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Abstract: The rapid proliferation of ultra-dense 6G networks has intensified the challenges of real-
time spectrum management, as traditional centralized or static allocation methods struggle to
achieve a balance among responsiveness, energy efficiency, and scalability. Existing approaches that
rely on global coordination incur considerable signaling overhead and fail to adapt effectively to
non-stationary wireless environments. To address these limitations, this study introduces an Edge-
Intelligence-Based Dynamic Spectrum Allocation (EI-DSA) framework that integrates deep
reinforcement learning (DRL) with federated learning (FL) for localized spectrum prediction and
distributed decision-making. Utilizing empirical parameters derived from the NTT Docomo Tokyo
6G Testbed and Huawei Futian CBD Field Trials, the proposed framework achieves notable
improvements-8.8% higher spectrum utilization, 26% lower latency, and 43% better energy
efficiency-compared with centralized RL and proportional fairness baselines. The findings validate
that embedding edge intelligence within radio access networks enables real-time, energy-aware,
and privacy-preserving control. Theoretically, this research bridges communication engineering
and intelligent optimization, presenting a scalable paradigm for Al-native 6G systems. Practically,
it provides design guidance for developing green, autonomous, and adaptive wireless
infrastructures that align with next-generation communication and electronic engineering
advancements.

Keywords: edge intelligence; 6G networks; dynamic spectrum allocation; federated reinforcement
learning; energy efficiency

1. Introduction

The evolution toward sixth-generation (6G) wireless communication represents a
paradigm shift from throughput-oriented design to intelligence-driven connectivity [1].
In ultra-dense urban environments such as Tokyo's Shibuya Station and Shenzhen's
Futian Central Business District, thousands of small cells, IoT sensors, and autonomous
devices operate within confined radio spaces, creating highly dynamic and heterogeneous
spectrum demands [2]. The exponential growth of connected devices-expected to exceed
10¢ per km? by 2030-places unprecedented pressure on radio spectrum management.
Under such conditions, static or centrally controlled spectrum allocation schemes are no
longer sufficient to ensure the real-time responsiveness, energy efficiency, and low
latency required by mission-critical applications such as autonomous driving,
telemedicine, and extended reality (XR) streaming [3].

Conventional methods, including heuristic scheduling and optimization-based
dynamic spectrum access, depend heavily on global coordination and static parameter
tuning [4]. Although effective in 5G macro-cell environments, these methods fail to scale
within 6G's heterogeneous edge infrastructure due to excessive signaling overhead and
limited adaptability to rapidly changing local conditions [5]. Furthermore, cloud-centric
management introduces additional latency and energy consumption, particularly when
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frequent channel state updates must be transmitted from edge nodes to centralized
controllers [6]. While recent advances in deep learning and reinforcement learning have
enabled partial automation of spectrum allocation, their dependence on centralized
training and homogeneous datasets restricts adaptability in non-stationary wireless
environments [7]. This limitation underscores the need for distributed, context-aware
spectrum management frameworks capable of autonomous operation at the network edge.

To overcome these challenges, this study proposes an Edge-Intelligence-Based
Dynamic Spectrum Allocation (EI-DSA) framework that integrates edge Al prediction
models with distributed decision-making mechanisms. Each edge node utilizes local
traffic observations and spectral characteristics to predict short-term demand variations
through hybrid deep reinforcement learning (DRL), enhanced by federated learning (FL)
for collaborative model updating. This hybrid approach reduces communication
overhead and alleviates the effects of environmental non-stationarity while preserving
data privacy and local autonomy. A case study based on ultra-dense 6G testbeds deployed
in Tokyo and Shenzhen is conducted to validate the proposed framework under realistic
mobility and interference conditions.

Methodologically, this research combines literature analysis, simulation-based
performance evaluation, and comparative experiments against conventional allocation
schemes such as Q-learning and proportional fairness (PF). The evaluation focuses on
three key metrics-spectrum utilization, latency, and energy efficiency-which collectively
capture the trade-off between communication performance and computational cost.

The significance of this study lies in both its theoretical and practical contributions.
Theoretically, it advances the foundation of distributed edge intelligence for spectrum
management by introducing a scalable model that learns and adapts dynamically at the
network periphery. Practically, it offers a feasible solution for real-time, low-latency
spectrum coordination in next-generation communication systems, providing insights for
6G infrastructure planning, energy-aware network control, and Al-native protocol design.
By integrating principles of communication engineering with intelligent optimization
algorithms, this research contributes to the realization of self-optimizing 6G networks that
embody both efficiency and autonomy.

2. Literature Review
2.1. Dynamic Spectrum Management in Next-Generation Networks

Dynamic spectrum management has become a fundamental component of efficient
wireless communication. Traditional schemes, such as static frequency reuse and
proportional fairness, performed well in 5G macro-cell systems due to their analytical
simplicity and relatively stable traffic patterns [8]. However, these rule-based and
centrally controlled methods are inadequate for coping with the rapidly changing
interference and high device density characteristic of 6G environments [9]. Machine-
learning-based dynamic spectrum access (DSA) models-employing Q-learning, Markov
decision processes, or heuristic optimization-have introduced a degree of automation, yet
they continue to rely on centralized control and frequent global updates [10]. As the
number of users and base stations increases, signaling overhead and convergence delays
grow significantly. Consequently, existing research still lacks real-time, scalable spectrum
allocation mechanisms suitable for ultra-dense and heterogeneous 6G deployments.

2.2. Edge Intelligence and Distributed Learning

Edge intelligence (EI), which integrates artificial intelligence with edge computing,
offers a promising paradigm for real-time, localized decision-making [11]. Deep
reinforcement learning (DRL) enables autonomous spectrum selection through
continuous environmental feedback, while federated learning (FL) facilitates distributed
model training without transmitting raw data [12]. These methods enhance adaptability
and data privacy but also face key challenges: DRL entails high computational costs and
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instability in dynamic action spaces, whereas FL often assumes homogeneous data
distributions and synchronized updates-conditions rarely achievable in mobile 6G
networks. Comparative analyses highlight a trade-off between global coordination and
local autonomy. Centralized models deliver stable and consistent performance but
introduce additional latency, while decentralized models improve scalability yet risk
suboptimal global performance [13]. Therefore, a clear research gap exists in developing
hybrid frameworks that balance learning efficiency with lightweight edge deployment.

2.3. 6G Ultra-Dense Networks and Resource Optimization

6G networks integrate terahertz communication, massive multiple-input multiple-
output (MIMO) systems, and reconfigurable intelligent surfaces (RIS) within dense small-
cell architectures. Real-world deployments in areas such as Tokyo's Shibuya Station and
Shenzhen's Futian Central Business District illustrate the benefits of dense coverage but
also expose severe inter-cell interference and coordination challenges. While self-
organizing network (SON) mechanisms introduced in 5G systems provided partial
automation, they still depend on manually defined thresholds and centralized feedback
loops [14]. Recent Al-enabled control frameworks have attempted predictive scheduling;
however, most continue to treat spectrum management, beamforming, and power
optimization as independent processes, leading to cross-layer inefficiencies. Furthermore,
many proposed solutions remain limited to simulation environments, lacking validation
through realistic testbeds.

2.4. Summary and Research Contribution

Existing studies face three principal limitations:

(1) Static and centralized DSA mechanisms fail to meet 6G's real-time requirements.

(2) Edge learning algorithms struggle with heterogeneous data and unstable
convergence.

(3) Current 6G resource management frameworks rarely integrate spectrum
prediction, adaptive allocation, and energy-aware control.

To address these shortcomings, this study proposes an Edge-Intelligence-Based
Dynamic Spectrum Allocation (EI-DSA) framework that integrates hybrid DRL-FL
mechanisms for demand prediction and distributed coordination. EI-DSA enables
autonomous, low-latency, and energy-efficient spectrum management while maintaining
scalability and privacy. The framework contributes both theoretically and practically: it
establishes a foundation for distributed, learning-driven spectrum management and
provides a practical pathway toward Al-native 6G communication systems capable of
self-optimization under ultra-dense conditions.

In summary, the literature reveals a distinct research gap. Although 6G requires fine-
grained, context-aware resource orchestration, existing frameworks fail to jointly
optimize spectrum utilization, latency, and energy efficiency in a distributed and scalable
manner. This gap underscores the necessity for a unified, learning-driven spectrum
allocation model capable of operating effectively within ultra-dense, multi-tier
architectures.

3. Theoretical Framework and Methodology
3.1. Theoretical Foundation

The proposed research is grounded in the convergence of three theoretical domains:
(1) edge intelligence for distributed decision-making, (2) reinforcement learning for
adaptive optimization, and (3) 6G network theory emphasizing ultra-dense, Al-native
architectures. Together, these frameworks establish the foundation for an intelligent,
context-aware mechanism for dynamic spectrum allocation.

First, edge intelligence (EI) serves as the cognitive layer of the system. By processing
data locally at base stations or micro edge nodes, EI minimizes communication latency
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and enables real-time spectrum perception. In ultra-dense 6G environments-such as
Tokyo's Shibuya Station, where more than 5,000 small cells coexist within a one-square-
kilometer area-spectrum occupancy fluctuates rapidly due to high user mobility and
overlapping interference. Edge nodes must therefore predict local spectral demand
without depending on centralized cloud coordination.

Second, reinforcement learning (RL) provides the theoretical foundation for adaptive
control. The dynamic spectrum allocation process can be modeled as a sequential
decision-making problem in which, at each time slot, the system observes channel quality,
interference, and user demand, and then allocates frequency bands to maximize long-term
utility (e.g., throughput or energy efficiency). Unlike traditional optimization methods,
RL adapts continuously to environmental uncertainty. In this study, a hybrid deep
reinforcement learning (DRL) agent operates at each edge node, trained collaboratively
through federated learning (FL) to exchange model updates rather than raw data-
ensuring both scalability and data privacy.

Third, 6G architectural theory emphasizes intelligent, distributed orchestration. The
6G vision, defined by ultra-reliable low-latency communication (URLLC) and extreme
energy efficiency, demands Al-native network layers capable of autonomous local control.
The proposed EI-DSA model aligns with this vision by embedding learning agents
directly within the radio access network (RAN) edge, transforming traditional
hierarchical management into a self-optimizing ecosystem.

3.2. System Architecture and Case Context

The EI-DSA framework is validated through two urban 6G deployment scenarios:

(1) Tokyo's Shibuya Station, representing a high-mobility transportation hub.

(2) Shenzhen's Futian Central Business District, representing a stationary yet ultra-
dense commercial environment.

Each environment consists of multi-tier small cells, edge servers, and user equipment
(UE) clusters operating across terahertz and sub-6 GHz bands. The architecture is
organized into three interacting layers:

1) Perception Layer: Local sensing modules collect channel quality indicators

(CQYI), interference levels, and user traffic density.

2)  Decision Layer: Edge agents execute local DRL-based allocation policies and

periodically synchronize parameters through federated aggregation.

3) Coordination Layer: Regional controllers conduct lightweight consensus

validation and fairness adjustment across overlapping cells.

This layered architecture enables bidirectional feedback between local learning and
global coordination, maintaining an equilibrium between efficiency and fairness.

3.3. Research Design and Methods

The research adopts a mixed-method design integrating simulation-based analysis,
comparative evaluation, and case-based validation.

1.  Simulation Modeling:

The 6G network environment is emulated using a discrete-time simulator developed
in Python and MATLAB. Each simulation run involves 500-1,000 user devices, 50-100
small cells, and dynamic mobility patterns derived from real GPS traces of the Shibuya
and Futian districts. Environmental parameters such as path loss, Doppler shift, and
interference power are modeled in accordance with ITU-R channel specifications.

2. Comparative Evaluation:

EI-DSA is evaluated against three benchmark schemes:

1) Centralized RL-based Spectrum Allocation (CRL)

2)  Proportional Fairness Scheduling (PF)

3) Q-learning-based DSA (QL-DSA)
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All methods are tested under identical network conditions to ensure fairness.
Evaluation metrics include spectrum utilization efficiency (%), end-to-end latency (ms),
and energy efficiency (J/bit).

3. Case Study Validation:

The Shibuya deployment assesses temporal adaptability-how effectively the system
responds to high mobility and fluctuating traffic-while the Futian deployment examines
spatial scalability, focusing on coordination across densely packed business clusters.
These contrasting conditions provide a robust assessment of EI-DSA's adaptability under
realistic operational environments.

4.  Ablation and Sensitivity Analysis:

Additional experiments isolate the contributions of DRL and FL components.
Scenarios with and without federated aggregation are compared to measure
communication cost reduction. Sensitivity tests adjust the number of active edge nodes to
evaluate scalability and performance degradation rates.

3.4. Data Processing and Implementation

Each edge node collects local statistics, including channel occupancy ratio,
interference index, and energy consumption per transmission round. Data preprocessing
involves normalization, feature extraction via convolutional encoding, and short-term
temporal smoothing to eliminate transient noise. Model training is conducted on NVIDIA
A100 GPUs, while inference is executed on ARM-based edge processors.

The federated learning cycle follows an asynchronous update scheme: local DRL
agents upload model gradients every five training episodes, and the global aggregator
returns averaged weights after validation. This mechanism balances real-time
responsiveness with communication efficiency, enabling synchronization without strict
timing dependencies.

3.5. Methodological Rationale

The integration of simulation and case-based analysis ensures both theoretical rigor
and empirical relevance. Purely mathematical optimization would require assumptions
such as convexity and complete observability, which do not hold in 6G's dynamic, non-
stationary environment. The chosen methodology captures contextual heterogeneity,
hardware constraints, and learning dynamics that better reflect real-world deployments.

Moreover, incorporating real-world urban datasets-such as traffic density maps and
mobility traces-enhances the ecological validity of the findings. The two selected cities,
Tokyo and Shenzhen, represent complementary extremes of mobility and density,
providing an ideal testbed for evaluating distributed edge learning strategies.

This hybrid research design bridges theoretical innovation with engineering
feasibility. The EI-DSA framework therefore not only advances algorithmic development
but also presents a replicable engineering model for future 6G deployments emphasizing
distributed intelligence, energy sustainability, and ultra-low-latency operation.

3.6. Summary

This chapter established the theoretical and methodological foundation of the study.
By integrating principles from edge intelligence, reinforcement learning, and 6G network
theory, it proposed a layered, learning-driven framework for dynamic spectrum
allocation. Through a combination of simulation, comparative evaluation, and real-world
validation, the EI-DSA framework is examined under realistic ultra-dense conditions. The
following chapter presents the experimental results and discussion, analyzing how EI-
DSA achieves superior adaptability, efficiency, and scalability compared with
conventional allocation methods.
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4. Findings and Discussion
4.1. Overall Performance Evaluation

The evaluation of the Edge-Intelligence-Based Dynamic Spectrum Allocation (EI-
DSA) framework was conducted using network parameters aligned with the ITU-R
M.2412 propagation models and two publicly documented urban testbeds: the NTT
Docomo Tokyo 6G Trial and the Huawei 6G Futian CBD Testbed. Each simulation
instance used a 100 MHz channel bandwidth, 100 small cells, and 800-1000 user
equipment (UE) terminals. Path-loss and noise power distributions were calibrated
against empirical measurements.

As shown in Figure 1 and Table 1, the averaged outcomes indicate that the proposed
framework demonstrates significant improvements over baseline methods.
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Figure 1. Performance metrics under ultra-dense 6G conditions (data sources: NTT Docomo 2024;
Huawei 2023; OAI 6G Sandbox 2024).

Table 1. Quantitative comparison of spectrum utilization, latency, and energy efficiency across
baseline and proposed methods under ultra-dense 6G scenarios.

Energy
Spectrum Mean Latency
h . o . D
Method  yitization %) 1 (ms) | Efﬁﬂen;—y (/bit)  Data Source
. OAI 6G Sandbox
PF (Baseline) 73.1 14.5 1.00 (2024)
Zhang et al.,
QL-DSA 78.6 12.1 L.10 IEEE TWC 2024
CRL (Centralized 1.24 NTT Docomo
RL) ) Testbed (2024)
This Study
EI-DSA 90.5 7.2 1.41 (derived from
(Proposed)

above sources)

(Data sources: NTT Docomo 2024; Huawei 2023; OAI 6G Sandbox 2024).

Compared with the centralized RL (CRL) baseline, EI-DSA achieved an 8.8%
improvement in spectrum utilization and a 26% reduction in average latency. These gains
are primarily attributed to (i) localized DRL inference that minimizes backhaul signaling
and (ii) asynchronous federated aggregation that reduces waiting delays. The 43%
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increase in energy efficiency compared to PF results from the reward function's power-
scaling term, which promotes adaptive transmit-power control at the edge. These trends
align with reported testbed findings indicating that distributed Al control can reduce
network energy consumption by approximately 37%.

4.2. Temporal Adaptability in High-Mobility Scenarios

The Tokyo Shibuya Station testbed (NTT Docomo x Tokyo Metro, 2024) provides
real-world measurements for dense mobility environments, featuring an average UE
speed of approximately 68 km/h and a channel coherence time of 3.5 ms. Using these
conditions, the same environment was reproduced in simulation to evaluate latency and
packet-success ratio over a 120-second interval.

As shown in Table 2, EI-DSA achieved the highest packet-success ratio (95.6%),
maintaining latency fluctuations within +0.9 ms. In contrast, the centralized RL (CRL)
baseline exhibited +2.4 ms variability. The improvement is attributed to the temporal-
convolutional forecasting module embedded within the DRL agent, which predicts
channel degradation two to three slots in advance, and to the five-episode federated-
aggregation cycle that rapidly adapts to periodic mobility patterns such as rush-hour
peaks.

Table 2. Packet-success ratio comparison of baseline and proposed methods under high-mobility
conditions in the Tokyo Shibuya 6G testbed.

Method Packet-Success Ratio (%) 1 Data Source
PF 81.5 OAI 6G Sandbox
CRL 88.2 Tokyo 6G Trial Logs (2024)

EI-DSA 95.6 This Study (replicating
Docomo dataset)

(Data sources: NTT Docomo x Tokyo Metro 6G Trial 2024; OAI 6G Sandbox 2024).

The observed 95.6% success rate aligns closely with reported results from large-scale
6G metro trials, confirming the practical feasibility of the proposed framework in rapidly
varying channel conditions.

4.3. Spatial Scalability and Inter-Cell Coordination

The Huawei 6G Futian CBD field test (2023) deploys approximately 100 small cells
per square kilometer within a dense urban block. Using this spatial layout, the present
study compared the distribution of spectral efficiency between the centralized RL (CRL)
baseline and the proposed EI-DSA framework.

As shown in Figure 2, the CRL scheme generates localized "hotspot” and "idle"
regions due to asynchronous updates, whereas EI-DSA produces a far more uniform
spectrum-efficiency pattern across neighboring cells. The corresponding Jain fairness
index increases from 0.87 to 0.94, indicating a 7-10% improvement in inter-cell fairness
under federated coordination. Because EI-DSA exchanges only compact model-gradient
parameters (approximately 1.2 MB per cycle) instead of full channel-state information, the
control-plane communication load is reduced by about 45%. These results confirm the
scalability and practicality of EI-DSA for ultra-dense 6G deployments where centralized
coordination becomes infeasible.
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Figure 2. Spectral-efficiency maps (bps/Hz) across 100 small cells in the Futian CBD testbed: (a) CRL
baseline; (b) EI-DSA framework.

4.4. Comparative and Theoretical Insights

(1) Reinforcement Learning versus Rule-Based Allocation

Rule-based proportional-fairness (PF) schedulers operate effectively in macro-cell
systems but fail to adapt to rapid interference fluctuations. The DRL agents within EI-
DSA learn nonlinear state-action relationships, dynamically balancing throughput and
interference mitigation.

(2) Centralized versus Federated Learning

While centralized training ensures global model consistency, it incurs approximately
110 ms of aggregation delay in the tested environment. EI-DSA's asynchronous federated
averaging reduces this to roughly 60 ms without compromising stability, thereby
lowering backhaul energy consumption by nearly 40%.

(3) Edge Autonomy and Al-Native Networking

Integrating learning agents at the radio-access edge aligns with the 6G vision of Al-
native, self-optimizing networks. Each cell executes a local sense-decide-act loop, meeting
the ultra-reliable low-latency communication (URLLC) requirement (< 1 ms end-to-end
latency) specified by ITU-R (2024).

4.5. Practical Implications for 6G Infrastructure

The proposed EI-DSA framework presents several practical implications for future
6G systems. Deploying lightweight DRL agents at edge base stations reduces backhaul
signaling by approximately 45%, enabling scalable and resilient Radio Access Network
(RAN) architectures suited for ultra-dense deployments. The enhanced energy efficiency
lowers joules-per-bit consumption, supporting carbon-reduction objectives and aligning
with ITU-T L.1470 and international "Green ICT" standards.

These results also inform the design of Al-native communication protocols where
spectrum allocation, beamforming, and power control are jointly optimized through
embedded intelligence. Furthermore, the predictive-adaptive mechanism demonstrated
here can be extended to vehicular and industrial IoT networks, where autonomous, low-
latency decision-making is critical. Collectively, these findings indicate that edge
intelligence serves not only as an algorithmic enhancement but also as a structural enabler
of sustainable, adaptive, and self-optimizing 6G infrastructure.

4.6. Summary of Findings

The experimental analysis yields five principal findings. First, EI-DSA maintains high
temporal adaptability, limiting latency oscillation to 0.9 ms at 68 km/h, consistent with
Tokyo 6G trial conditions. Second, spatial fairness improves substantially, with Jain's
index reaching 0.94-an 8% gain observed in the Futian CBD field test. Third, energy
efficiency rises by 43% compared with the PF baseline, as verified in the OAI 6G Sandbox.
Fourth, communication overhead is reduced by 45% per update cycle, based on the
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