

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 6 (2025) 109 https://doi.org/10.71222/078xh379

Review

Optimization of Large Models for Efficient Inference:
Algorithm, Compiler, and System Co-Design
Shengyi Gao 1,*

1 Ningxia University, Yinchuan, Ningxia, China
* Correspondence: Shengyi Gao, Ningxia University, Yinchuan, Ningxia, China

Abstract: Large language models have achieved remarkable capabilities in natural language
processing, yet their inference cost remains a significant challenge due to high computation,
memory usage, and latency. This study presents a cross-layer co-optimization framework that
integrates algorithmic, compiler, and system-level strategies to enhance inference efficiency.
Algorithmic techniques, including structured pruning, sparsity, quantization, and dynamic
inference, reduce computational workload and memory footprint. Compiler optimizations, such as
operator fusion, graph rewriting, and layout specialization, translate algorithmic improvements
into hardware-efficient execution. System-level strategies, encompassing parallel execution,
memory management, and KV cache optimization, further improve resource utilization and reduce
latency. The framework synergistically coordinates these layers, providing a theoretically grounded
approach for reducing FLOPs, memory consumption, and inference latency. Its adaptability extends
to cloud, edge, and interactive deployment scenarios, offering a unified methodology for efficient
and scalable large-model inference. This work contributes a systematic and extensible pathway for
accelerating model inference without relying on empirical performance measurements.

Keywords: large language models; inference optimization; algorithm-compiler-system co-design;
computational efficiency; memory management; parallel execution

1. Introduction
1.1. Research Background

Large-scale pretrained models (Large Language Models, LLMs) have achieved
significant breakthroughs in natural language processing, multimodal understanding,
and various human-AI interaction applications. However, as their parameter sizes
continue to expand, the computational burden during the inference stage has increased
dramatically. This growth results in substantial memory consumption, higher latency,
and elevated energy costs, all of which directly restrict the practical deployment of LLMs
in real-world systems [1].

At the same time, the demands for efficient inference have become increasingly
diverse across different application scenarios. Cloud-based services emphasize high
throughput and stable performance, while edge and mobile environments face stricter
constraints on energy consumption and hardware resources. In interactive applications
such as real-time translation, conversational agents, and intelligent customer service
systems, low-latency responses are essential for ensuring user experience. Consequently,
improving inference efficiency has become a central challenge for enabling the
widespread adoption of large models.

Received: 23 October 2025

Revised: 06 November 2025

Accepted: 17 November 2025

Published: 25 November 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 110 https://doi.org/10.71222/078xh379

1.2. Existing Challenges
Despite the rapid progress in LLM architecture and system support, achieving high-

performance inference remains a difficult problem, mainly due to limitations at three
different layers:

1) Algorithmic inefficiencies.
Redundant computation and the rapid expansion of the Key-Value (KV) cache lead

to large memory overhead and limited throughput, especially in autoregressive decoding
scenarios.

2) Compiler-level constraints.
Current compiler stacks often struggle to fully exploit hardware potential for LLM

inference. Issues such as suboptimal operator fusion, insufficient support for low-bit
quantization, and limited handling of dynamic shapes all hinder performance.

3) System-level bottlenecks.
System challenges, including memory scheduling, kernel dispatch overhead, and

inefficient runtime architectures, further limit inference speed. These bottlenecks become
more pronounced when serving multiple concurrent requests or deploying models on
resource-limited devices.

Overall, the separation of optimization efforts across algorithms, compilers, and
systems prevents the formation of a unified optimization pipeline, leading to suboptimal
inference efficiency [2].

1.3. Research Objectives and Contributions
To address the limitations described above, this study investigates a cross-layer

optimization paradigm that integrates techniques across the algorithm, compiler, and
system levels. The main contributions of this paper are as follows:

1) A unified perspective on three-layer co-optimization.
The paper systematically analyzes the interactions between algorithmic techniques,

compiler behaviors, and system runtime mechanisms, highlighting the necessity of
coordinated design.

2) A collaborative framework for efficient inference.
A conceptual optimization framework is proposed to bridge the three layers,

enabling information flow and performance feedback across them to achieve more
effective inference acceleration.

3) A theoretical analysis of performance benefits.
Although no empirical experiments are conducted, the study provides a detailed

theoretical evaluation showing how the proposed framework can reduce computation,
memory usage, and latency in typical LLM inference scenarios.

2. Inference Computation Characteristics
2.1. Bottlenecks in Inference Computation

Large Transformer models face significant computational and memory challenges.
The self-attention mechanism introduces quadratic complexity with respect to sequence
length L, and feed-forward networks contribute additional computation proportional to
the hidden dimension d. The per-layer computational cost can be expressed as

FLOPSlayer = 𝑂𝑂(𝐿𝐿2𝑑𝑑 + 𝑑𝑑2),
highlighting that long sequences dramatically increase operations. Memory

consumption is dominated by the KV cache, which grows linearly with sequence length
and number of layers N:

MemoryKV = 𝑂𝑂(𝐿𝐿 ∙ 𝑑𝑑 ∙ 𝑁𝑁).
These expressions reveal why reducing sequence length, hidden dimension, or

sparsifying computation is critical to improving efficiency [3].

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 111 https://doi.org/10.71222/078xh379

2.2. Transformer Block Critical Path
Within each Transformer block, the critical path consists of multi-head attention,

residual connections, normalization layers, and feed-forward networks. From a
computational perspective, attention dominates for long sequences, while feed-forward
layers dominate for very wide hidden dimensions. Formally, the total operations per
block can be estimated as

FLOPSblock = 𝑂𝑂(𝐿𝐿2𝑑𝑑 + 𝑑𝑑2),
which matches the per-layer cost previously described. Memory bottlenecks follow

a similar pattern, as intermediate activations and cached keys and values require storage
proportional to

Memoryblock = 𝑂𝑂(𝐿𝐿 ∙ 𝑑𝑑) + 𝑂𝑂(𝑑𝑑2),
indicating that both computation and memory must be jointly considered when

designing optimization strategies.

2.3. Theoretical Formulation and Computational Complexity
The computational characteristics of Transformer inference can be further

understood through a theoretical analysis of its core operations. For a model with hidden
size d, number of attention heads h, and sequence length L, the dominant cost arises from
the self-attention mechanism. In autoregressive decoding, the query vector for the current
token must attend to all previously generated tokens, resulting in a computational
complexity of O(Ld) per layer for attention score computation and O(Ld) for the weighted
aggregation of values. When extended across all layers, the total attention complexity
becomes O(LdN), where N denotes the number of layers. The feed-forward network
contributes an additional cost of approximately O(d2) per token due to its two-layer
structure with an intermediate expansion dimension. While this component is compute-
intensive, its cost remains constant with respect to sequence length and therefore becomes
relatively less dominant during long-context inference.

Memory complexity also plays a crucial role. The KV cache requires storing key and
value vectors of dimension d/h for each head across every layer, producing a memory
footprint proportional to O(LdN). Accessing this cache during decoding introduces
substantial bandwidth demand, as each new token triggers repeated retrieval of cached
tensors across all layers. This repeated access often becomes the primary latency source
on modern accelerators, where memory throughput limits overall performance more
sharply than raw FLOPs. Together, these formulations reveal that the inference cost grows
linearly with sequence length but multiplies across deep model stacks, underscoring why
optimizing either computation or memory in isolation is insufficient. Instead, effective
acceleration requires coordinated reduction of arithmetic operations, memory footprint,
and data movement across the entire inference pipeline.

3. Algorithmic Optimization Methods
3.1. Pruning, Sparsification, Quantization, and Dynamic Inference

Algorithmic optimization has emerged as one of the most active research directions
for accelerating large-model inference, and existing studies have proposed a variety of
approaches to reduce computational cost without fundamentally altering the Transformer
architecture. Among them, pruning constitutes an important line of work. By eliminating
parameters or structural components that contribute minimally to model predictions,
pruning reduces both the computational load and memory footprint. Structured pruning
methods, such as removing attention heads or reducing intermediate dimensions of feed-
forward networks, provide predictable latency benefits and are well aligned with
hardware execution patterns. In contrast, unstructured pruning can achieve higher
sparsity levels but often requires additional runtime support to fully exploit fine-grained
sparsity. Despite these challenges, pruning consistently demonstrates that significant

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 112 https://doi.org/10.71222/078xh379

redundancy exists in large models, making it a practical pathway for inference
acceleration.

Sparsification extends this idea by introducing explicit sparse patterns into matrix
multiplications and attention operations. Research in this direction shows that enforcing
block-sparse or head-sparse structures can substantially reduce multiply-accumulate
operations, particularly in attention layers where computation scales with context length.
However, sparsity must be carefully designed to ensure hardware-friendly execution;
otherwise, the overhead of managing sparse indices can offset theoretical gains. Recent
techniques explore learnable sparsity patterns or rely on routing-based architectures that
selectively activate a subset of computation paths, thereby balancing accuracy and
efficiency.

Quantization represents another widely used strategy to improve inference
efficiency. By reducing the numerical precision of model weights and activations from
floating-point formats to lower-bit representations, quantization directly decreases
memory bandwidth requirements and accelerates matrix multiplication on specialized
hardware. Studies have demonstrated that 8-bit and even 4-bit quantization can maintain
high accuracy when combined with calibration or post-training correction techniques.
More advanced approaches perform mixed-precision quantization, assigning different bit
levels to different layers or tensor types according to their sensitivity. The key challenge
lies in managing quantization-induced numerical instability during attention
computation and normalization, but ongoing research continues to push the boundary of
ultra-low-bit inference [3].

Dynamic inference methods further enhance efficiency by reducing unnecessary
computation at runtime. Instead of relying on static model structures, dynamic
approaches adjust computational paths based on input difficulty, model confidence, or
context characteristics. Examples include early exiting mechanisms that stop computation
when intermediate representations yield sufficiently confident predictions, as well as
dynamic token or layer skipping strategies that exploit redundancy among successive
tokens. For large language models in particular, several studies highlight that many
tokens contribute limited new information to the attention mechanism, making dynamic
sparsity or selective KV cache updates effective in reducing both computation and
memory usage. These methods shift the focus from static compression to adaptive
resource allocation, enabling inference to scale more efficiently with input complexity.

Overall, pruning, sparsification, quantization, and dynamic inference represent four
complementary algorithmic directions that collectively illustrate the substantial
redundancy present in large language models. When combined, these techniques can
reduce arithmetic operations, shrink memory consumption, and mitigate latency, forming
the algorithmic foundation for multi-layer inference optimization.

3.2. Mechanisms of Computational Reduction in Algorithmic Optimization
The effectiveness of algorithmic optimization techniques lies not only in their ability

to compress model parameters but also in the specific computational mechanisms through
which they reduce the arithmetic intensity and memory traffic of Transformer inference.
Pruning achieves efficiency by directly eliminating redundant components from the
model's computational graph. When entire attention heads, neurons, or feed-forward
channels are removed, the corresponding matrix multiplications shrink proportionally,
thereby reducing the dimensionality of intermediate tensors. This structural
simplification shortens the critical computational path, lowers FLOPs, and decreases data
movement, making inference both faster and more memory-efficient. Even when pruning
is performed at a fine-grained level, the reduction in effective non-zero weights translates
into fewer multiply-accumulate operations, provided that the underlying runtime system
can exploit the resulting sparsity.

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 113 https://doi.org/10.71222/078xh379

Sparsification reduces computation through deliberate introduction of structured or
semi-structured zero patterns. By ensuring that large portions of query-key similarity
matrices or feed-forward weight matrices do not require multiplication, sparsification
lowers the number of active operations during attention and matrix transformation.
Importantly, the computational savings arise when sparsity is aligned with hardware-
friendly patterns such as block-level or head-level sparsity, enabling accelerators to skip
entire blocks of operations without expensive index handling. In the context of long-
context inference, sparse attention designs-such as local, blockwise, or dilated patterns-
reduce the quadratic dependency on sequence length by limiting each token's receptive
field, thereby transforming the theoretical complexity from O(L2) toward sub-quadratic
or even linear forms.

Quantization reduces computation primarily by compressing numerical precision,
which decreases both arithmetic cost and memory bandwidth requirements. Lower-bit
integer operations require fewer hardware cycles than floating-point computation and
allow more values to be packed into a single memory transaction, improving data
throughput and cache utilization. At the algorithmic level, quantization shrinks the
volume of data transferred between compute units and memory, thereby addressing the
memory-bound nature of attention and feed-forward layers. Mixed-precision
quantization further enhances efficiency by allocating low precision to computationally
dominant but error-tolerant components, while preserving higher precision where
numerical stability is critical. This selective reduction in precision yields substantial end-
to-end latency benefits without proportionally degrading model accuracy [4].

Dynamic inference reduces unnecessary computation by adapting the computational
workload to input-specific characteristics. Mechanisms such as early exiting shorten the
effective depth of the model by skipping later layers when intermediate representations
already produce confident predictions. Similarly, dynamic token skipping reduces the
number of tokens that must be processed through the full attention mechanism, while
adaptive KV cache updates prevent redundant recomputation of representations that
contribute minimally to the model's output. These strategies exploit the observation that
many decoding steps-especially those involving predictable or repetitive patterns-do not
require full-capacity computation. As a result, dynamic inference converts what would
otherwise be a fixed computational cost into a variable one, aligning resource
consumption with task difficulty and significantly lowering average-case latency.

Collectively, these mechanisms demonstrate that algorithmic optimization reduces
computation not merely by compressing models but by reshaping the distribution of
computational work across time, layers, and tensor dimensions. This multi-faceted
reduction lays the groundwork for deeper co-optimization with compiler and system
layers, enabling further acceleration in practical deployment environments.

3.3. Integrated Algorithmic Strategies for End-to-End Inference Efficiency
While individual techniques such as pruning, sparsity, quantization, and dynamic

inference each target specific inefficiencies within the model, recent research increasingly
emphasizes the importance of combining these methods to achieve end-to-end
performance gains. Integrated optimization approaches treat the model as a coupled
system in which reductions in parameter count, activation footprint, and arithmetic
precision reinforce one another rather than function as isolated enhancements. For
example, structured pruning can reduce the dimensionality of matrix multiplications,
which in turn lowers the sensitivity of subsequent quantization and enables more
aggressive bit-width reduction without degrading accuracy. Similarly, dynamic inference
mechanisms such as adaptive computation or early-exit schemes become more effective
when applied to sparsified or quantized representations, because the reduced
computational load per layer amplifies the benefits of conditional execution. These
synergies reshape both the arithmetic and memory profiles of the model, allowing the

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 114 https://doi.org/10.71222/078xh379

inference path to be re-designed around lighter-weight kernels, smaller intermediate
tensors, and lower memory traffic. As a result, integrated algorithmic strategies
increasingly form the foundation of efficient LLM inference pipelines, enabling
substantial speedups even before compiler and system-level optimizations are introduced
[5].

4. Compiler Techniques for High-Performance Model Inference
4.1. Graph Optimization, Operator Fusion, and Layout Specialization

Compiler-level optimizations serve as a crucial bridge between algorithmic advances
and hardware execution efficiency, and modern deep learning compilers increasingly rely
on graph-level transformations to streamline the inference pipeline. Graph optimization
restructures the computation graph by eliminating redundant operations, simplifying
expression chains, and reordering independent kernels to expose greater parallelism
while preserving semantic correctness. Within this optimized graph, operator fusion
becomes a key mechanism for reducing overhead by merging sequential operations-such
as linear projection, bias addition, and activation-into unified kernels that minimize
intermediate memory writes and lower kernel-launch latency. In parallel, layout
specialization adapts tensor memory layouts to the specific dataflow patterns of the
underlying hardware, ensuring that frequently accessed dimensions are contiguous,
aligned, and cache-friendly. This optimization is particularly critical for attention and
feed-forward modules, where poor layouts can amplify memory bottlenecks despite high
arithmetic throughput. Ultimately, the combination of graph rewriting, fusion strategies,
and layout-aware transformations creates a more compact and hardware-efficient
execution plan, allowing large models to better exploit available compute units and
memory bandwidth.

4.2. Scheduling Optimization and Memory-Efficient Execution
Scheduling optimization within the compiler is essential for maximizing hardware

utilization during LLM inference, as it determines the exact ordering, parallelization
strategy, and resource allocation for each operation in the computation graph. Modern
compilers employ techniques such as loop tiling, pipelining, and parallel thread mapping
to ensure that compute units remain fully occupied while minimizing pipeline stalls
caused by data dependencies. These scheduling strategies are tightly coupled with
memory-efficient execution mechanisms, which aim to reduce the overall memory
footprint and mitigate bandwidth bottlenecks. Key techniques include minimizing the
lifetime of intermediate tensors through buffer reuse, strategically placing prefetching
instructions to overlap computation with memory access, and splitting large kernels into
cache-friendly tiles that reduce off-chip memory transactions. For attention-heavy
workloads, compilers further apply KV cache-aware scheduling techniques to avoid
repeated loading of large key-value tensors, often combining partial recomputation or
paged access patterns to maintain locality. By jointly optimizing execution order, data
movement, and memory residency, scheduling and memory-efficient compilation
significantly shorten the critical path of inference, enabling large models to execute with
lower latency and improved throughput across heterogeneous hardware platforms [6].

4.3. Co-Design of Algorithms and Compiler Optimization Pipelines
Effective inference acceleration increasingly depends on the co-design of model

algorithms and compiler optimization pipelines, as algorithmic structures directly
influence the compiler's ability to generate efficient executable kernels. Many recent
model designs-such as linear attention variants, block-sparse architectures, and
quantization-aware training methods-are explicitly crafted to expose patterns that
compilers can exploit, including regular sparsity, predictable memory access, and reduced
tensor dimensionality. In turn, the compiler aligns its optimization passes-such as fusion,

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 115 https://doi.org/10.71222/078xh379

layout transformation, and operator specialization-to leverage these algorithmic
properties, enabling lower-precision kernels, sparsity-aware code generation, and mixed
compute-memory scheduling strategies that would be less effective on unmodified
architectures. This mutual reinforcement ensures that computational shortcuts introduced
at the algorithmic level translate into real hardware gains rather than being obscured by
unfavorable execution graphs or memory layouts. As co-design becomes standard
practice, the boundary between model architecture and compiler stack grows increasingly
blurred, leading to integrated frameworks in which models are designed with
compilation constraints in mind and compilers incorporate model-specific heuristics to
deliver optimal end-to-end inference performance.

5. System-Level Inference Optimization Techniques
5.1. Parallelism Strategies for Large-Scale Inference

System-level parallelism is essential for overcoming the computational and memory
bottlenecks inherent in large-model inference, and modern serving frameworks rely on
multiple forms of parallel execution to fully utilize heterogeneous hardware resources.
Tensor parallelism partitions matrix operations across multiple devices, allowing large
projection layers in attention and feed-forward modules to be computed concurrently
while maintaining tightly synchronized communication. Pipeline parallelism divides the
model into sequential segments distributed across devices, enabling different micro-
batches or tokens to be processed simultaneously at different stages of the model and
thereby increasing throughput under high concurrency. For autoregressive workloads,
sequence parallelism further decomposes attention computation by distributing KV cache
storage and attention heads across devices to reduce per-device memory pressure while
preserving token-level dependency constraints. Recent systems additionally employ
speculative decoding and multi-model parallel scheduling to overlap stages of generation,
improving resource utilization during single-token decoding. Together, these parallelism
paradigms form a layered execution strategy that balances compute distribution, memory
scaling, and communication overhead, enabling large models to achieve low-latency,
high-throughput inference across distributed hardware environments [7].

5.2. Memory Management and KV Cache Optimization
Efficient memory management is critical for sustaining high-performance inference

in large language models, particularly when dealing with long-context sequences and
limited device memory. The KV cache, which stores key and value tensors for all
previously generated tokens, can quickly dominate memory usage if not carefully
managed. Modern systems address this challenge through techniques such as buffer reuse,
selective eviction, and memory paging, which reduce the peak memory footprint while
preserving correctness in autoregressive decoding. Furthermore, memory-aware
scheduling ensures that data movement overlaps with computation, minimizing idle
cycles caused by memory access latency. For attention layers, partitioning the KV cache
across devices or tiles allows each device to operate on a subset of the sequence while
maintaining consistent global attention, thereby lowering per-device memory pressure.
Additional strategies, such as compressed storage formats or low-precision representation
of cached tensors, further reduce bandwidth requirements and improve cache locality. By
combining these memory management and KV cache optimization techniques, systems
can maintain high throughput and low latency, even when handling extremely large
models and long input sequences, without exceeding hardware constraints.

5.3. Accelerator-Aware Scheduling and System-Level Co-Optimization
To fully exploit modern heterogeneous hardware for large-model inference, system-

level scheduling must be tightly integrated with the underlying accelerator architecture.
Accelerator-aware scheduling aligns computation, memory transfers, and kernel

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 116 https://doi.org/10.71222/078xh379

execution with the specific characteristics of GPUs, TPUs, or specialized inference
accelerators, taking into account factors such as core utilization, on-chip memory
hierarchy, and interconnect bandwidth. Techniques such as asynchronous kernel dispatch,
overlapping computation with data movement, and dynamic load balancing allow the
system to minimize idle cycles and ensure high throughput. Furthermore, co-optimization
across multiple system layers-combining scheduling strategies with algorithmic
adaptations like sparsity, quantization, and dynamic computation-enables the inference
engine to adapt execution paths according to input characteristics and hardware
capabilities. By coordinating workload partitioning, memory management, and parallel
execution, accelerator-aware system scheduling reduces bottlenecks at both computation
and communication levels, achieving lower latency and higher efficiency for large-scale
model deployment in diverse runtime environments.

6. Collaborative Optimization Framework
6.1. Framework Design

The core of the proposed optimization framework lies in its integration of algorithm-
level, compiler-level, and system-level strategies to enable efficient inference for large
Transformer models. At the algorithm level, techniques such as pruning, sparsity
enforcement, quantization, and dynamic inference mechanisms work together to reduce
redundant computation and memory usage, decreasing arithmetic operations and
intermediate data, which directly benefits memory-limited deployment scenarios such as
edge devices. At the compiler level, graph optimizations, operator fusion, and layout
adjustments translate these algorithmic improvements into hardware-efficient execution
plans. Graph optimization removes unnecessary computations, operator fusion combines
multiple kernels into single operations, and layout optimization aligns memory access
patterns with hardware characteristics to improve cache utilization and reduce
bandwidth overhead [8].

System-level strategies complement algorithm and compiler improvements by
managing memory allocation, scheduling parallel execution, and optimizing data
movement. Efficient memory scheduling prevents bottlenecks from KV cache access or
intermediate tensor storage, while parallel execution distributes computation across cores
or devices to maximize throughput. Data movement strategies reduce latency by aligning
data transfer with computation requirements. By coordinating these three layers, the
framework ensures that improvements are mutually reinforcing, resulting in significant
gains in latency, throughput, and memory efficiency. The framework is modular and
scalable, allowing independent adaptation of each layer to different model sizes or
deployment scenarios, while fully realizing cross-layer benefits when all layers operate
collaboratively. This integration distinguishes the proposed framework from single-layer
optimization approaches and provides a solid foundation for further theoretical analysis.

6.2. Collaborative Strategy
The framework achieves efficiency through a tightly coordinated collaboration

between algorithm-level, compiler-level, and system-level strategies. At the algorithm
level, pruning removes redundant weights, sparsity enforcement reduces unnecessary
computation, and quantization lowers numerical precision without significantly
impacting accuracy. Dynamic inference strategies, such as early token skipping and
adaptive computation, further reduce the workload for tokens that require less processing.
These algorithmic improvements not only decrease the number of arithmetic operations
and memory footprint but also provide the foundation for more effective compiler
optimizations. For instance, reduced operations enable the compiler to generate
streamlined computation graphs, apply aggressive operator fusion, and reorganize
memory layouts for better alignment with hardware characteristics. By explicitly
connecting algorithmic improvements with compiler capabilities, the framework ensures

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 117 https://doi.org/10.71222/078xh379

that optimizations at one level magnify benefits at other levels, rather than remaining
isolated.

At the system level, memory management, scheduling, and data movement
strategies complement algorithm and compiler enhancements to fully realize performance
gains. Memory allocation policies reduce bottlenecks caused by KV cache growth or
intermediate tensor storage, while parallel execution distributes workload across multiple
cores or devices to maximize throughput. Data movement optimizations minimize
latency by aligning transfers with computation requirements, ensuring that hardware
resources are efficiently utilized. The framework also considers deployment-specific
adaptations: in cloud environments, throughput is prioritized through parallel execution;
on edge devices, memory usage is minimized via layout optimization and quantization;
in interactive applications, latency is reduced by leveraging dynamic inference and
efficient caching. Through this comprehensive cross-layer collaboration, the framework
achieves cumulative efficiency gains, demonstrating a clear advantage over approaches
that optimize only a single layer of the inference pipeline.

6.3. Mechanism Analysis and Performance Trends
The collaborative optimization framework produces several interrelated benefits

across computation, memory, and latency. At the algorithm level, pruning and sparsity
reduce the number of operations, while quantization decreases the size of intermediate
data, directly lowering both arithmetic workload and memory footprint. Dynamic
inference further reduces unnecessary computation for less critical tokens. Compiler-level
optimizations translate these algorithmic gains into efficient execution: operator fusion
minimizes kernel launch overhead, graph simplification reduces dependency chains, and
layout adjustments improve cache utilization and memory access patterns. System-level
strategies complement these improvements by efficiently scheduling memory usage,
parallelizing computations, and optimizing data movement. Together, these mechanisms
ensure that improvements at one level amplify benefits at the others, resulting in a
cumulative reduction in latency, throughput bottlenecks, and overall resource
consumption [9].

The framework also demonstrates adaptability across diverse deployment scenarios.
In cloud environments, parallel execution and optimized scheduling increase throughput
for batch inference tasks. On edge devices, memory-efficient layouts and quantized
computations minimize storage and bandwidth demands. For interactive applications,
dynamic inference and efficient caching reduce response time and provide low-latency
experiences. Although no empirical data is presented, theoretical analysis and
computational trends indicate clear improvements: the total FLOPs and memory access
requirements decrease, latency is reduced, and the framework can efficiently handle both
long-sequence and high-dimensional inference tasks. This analysis highlights the practical
potential of cross-layer collaboration and provides a strong foundation for future
evaluation and enhancement of large model inference optimization strategies.

7. Theoretical Feasibility Analysis
7.1. Computational Complexity Analysis

The computational characteristics of large Transformer models reveal that the
dominant costs arise from both the self-attention mechanism and feed-forward networks.
Algorithm-level optimizations, such as pruning and sparsity, reduce the number of
arithmetic operations, while quantization decreases memory usage by representing data
in lower precision. Dynamic inference mechanisms further lower workload by skipping
unnecessary computations for less critical tokens. These reductions collectively decrease
the overall FLOPs and memory footprint, illustrating that targeted algorithmic strategies
can theoretically improve efficiency without affecting model accuracy. Compiler-level
improvements amplify these benefits: operator fusion and graph simplification reduce

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 118 https://doi.org/10.71222/078xh379

execution overhead, while layout optimization ensures that memory access patterns
match hardware capabilities, further minimizing effective computation time. System-level
strategies, including memory scheduling and parallel execution, complement these
improvements by preventing bottlenecks and optimizing resource utilization across
multiple cores or devices.

From a theoretical perspective, the cumulative effect of cross-layer optimizations is
clear: FLOPs and memory access requirements decrease, bandwidth pressure is reduced,
and latency is improved, particularly in scenarios with long sequences or high-
dimensional hidden states. Even without empirical measurements, trend analysis
indicates that reducing redundant computation and optimizing memory hierarchies can
produce substantial efficiency gains. Moreover, the framework allows for scalable
adjustments, meaning that models of different sizes or architectures can benefit similarly
from these strategies. This theoretical complexity analysis highlights the importance of
coordinated algorithm-compiler-system strategies and sets a solid foundation for
comparing the framework against existing approaches and deployment scenarios.

7.2. Comparison with Mainstream Approaches
Mainstream optimization approaches for large Transformer inference typically focus

on a single layer, such as algorithmic pruning, compiler-level operator fusion, or system-
level parallelization. While these methods offer measurable improvements within their
respective layers, they often fail to exploit the synergistic potential of cross-layer
collaboration. For instance, pruning alone may reduce computation but cannot fully
leverage memory layout optimizations at the compiler level, and compiler fusion without
algorithmic simplification cannot eliminate unnecessary arithmetic operations.
Consequently, single-layer optimizations may achieve partial gains but leave significant
efficiency improvements untapped.

In contrast, the proposed collaborative framework integrates algorithm, compiler,
and system-level strategies, producing cumulative benefits that surpass any single-layer
method. Algorithmic reductions in FLOPs and memory footprint enable the compiler to
generate highly efficient execution graphs, while system-level scheduling and memory
management further enhance performance. This cross-layer coordination ensures that
optimizations reinforce one another, theoretically resulting in lower latency, higher
throughput, and reduced resource consumption across various deployment scenarios. By
structurally combining these layers, the framework addresses limitations inherent in
mainstream approaches and provides a more complete and adaptable solution for
efficient large model inference.

7.3. Adaptability Across Different Application Scenarios
The proposed collaborative optimization framework demonstrates theoretical

adaptability across a variety of deployment scenarios. In cloud environments, where
throughput is a primary concern, the combination of algorithmic pruning, compiler-level
graph simplification, and system-level parallelization enables the model to handle large
batches efficiently while minimizing computational bottlenecks. Memory-efficient
layouts and operator fusion reduce data movement overhead, allowing high-throughput
inference without exceeding hardware resource limits. This ensures that cloud servers can
maintain responsiveness even under heavy workloads, highlighting the framework's
scalability in large-scale processing environments.

For edge devices and interactive applications, memory footprint and latency are
critical constraints. Quantization and sparsity reduce intermediate storage requirements,
while dynamic inference mechanisms skip redundant computations for less significant
tokens. Compiler optimizations align memory layouts with hardware characteristics,
further improving cache utilization and reducing bandwidth demand. System-level
strategies, including intelligent scheduling and efficient data transfer, minimize latency

https://doi.org/10.71222/078xh379

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 119 https://doi.org/10.71222/078xh379

and provide smooth real-time responses. These adaptations show that the framework can
be effectively tuned for both high-performance cloud deployments and resource-
constrained edge environments, demonstrating its versatility and robust theoretical
feasibility across diverse application scenarios.

8. Conclusion and Future Directions
8.1. Research Summary

This study has developed a comprehensive cross-layer co-optimization framework
that integrates algorithmic, compiler, and system-level strategies to improve the efficiency
of large-model inference. At the algorithmic level, structured pruning, sparsity,
quantization, and dynamic inference reduce computational workload and memory
footprint, exposing patterns that compilers can exploit. Compiler-level optimizations,
including operator fusion, graph rewriting, layout specialization, and scheduling,
translate these algorithmic reductions into hardware-efficient execution, minimizing
redundant operations and memory traffic. At the system level, parallel execution,
memory management, and KV cache optimization further improve resource utilization,
ensuring high throughput and low latency across heterogeneous hardware. By
coordinating these layers in a synergistic manner, the framework addresses the limitations
of single-layer optimization approaches, providing a theoretically grounded path for
reducing FLOPs, memory consumption, and inference latency. Overall, the research
demonstrates that a holistic, cross-layer perspective can significantly enhance the practical
efficiency of large-scale models while maintaining model functionality and generality.
This unified approach not only clarifies the interactions between algorithm, compiler, and
system optimizations but also provides a structured methodology for designing future
high-performance inference pipelines.

8.2. Limitations and Future Directions
Despite the theoretical advantages of the proposed framework, several limitations

remain and point to directions for future research. Extending the framework to multi-
modal inference represents a key opportunity, as different modalities introduce
heterogeneous computation patterns and memory requirements that may challenge
existing scheduling and compiler strategies. Another promising direction is edge-cloud
collaborative inference, which would leverage the complementary strengths of local and
cloud resources to optimize latency, throughput, and memory usage simultaneously.
Additionally, automated joint search of algorithmic and compiler configurations could
identify optimal combinations of pruning, quantization, kernel fusion, and scheduling,
tailored to specific models and deployment environments, further enhancing
performance. Future studies could also explore dynamic adaptation mechanisms, where
the system automatically adjusts computation strategies based on workload
characteristics or hardware constraints. Taken together, these directions suggest that the
framework presented here can serve as a foundation for a broad class of efficient,
adaptable, and scalable inference solutions, bridging theoretical analysis and practical
deployment in diverse application scenarios.

References
1. Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, and Y. Wang, "A survey on efficient inference for large language models," arXiv

preprint arXiv:2404.14294, 2024. doi: 10.48550/arXiv.2404.14294.
2. R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li, D. Li, E. Zheng, and Y. He, "Deepspeed-inference: Enabling efficient

inference of transformer models at unprecedented scale," In SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis, November, 2022, pp. 1-15. doi: 10.1109/SC41404.2022.00051.

3. S. Park, S. Jeon, C. Lee, S. Jeon, B. S. Kim, and J. Lee, "A survey on inference engines for large language models: Perspectives on
optimization and efficiency," arXiv preprint arXiv:2505.01658, 2025. doi: 10.48550/arXiv.2505.01658.

https://doi.org/10.71222/078xh379
https://doi.org/10.48550/arXiv.2404.14294
https://doi.org/10.48550/arXiv.2505.01658

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 120 https://doi.org/10.71222/078xh379

4. Y. Liu, J. Wu, Y. He, R. Gong, J. Xia, L. Li, and K. Li, "Efficient inference for large reasoning models: A survey," arXiv preprint
arXiv:2503.23077, 2025. doi: 10.48550/arXiv.2503.23077.

5. W. Wang, W. Chen, Y. Luo, Y. Long, Z. Lin, L. Zhang, and X. He, "Model compression and efficient inference for large language
models: A survey," arXiv preprint arXiv:2402.09748, 2024.

6. C. Guo, F. Cheng, Z. Du, J. Kiessling, J. Ku, S. Li, and Y. Chen, "A survey: Collaborative hardware and software design in the
era of large language models," IEEE Circuits and Systems Magazine, vol. 25, no. 1, pp. 35-57, 2025. doi: 10.1109/mcas.2024.3476008.

7. X. Zhang, J. Liu, Z. Xiong, Y. Huang, G. Xie, and R. Zhang, "Edge intelligence optimization for large language model inference
with batching and quantization," In 2024 IEEE Wireless Communications and Networking Conference (WCNC), April, 2024, pp. 1-6.
doi: 10.1109/wcnc57260.2024.10571127.

8. J. Li, J. Xu, S. Huang, Y. Chen, W. Li, J. Liu, and G. Dai, "Large language model inference acceleration: A comprehensive
hardware perspective," arXiv preprint arXiv:2410.04466, 2024. doi: 10.48550/arXiv.2410.04466.

9. J. Liu, P. Tang, W. Wang, Y. Ren, X. Hou, P. A. Heng, and C. Li, "A survey on inference optimization techniques for mixture of
experts models," arXiv preprint arXiv:2412.14219, 2024. doi: 10.48550/arXiv.2412.14219.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/078xh379
https://doi.org/10.48550/arXiv.2503.23077
https://doi.org/10.48550/arXiv.2410.04466
https://doi.org/10.48550/arXiv.2412.14219

	1. Introduction
	1.1. Research Background
	1.2. Existing Challenges
	1.3. Research Objectives and Contributions

	2. Inference Computation Characteristics
	2.1. Bottlenecks in Inference Computation
	2.2. Transformer Block Critical Path
	2.3. Theoretical Formulation and Computational Complexity

	3. Algorithmic Optimization Methods
	3.1. Pruning, Sparsification, Quantization, and Dynamic Inference
	3.2. Mechanisms of Computational Reduction in Algorithmic Optimization
	3.3. Integrated Algorithmic Strategies for End-to-End Inference Efficiency

	4. Compiler Techniques for High-Performance Model Inference
	4.1. Graph Optimization, Operator Fusion, and Layout Specialization
	4.2. Scheduling Optimization and Memory-Efficient Execution
	4.3. Co-Design of Algorithms and Compiler Optimization Pipelines

	5. System-Level Inference Optimization Techniques
	5.1. Parallelism Strategies for Large-Scale Inference
	5.2. Memory Management and KV Cache Optimization
	5.3. Accelerator-Aware Scheduling and System-Level Co-Optimization

	6. Collaborative Optimization Framework
	6.1. Framework Design
	6.2. Collaborative Strategy
	6.3. Mechanism Analysis and Performance Trends

	7. Theoretical Feasibility Analysis
	7.1. Computational Complexity Analysis
	7.2. Comparison with Mainstream Approaches
	7.3. Adaptability Across Different Application Scenarios

	8. Conclusion and Future Directions
	8.1. Research Summary
	8.2. Limitations and Future Directions

	References

