

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 6 (2025) 49 https://doi.org/10.71222/ww7w6c36

Article

Design and Implementation of Code Completion System Based
on LLM and CodeBERT Hybrid Subsystem
Bingbing Zhang 1,*, Ziyu Lin 2 and Yingxin Su 3

1 Xiamen Institute of Technology, Xiamen, China
2 Google LLC, Seattle, Washington, USA
3 University of California, Davis, California, USA
* Correspondence: Bingbing Zhang, Xiamen Institute of Technology, Xiamen, China

Abstract: In the rapidly evolving industry of software development, coding efficiency and accuracy
play significant roles in delivering high-quality software. Various code suggestion and completion
tools, such as CodeBERT from Microsoft and GPT-3.5 from OpenAI, have been developed using
deep learning techniques and integrated into IDEs to assist software engineers' development. Re-
searches have shown that CodeBERT has outstanding performance in code summarization and cap-
turing code semantics, while GPT-3.5 demonstrated its adept capability at code generation. This
study focuses on implementing a hybrid model that integrates CodeBERT and GPT-3.5 models to
accomplish code suggestion and autocomplete tasks, leveraging the context-aware effectiveness of
CodeBERT and taking advantage of advanced code generation abilities of GPT-3.5. Evaluated in
three main metrics: accuracy, quality of generated code and performance efficiency with various
software and hardware, the hybrid model outperforms benchmarks, demonstrating its feasibility
and effectiveness. Robustness testing further confirms the reliability and stability of the hybrid
model. This study not only further emphasizes the importance of deep learning in the software de-
velopment industry, but also reveals the potential of synthesizing complementary deep learning
models to fully exploit strengths of each model.

Keywords: code completion; CodeBERT; GPT-3.5; code generation; deep learning

1. Introduction
This study aims to explore the potential of a hybrid model that combines the

strengths of CodeBERT and GPT-3.5 for code completion tasks. By integrating the contex-
tual understanding of CodeBERT with the generative capabilities of GPT-3.5, the pro-
posed model seeks to enhance the accuracy and quality of code suggestions. The research
will also evaluate the model's performance across various dimensions, including accuracy,
generation quality, efficiency, and robustness, using a comprehensive dataset derived
from Microsoft's CodeXGLUE benchmark.

In recent years, the rapid evolution of software engineering has created an unprece-
dented demand for intelligent and efficient programming tools. As software systems
grow in scale and complexity, developers are increasingly challenged to maintain code
quality, manage dependencies, and accelerate the software development lifecycle. Among
various intelligent programming assistants, code completion technology has emerged as
a vital component of modern integrated development environments (IDEs). By providing
real-time, context-aware code suggestions, code completion systems enhance developer
productivity, reduce cognitive load, and significantly minimize syntax and logical errors.
These systems not only shorten the development cycle but also improve software reliabil-
ity and maintainability, thereby contributing to higher-quality software delivery [1].

Traditional code completion methods primarily rely on rule-based approaches, static
analysis, and pattern matching. Although effective in specific scenarios, these techniques

Received: 06 September 2025

Revised: 20 September 2025

Accepted: 24 October 2025

Published: 30 October 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/ww7w6c36

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 50 https://doi.org/10.71222/ww7w6c36

often struggle to capture the complex semantics and contextual dependencies of modern
programming languages. In contrast, deep learning-based approaches have demonstrated
remarkable progress by leveraging massive code repositories and advanced neural net-
work architectures to learn syntactic and semantic representations of source code. Pre-
trained language models such as CodeBERT, designed specifically for programming lan-
guage understanding, have achieved outstanding results in tasks like code summarization,
code search, and bug detection. Similarly, large-scale generative models such as GPT-3.5
have shown exceptional natural language understanding and generation abilities, sug-
gesting strong potential for application in source code generation and completion tasks
[2].

Building upon these advances, this study proposes a hybrid deep learning model that
integrates the contextual understanding capabilities of CodeBERT with the generative
strengths of GPT-3.5 for intelligent code completion. The proposed framework aims to
enhance both the accuracy and semantic coherence of generated code suggestions while
maintaining computational efficiency. A comprehensive evaluation will be conducted us-
ing datasets derived from the Microsoft CodeXGLUE benchmark, assessing the model's
performance in terms of accuracy, generation quality, efficiency, and robustness.

The main contributions of this paper can be summarized as follows:
1) Hybrid Model Design: We propose a novel hybrid architecture that combines

CodeBERT's bidirectional context encoding with GPT-3.5's autoregressive gen-
eration capabilities for more accurate and contextually aware code completion.

2) Comprehensive Evaluation Framework: We construct an extensive experi-
mental setup using CodeXGLUE datasets to systematically assess performance
across multiple programming languages and tasks.

3) Performance and Generalization Analysis: We provide an in-depth analysis of
the proposed model's strengths and limitations, highlighting its robustness,
adaptability, and potential for integration into real-world software develop-
ment environments.

2. Literature Review
The integration of deep learning models has become a mainstream approach in soft-

ware development to produce more efficient and reliable code. CodeBERT was intro-
duced as the first bimodal pre-trained model designed for programming languages (PL)
and natural language (NL) [3]. Trained on both NL-PL pairs and unimodal data, it demon-
strated strong semantic understanding in code search and code-to-documentation gener-
ation tasks. Its effectiveness was further confirmed in defect prediction through sentence-
based and keyword-based extensions (CodeBERT-PS and CodeBERT-PK) [4]. Although
CodeBERT does not utilize abstract syntax trees (ASTs), subsequent research has sug-
gested that integrating AST-based representations could further enhance its performance.

The role of abstract syntax trees (ASTs) in code completion has been widely recog-
nized [5]. Traditional AST-based methods, however, often fail to capture complete struc-
tural patterns. To address this limitation, the CCAG model was proposed to represent
flattened ASTs as graphs, incorporating an AST Graph Attention Block (ASTGab) with
three attention layers to capture dependencies among AST nodes. Subtasks are balanced
through uncertainty modeling, and extensive experiments have validated the model's ef-
fectiveness in improving code completion performance.

Alongside CodeBERT, GPT-3 has emerged as another prominent model in the field
of language processing [6]. It has been evaluated on multiple natural language processing
(NLP) tasks under zero-, one-, and few-shot settings, demonstrating strong transfer learn-
ing capabilities. Despite the absence of task-specific fine-tuning, GPT-3 often matches or
even surpasses specialized models, with its performance improving as model size in-
creases. Its adaptability and generative capacity make it a strong candidate for building
general-purpose language systems, although certain limitations remain.

https://doi.org/10.71222/ww7w6c36

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 51 https://doi.org/10.71222/ww7w6c36

To facilitate systematic evaluation, a comprehensive benchmark dataset suite named
CodeXGLUE was developed [7]. It encompasses tasks such as code completion and defect
detection, and integrates baseline frameworks including BERT-style, GPT-style, and en-
coder-decoder models. CodeXGLUE provides a unified foundation for assessing not only
task-specific performance but also the overall capability of code intelligence models.

These recent developments collectively highlight the rapid advancement of code
completion technologies, characterized by a growing emphasis on large language models,
security considerations, and cross-modal integration. The field continues to progress to-
ward more efficient, secure, and versatile approaches to code generation and completion.

3. Experimental Result
3.1. Data Introduction

The dataset used in this study is derived from Microsoft's open source CodeXGLUE
benchmark dataset, which is dedicated to the evaluation of code comprehension and gen-
eration tasks. In this study, the focus is on using the Python code dataset related to the
Code Completion task therein, which has been carefully filtered and preprocessed to en-
sure data quality and diversity.

3.2. Model Introduction
In terms of model architecture, this study proposes a hybrid model architecture

based on CodeBERT and GPT-3.5. Among them, CodeBERT is responsible for handling
the contextual encoding of the code and extracting the semantic features of the code
through a multi-layer transformer structure, while GPT-3.5 serves as a back-end genera-
tive model that is responsible for generating high-quality code-completion results based
on the contextual features. A feature fusion mechanism is designed between the two mod-
els to ensure that the model can fully utilize the advantages of the two different architec-
tures [8,9].

Specifically, the CodeBERT model adopts a pre-training-fine-tuning paradigm,
where pre-training on a large-scale code corpus is followed by specific fine-tuning for the
code-completion task. The model contains a 12-layer transformer encoder with a hidden
layer dimension of 768 and an attention head count of 12. GPT-3.5 is used as the generative
model, and autoregressive code generation is employed to ensure that the generated code
conforms to syntactic specifications and semantic coherence [10].

The core computation of the following attention mechanism, where Q, K, and V de-
note the Query, Key, and Value vectors, respectively, and d denotes the vector dimension.
By scaling the dot product attention computation, the model is able to effectively capture
long distance dependencies in code sequences.

Attention(Q, K, V) = softmax�
QKT

√d
�V

In order to optimize the model performance, this study designs a feature fusion layer
that organically combines the contextual features extracted by CodeBERT with the gener-
ative capabilities of GPT-3.5. Meanwhile, a dynamic attention mechanism is implemented
so that the model can adaptively adjust the feature weights according to different code
contexts, thus improving the accuracy and practicality of code completion.

F = αFCodeBERT + (1 − α)FGPT
Where FCodeBERT represents the feature vector extracted by CodeBERT, FGPT de-

notes the feature vector generated by GPT, and α is a learnable fusion weight parameter
(0≤α≤1). By dynamically adjusting the value of α, the model can adaptively balance the
importance of the two features according to different inputs.

During the training process, a phased training strategy was adopted, first fine-tuning
CodeBERT, then training the feature fusion layer, and finally optimizing the model pa-
rameters as a whole. This training approach ensures that each component of the model

https://doi.org/10.71222/ww7w6c36

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 52 https://doi.org/10.71222/ww7w6c36

can give full play to its performance, ultimately forming an efficient code-completion sys-
tem.

L = −� yi

n

i=1

log(pi)

The model training process is optimized using a cross-entropy loss function, where
yi denotes the true label and pi denotes the model prediction probability. In the predic-
tion stage, the model generates the next code token by conditional probability P(xt|x<t),
where xt denotes the predicted token at the current moment, x<t denotes the sequence
of all previously generated tokens, h_t is the hidden state, and W and b are the weight
matrix and the bias term, respectively.

The feature fusion process follows these key steps:
1. Context Encoding: Initially, the input code snippet C is processed through

CodeBERT's transformer encoder to generate contextual embeddings E_CodeBERT.
2. Feature Extraction: Concurrently, the same input is processed by GPT-3.5's initial

layers to produce preliminary generative features E_GPT.
3. Attention-based Fusion: The two feature sets are combined using a cross-attention

mechanism that allows the model to dynamically weight the importance of each feature
source based on the specific context.

The pseudocode for our feature fusion mechanism is as follows in figure 1:

Figure 1. feature fusion mechanism.

3.3. Model Evaluation
In terms of model evaluation, this study adopts a multi-dimensional evaluation index

system to comprehensively measure the performance of the code-completion system. The
main evaluation index is Accuracy, which is calculated by the formula:

Accuracy =
TP + TN

TP + TN + FP + FN

Also, BLEU scoring is introduced in this paper to assess the quality of the generated
code:

BLEU = BP ⋅ exp��wn

N

n=1

log pn�

Where BP is the penalty factor, wn is the n-gram weight, and pn is the n-gram pre-
cision.

To evaluate the real-time performance of the model, the average response time (ART)
metric is introduced:

ART =
∑ �tendi − tstarti �N
i=1

N

https://doi.org/10.71222/ww7w6c36

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 53 https://doi.org/10.71222/ww7w6c36

Where tstarti and tendi denote the code-completion start and end times, respectively,
and N is the total number of test samples. These evaluation metrics comprehensively as-
sess the model performance from three dimensions: accuracy, generation quality and ef-
ficiency, and provide a reliable quantitative basis for the optimization of the system.
Meanwhile, the effectiveness of the proposed method is further verified through compar-
ison experiments with the benchmark model.

4. Experimental Environment
The experiments are conducted in the above hardware and software environments,

and all experiments use the same configurations to ensure comparable and reproducible
results.The GPU uses NVIDIA A40 to provide sufficient computational power to ensure
the efficiency of large-scale model training. Stable versions of deep learning frameworks
and related dependent libraries were selected for the software environment to ensure the
reliability of the experiments.

4.1. Experimental Analysis
Tables 1 to 4 provide a comprehensive evaluation of the performance of different

models, including the baseline model, CodeBERT, GPT-3.5, and the hybrid model, across
various dimensions such as accuracy, generation quality, performance efficiency, and ro-
bustness. These tables support the analysis of the hybrid model's superiority in achieving
higher accuracy, better code generation quality, improved performance efficiency, and
strong robustness. Additionally, Figure 2 visually compares the accuracy metrics across
models, highlighting the hybrid model's significant improvements in precision, recall, and
F1-Score. Figure 3 further illustrates the generation quality metrics comparison, empha-
sizing the hybrid model's superior performance in BLEU score, code executability, and
semantic consistency. Together, these visual and tabular results demonstrate the effective-
ness of the proposed hybrid model architecture.

Table 1. Accuracy Evaluation.

Model Accuracy Precision Recall F1-Score
Baseline 0.82 0.79 0.81 0.8

CodeBERT 0.87 0.85 0.86 0.85
GPT-3.5 0.89 0.88 0.87 0.87

Hybrid Model 0.93 0.91 0.92 0.91

Table 2. Generation Quality Analysis.

Model BLEU Code Executability
Semantic

Consistency
Baseline 0.65 0.78 0.72

CodeBERT 0.72 0.85 0.79
GPT-3.5 0.76 0.87 0.83

Hybrid Model 0.81 0.92 0.88

Table 3. Performance Efficiency Analysis.

Model
Average Response

Time(ms) Memory Usage(GB)
Inference

Speed(tokens/s)
Baseline 85 4.2 156

CodeBERT 78 5.1 182
GPT-3.5 72 5.8 195

Hybrid Model 68 6.2 213

https://doi.org/10.71222/ww7w6c36

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 54 https://doi.org/10.71222/ww7w6c36

Table 4. Model Robustness Analysis.

Test Scenario Accuracy Recovery Ability Stability Index
Normal Input 0.93 0.95 0.94
Noisy Input 0.87 0.89 0.88

Incomplete Input 0.85 0.88 0.86
Abnormal Input 0.82 0.84 0.83

Figure 2. Accuracy Metrics Comparison Across Models.

Figure 3. Generation Quality Metrics Comparison.

The experimental results reveal significant advantages of the hybrid model across
multiple evaluation metrics. The model demonstrates remarkable accuracy improvements,
achieving an F1-Score of 0.91, which represents a substantial 13.75% enhancement com-
pared to the baseline model. This improvement indicates the effectiveness of combining
CodeBERT and GPT-3.5 architectures in understanding and generating code sequences.

Regarding code quality, Figure 3 and Table 3 together illustrate the benefits of inte-
grating strengths of CodeBERT and GPT-3. Code quality is evaluated in three dimensions:
BLEU score, Code Executability and Semantic Consistency. BLEU score is a key metric for
assessing the quality of machine-translated texts. A higher score indicates the machine-
generated texts have a greater similarity to the reference translations.

Performance efficiency analysis shows that the hybrid model maintains excellent
real-time capabilities, with an average response time of 68ms and an inference speed of
213 tokens per second. These performance metrics indicate that the integration of multiple

https://doi.org/10.71222/ww7w6c36

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 55 https://doi.org/10.71222/ww7w6c36

model components does not compromise computational efficiency, making it suitable for
practical development environments where rapid response times are crucial.

Furthermore, robustness testing reveals the model's consistent performance across
various input scenarios, demonstrating strong generalization capabilities and operational
stability. This robust performance across different testing conditions confirms the model's
reliability and practical value in diverse programming contexts. The comprehensive re-
sults validate the effectiveness of the proposed hybrid architecture, showcasing signifi-
cant improvements in both accuracy and quality while maintaining optimal efficiency and
robustness levels.

In summary, the Hybrid Model emerges as the most efficient in terms of response
time and inference speed but at the cost of increased memory usage, reflecting a balance
between computational performance and resource demand.

5. Conclusion
This study investigates the potential of implementing a hybrid model which lever-

ages outstanding context-aware capabilities of CodeBERT and remarkable performance
in code generation of GPT-3.5. The multidimensional evaluation index system provides a
comprehensive assessment of the hybrid model across code generation accuracy, quality
and efficiency aspects. Results validate that the proposed hybrid model surpasses the cur-
rent benchmark models in all three aspects, offering a promising solution for code com-
pletion tasks across various software and hardware environments without comprising ro-
bustness. To address the complexities of real-world software development, the hybrid ar-
chitecture undergoes rigorous testing across different input scenarios to ensure its stabil-
ity and generality. This study reinforces the significance of deep learning in the software
development industry and successfully demonstrates the benefits and feasibility of syn-
thesizing deep learning models. Furthermore, this research paves a path for future studies
that explores model fusion to improve software development efficiency and quality.

Although the proposed hybrid model demonstrates strong performance and robust-
ness, several promising directions remain for future exploration. First, incorporating re-
inforcement learning-based fine-tuning could further optimize model decision-making by
dynamically adjusting generation strategies according to user feedback and coding con-
text. Second, expanding the training data to include multi-language and cross-domain re-
positories would enhance the model's generalization ability across different programming
paradigms. Third, integrating prompt engineering techniques and adaptive attention
mechanisms could enable more precise control over output style, structure, and complex-
ity. Additionally, real-time user interaction and online learning capabilities can be ex-
plored to continuously improve model adaptability within integrated development envi-
ronments. Future work may also investigate energy-efficient model architectures to re-
duce computational cost while maintaining accuracy, thereby improving the feasibility of
large-scale deployment in industrial settings.

In conclusion, this research contributes significantly to the field of automated code
completion, providing both theoretical insights and practical solutions for improving de-
veloper productivity through advanced machine learning techniques.

Funding: This research was supported by the Fujian Province Young and Middle-aged Teacher Ed-
ucation Research Project (Science and Technology Category) under Grant No. JAT220471, titled "De-
sign of Intelligent Image Search System.".

References
1. M. Alenezi, and M. Akour, "Ai-driven innovations in software engineering: a review of current practices and future directions,"

Applied Sciences, vol. 15, no. 3, p. 1344, 2025. doi: 10.3390/app15031344
2. X. Zhou, D. Han, and D. Lo, "Assessing generalizability of codebert," In 2021 IEEE International Conference on Software Mainte-

nance and Evolution (ICSME), September, 2021, pp. 425-436. doi: 10.1109/icsme52107.2021.00044

https://doi.org/10.71222/ww7w6c36

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 6 (2025) 56 https://doi.org/10.71222/ww7w6c36

3. Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, and M. Zhou, "Codebert: A pre-trained model for programming and
natural languages," arXiv preprint arXiv:2002.08155, 2020. doi: 10.18653/v1/2020.findings-emnlp.139

4. Z. Zheng, K. Ning, Q. Zhong, J. Chen, W. Chen, L. Guo, and Y. Wang, "Towards an understanding of large language models in
software engineering tasks," Empirical Software Engineering, vol. 30, no. 2, p. 50, 2025. doi: 10.1007/s10664-024-10602-0

5. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, and D. Amodei, "Language models are few-shot learners,"
Advances in neural information processing systems, vol. 33, pp. 1877-1901, 2020.

6. Y. Wang, and H. Li, "Code completion by modeling flattened abstract syntax trees as graphs," In Proceedings of the AAAI confer-
ence on artificial intelligence, May, 2021, pp. 14015-14023. doi: 10.1609/aaai.v35i16.17650

7. S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, and S. Liu, "Codexglue: A machine learning benchmark dataset for
code understanding and generation," arXiv preprint arXiv:2102.04664, 2021.

8. Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, and N. Sundaresan, "Codereviewer: Pre-training for automating code review
activities," arXiv preprint arXiv:2203.09095, 2022.

9. D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, "Unixcoder: Unified cross-modal pre-training for code representation,"
arXiv preprint arXiv:2203.03850, 2022. doi: 10.18653/v1/2022.acl-long.499

10. M. Singh, J. Cambronero, S. Gulwani, V. Le, C. S. Negreanu, and G. Verbruggen, "Codefusion: A pre-trained diffusion model
for code generation," In The 2023 Conference on Empirical Methods in Natural Language Processing., November, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/ww7w6c36

	1. Introduction
	2. Literature Review
	3. Experimental Result
	3.1. Data Introduction
	3.2. Model Introduction
	3.3. Model Evaluation

	4. Experimental Environment
	4.1. Experimental Analysis

	5. Conclusion
	References

