aware scheduling techniques to avoid 
repeated loading of large key-value tensors, often combining partial recomputation or 
paged access patterns to maintain locality. By jointly optimizing execution order, data 
movement, and memory residency, scheduling and memory-efficient compilation 
significantly shorten the critical path of inference, enabling large models to execute with 
lower latency and improved throughput across heterogeneous hardware platforms [6]. 

4.3. Co-Design of Algorithms and Compiler Optimization Pipelines 
Effective inference acceleration increasingly depends on the co-design of model 

algorithms and compiler optimization pipelines, as algorithmic structures directly 
influence the compiler's ability to generate efficient executable kernels. Many recent 
model designs-such as linear attention variants, block-sparse architectures, and 
quantization-aware training methods-are explicitly crafted to expose patterns that 
compilers can exploit, including regular sparsity, predictable memory access, and reduced 
tensor dimensionality. In turn, the compiler aligns its optimization passes-such as fusion, 
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layout transformation, and operator specialization-to leverage these algorithmic 
properties, enabling lower-precision kernels, sparsity-aware code generation, and mixed 
compute-memory scheduling strategies that would be less effective on unmodified 
architectures. This mutual reinforcement ensures that computational shortcuts introduced 
at the algorithmic level translate into real hardware gains rather than being obscured by 
unfavorable execution graphs or memory layouts. As co-design becomes standard 
practice, the boundary between model architecture and compiler stack grows increasingly 
blurred, leading to integrated frameworks in which models are designed with 
compilation constraints in mind and compilers incorporate model-specific heuristics to 
deliver optimal end-to-end inference performance. 

5. System-Level Inference Optimization Techniques 
5.1. Parallelism Strategies for Large-Scale Inference 

System-level parallelism is essential for overcoming the computational and memory 
bottlenecks inherent in large-model inference, and modern serving frameworks rely on 
multiple forms of parallel execution to fully utilize heterogeneous hardware resources. 
Tensor parallelism partitions matrix operations across multiple devices, allowing large 
projection layers in attention and feed-forward modules to be computed concurrently 
while maintaining tightly synchronized communication. Pipeline parallelism divides the 
model into sequential segments distributed across devices, enabling different micro-
batches or tokens to be processed simultaneously at different stages of the model and 
thereby increasing throughput under high concurrency. For autoregressive workloads, 
sequence parallelism further decomposes attention computation by distributing KV cache 
storage and attention heads across devices to reduce per-device memory pressure while 
preserving token-level dependency constraints. Recent systems additionally employ 
speculative decoding and multi-model parallel scheduling to overlap stages of generation, 
improving resource utilization during single-token decoding. Together, these parallelism 
paradigms form a layered execution strategy that balances compute distribution, memory 
scaling, and communication overhead, enabling large models to achieve low-latency, 
high-throughput inference across distributed hardware environments [7]. 

5.2. Memory Management and KV Cache Optimization 
Efficient memory management is critical for sustaining high-performance inference 

in large language models, particularly when dealing with long-context sequences and 
limited device memory. The KV cache, which stores key and value tensors for all 
previously generated tokens, can quickly dominate memory usage if not carefully 
managed. Modern systems address this challenge through techniques such as buffer reuse, 
selective eviction, and memory paging, which reduce the peak memory footprint while 
preserving correctness in autoregressive decoding. Furthermore, memory-aware 
scheduling ensures that data movement overlaps with computation, minimizing idle 
cycles caused by memory access latency. For attention layers, partitioning the KV cache 
across devices or tiles allows each device to operate on a subset of the sequence while 
maintaining consistent global attention, thereby lowering per-device memory pressure. 
Additional strategies, such as compressed storage formats or low-precision representation 
of cached tensors, further reduce bandwidth requirements and improve cache locality. By 
combining these memory management and KV cache optimization techniques, systems 
can maintain high throughput and low latency, even when handling extremely large 
models and long input sequences, without exceeding hardware constraints. 

5.3. Accelerator-Aware Scheduling and System-Level Co-Optimization 
To fully exploit modern heterogeneous hardware for large-model inference, system-

level scheduling must be tightly integrated with the underlying accelerator architecture. 
Accelerator-aware scheduling aligns computation, memory transfers, and kernel 
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execution with the specific characteristics of GPUs, TPUs, or specialized inference 
accelerators, taking into account factors such as core utilization, on-chip memory 
hierarchy, and interconnect bandwidth. Techniques such as asynchronous kernel dispatch, 
overlapping computation with data movement, and dynamic load balancing allow the 
system to minimize idle cycles and ensure high throughput. Furthermore, co-optimization 
across multiple system layers-combining scheduling strategies with algorithmic 
adaptations like sparsity, quantization, and dynamic computation-enables the inference 
engine to adapt execution paths according to input characteristics and hardware 
capabilities. By coordinating workload partitioning, memory management, and parallel 
execution, accelerator-aware system scheduling reduces bottlenecks at both computation 
and communication levels, achieving lower latency and higher efficiency for large-scale 
model deployment in diverse runtime environments. 

6. Collaborative Optimization Framework 
6.1. Framework Design 

The core of the proposed optimization framework lies in its integration of algorithm-
level, compiler-level, and system-level strategies to enable efficient inference for large 
Transformer models. At the algorithm level, techniques such as pruning, sparsity 
enforcement, quantization, and dynamic inference mechanisms work together to reduce 
redundant computation and memory usage, decreasing arithmetic operations and 
intermediate data, which directly benefits memory-limited deployment scenarios such as 
edge devices. At the compiler level, graph optimizations, operator fusion, and layout 
adjustments translate these algorithmic improvements into hardware-efficient execution 
plans. Graph optimization removes unnecessary computations, operator fusion combines 
multiple kernels into single operations, and layout optimization aligns memory access 
patterns with hardware characteristics to improve cache utilization and reduce 
bandwidth overhead [8]. 

System-level strategies complement algorithm and compiler improvements by 
managing memory allocation, scheduling parallel execution, and optimizing data 
movement. Efficient memory scheduling prevents bottlenecks from KV cache access or 
intermediate tensor storage, while parallel execution distributes computation across cores 
or devices to maximize throughput. Data movement strategies reduce latency by aligning 
data transfer with computation requirements. By coordinating these three layers, the 
framework ensures that improvements are mutually reinforcing, resulting in significant 
gains in latency, throughput, and memory efficiency. The framework is modular and 
scalable, allowing independent adaptation of each layer to different model sizes or 
deployment scenarios, while fully realizing cross-layer benefits when all layers operate 
collaboratively. This integration distinguishes the proposed framework from single-layer 
optimization approaches and provides a solid foundation for further theoretical analysis. 

6.2. Collaborative Strategy 
The framework achieves efficiency through a tightly coordinated collaboration 

between algorithm-level, compiler-level, and system-level strategies. At the algorithm 
level, pruning removes redundant weights, sparsity enforcement reduces unnecessary 
computation, and quantization lowers numerical precision without significantly 
impacting accuracy. Dynamic inference strategies, such as early token skipping and 
adaptive computation, further reduce the workload for tokens that require less processing. 
These algorithmic improvements not only decrease the number of arithmetic operations 
and memory footprint but also provide the foundation for more effective compiler 
optimizations. For instance, reduced operations enable the compiler to generate 
streamlined computation graphs, apply aggressive operator fusion, and reorganize 
memory layouts for better alignment with hardware characteristics. By explicitly 
connecting algorithmic improvements with compiler capabilities, the framework ensures 
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that optimizations at one level magnify benefits at other levels, rather than remaining 
isolated. 

At the system level, memory management, scheduling, and data movement 
strategies complement algorithm and compiler enhancements to fully realize performance 
gains. Memory allocation policies reduce bottlenecks caused by KV cache growth or 
intermediate tensor storage, while parallel execution distributes workload across multiple 
cores or devices to maximize throughput. Data movement optimizations minimize 
latency by aligning transfers with computation requirements, ensuring that hardware 
resources are efficiently utilized. The framework also considers deployment-specific 
adaptations: in cloud environments, throughput is prioritized through parallel execution; 
on edge devices, memory usage is minimized via layout optimization and quantization; 
in interactive applications, latency is reduced by leveraging dynamic inference and 
efficient caching. Through this comprehensive cross-layer collaboration, the framework 
achieves cumulative efficiency gains, demonstrating a clear advantage over approaches 
that optimize only a single layer of the inference pipeline. 

6.3. Mechanism Analysis and Performance Trends 
The collaborative optimization framework produces several interrelated benefits 

across computation, memory, and latency. At the algorithm level, pruning and sparsity 
reduce the number of operations, while quantization decreases the size of intermediate 
data, directly lowering both arithmetic workload and memory footprint. Dynamic 
inference further reduces unnecessary computation for less critical tokens. Compiler-level 
optimizations translate these algorithmic gains into efficient execution: operator fusion 
minimizes kernel launch overhead, graph simplification reduces dependency chains, and 
layout adjustments improve cache utilization and memory access patterns. System-level 
strategies complement these improvements by efficiently scheduling memory usage, 
parallelizing computations, and optimizing data movement. Together, these mechanisms 
ensure that improvements at one level amplify benefits at the others, resulting in a 
cumulative reduction in latency, throughput bottlenecks, and overall resource 
consumption [9]. 

The framework also demonstrates adaptability across diverse deployment scenarios. 
In cloud environments, parallel execution and optimized scheduling increase throughput 
for batch inference tasks. On edge devices, memory-efficient layouts and quantized 
computations minimize storage and bandwidth demands. For interactive applications, 
dynamic inference and efficient caching reduce response time and provide low-latency 
experiences. Although no empirical data is presented, theoretical analysis and 
computational trends indicate clear improvements: the total FLOPs and memory access 
requirements decrease, latency is reduced, and the framework can efficiently handle both 
long-sequence and high-dimensional inference tasks. This analysis highlights the practical 
potential of cross-layer collaboration and provides a strong foundation for future 
evaluation and enhancement of large model inference optimization strategies. 

7. Theoretical Feasibility Analysis 
7.1. Computational Complexity Analysis 

The computational characteristics of large Transformer models reveal that the 
dominant costs arise from both the self-attention mechanism and feed-forward networks. 
Algorithm-level optimizations, such as pruning and sparsity, reduce the number of 
arithmetic operations, while quantization decreases memory usage by representing data 
in lower precision. Dynamic inference mechanisms further lower workload by skipping 
unnecessary computations for less critical tokens. These reductions collectively decrease 
the overall FLOPs and memory footprint, illustrating that targeted algorithmic strategies 
can theoretically improve efficiency without affecting model accuracy. Compiler-level 
improvements amplify these benefits: operator fusion and graph simplification reduce 
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execution overhead, while layout optimization ensures that memory access patterns 
match hardware capabilities, further minimizing effective computation time. System-level 
strategies, including memory scheduling and parallel execution, complement these 
improvements by preventing bottlenecks and optimizing resource utilization across 
multiple cores or devices. 

From a theoretical perspective, the cumulative effect of cross-layer optimizations is 
clear: FLOPs and memory access requirements decrease, bandwidth pressure is reduced, 
and latency is improved, particularly in scenarios with long sequences or high-
dimensional hidden states. Even without empirical measurements, trend analysis 
indicates that reducing redundant computation and optimizing memory hierarchies can 
produce substantial efficiency gains. Moreover, the framework allows for scalable 
adjustments, meaning that models of different sizes or architectures can benefit similarly 
from these strategies. This theoretical complexity analysis highlights the importance of 
coordinated algorithm-compiler-system strategies and sets a solid foundation for 
comparing the framework against existing approaches and deployment scenarios. 

7.2. Comparison with Mainstream Approaches 
Mainstream optimization approaches for large Transformer inference typically focus 

on a single layer, such as algorithmic pruning, compiler-level operator fusion, or system-
level parallelization. While these methods offer measurable improvements within their 
respective layers, they often fail to exploit the synergistic potential of cross-layer 
collaboration. For instance, pruning alone may reduce computation but cannot fully 
leverage memory layout optimizations at the compiler level, and compiler fusion without 
algorithmic simplification cannot eliminate unnecessary arithmetic operations. 
Consequently, single-layer optimizations may achieve partial gains but leave significant 
efficiency improvements untapped. 

In contrast, the proposed collaborative framework integrates algorithm, compiler, 
and system-level strategies, producing cumulative benefits that surpass any single-layer 
method. Algorithmic reductions in FLOPs and memory footprint enable the compiler to 
generate highly efficient execution graphs, while system-level scheduling and memory 
management further enhance performance. This cross-layer coordination ensures that 
optimizations reinforce one another, theoretically resulting in lower latency, higher 
throughput, and reduced resource consumption across various deployment scenarios. By 
structurally combining these layers, the framework addresses limitations inherent in 
mainstream approaches and provides a more complete and adaptable solution for 
efficient large model inference. 

7.3. Adaptability Across Different Application Scenarios 
The proposed collaborative optimization framework demonstrates theoretical 

adaptability across a variety of deployment scenarios. In cloud environments, where 
throughput is a primary concern, the combination of algorithmic pruning, compiler-level 
graph simplification, and system-level parallelization enables the model to handle large 
batches efficiently while minimizing computational bottlenecks. Memory-efficient 
layouts and operator fusion reduce data movement overhead, allowing high-throughput 
inference without exceeding hardware resource limits. This ensures that cloud servers can 
maintain responsiveness even under heavy workloads, highlighting the framework's 
scalability in large-scale processing environments. 

For edge devices and interactive applications, memory footprint and latency are 
critical constraints. Quantization and sparsity reduce intermediate storage requirements, 
while dynamic inference mechanisms skip redundant computations for less significant 
tokens. Compiler optimizations align memory layouts with hardware characteristics, 
further improving cache utilization and reducing bandwidth demand. System-level 
strategies, including intelligent scheduling and efficient data transfer, minimize latency 

https://doi.org/10.71222/078xh379


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 6 (2025) 119 https://doi.org/10.71222/078xh379 

and provide smooth real-time responses. These adaptations show that the framework can 
be effectively tuned for both high-performance cloud deployments and resource-
constrained edge environments, demonstrating its versatility and robust theoretical 
feasibility across diverse application scenarios. 

8. Conclusion and Future Directions 
8.1. Research Summary 

This study has developed a comprehensive cross-layer co-optimization framework 
that integrates algorithmic, compiler, and system-level strategies to improve the efficiency 
of large-model inference. At the algorithmic level, structured pruning, sparsity, 
quantization, and dynamic inference reduce computational workload and memory 
footprint, exposing patterns that compilers can exploit. Compiler-level optimizations, 
including operator fusion, graph rewriting, layout specialization, and scheduling, 
translate these algorithmic reductions into hardware-efficient execution, minimizing 
redundant operations and memory traffic. At the system level, parallel execution, 
memory management, and KV cache optimization further improve resource utilization, 
ensuring high throughput and low latency across heterogeneous hardware. By 
coordinating these layers in a synergistic manner, the framework addresses the limitations 
of single-layer optimization approaches, providing a theoretically grounded path for 
reducing FLOPs, memory consumption, and inference latency. Overall, the research 
demonstrates that a holistic, cross-layer perspective can significantly enhance the practical 
efficiency of large-scale models while maintaining model functionality and generality. 
This unified approach not only clarifies the interactions between algorithm, compiler, and 
system optimizations but also provides a structured methodology for designing future 
high-performance inference pipelines. 

8.2. Limitations and Future Directions 
Despite the theoretical advantages of the proposed framework, several limitations 

remain and point to directions for future research. Extending the framework to multi-
modal inference represents a key opportunity, as different modalities introduce 
heterogeneous computation patterns and memory requirements that may challenge 
existing scheduling and compiler strategies. Another promising direction is edge-cloud 
collaborative inference, which would leverage the complementary strengths of local and 
cloud resources to optimize latency, throughput, and memory usage simultaneously. 
Additionally, automated joint search of algorithmic and compiler configurations could 
identify optimal combinations of pruning, quantization, kernel fusion, and scheduling, 
tailored to specific models and deployment environments, further enhancing 
performance. Future studies could also explore dynamic adaptation mechanisms, where 
the system automatically adjusts computation strategies based on workload 
characteristics or hardware constraints. Taken together, these directions suggest that the 
framework presented here can serve as a foundation for a broad class of efficient, 
adaptable, and scalable inference solutions, bridging theoretical analysis and practical 
deployment in diverse application scenarios. 
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