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Abstract: This study explores the intrinsic logical relationship between index construction method-
ologies and capital liquidity by leveraging advanced data science and computational technologies.
We propose a multi-model hybrid framework for predicting index weight changes, incorporating
diverse model sets to capture complex market dynamics. Key variables are systematically identified
and screened through an integrated data platform and rigorous feature engineering, enabling the
construction of a forward-looking index weight fluctuation pattern. This model serves as a founda-
tional case study for examining the impact of index rebalancing behaviors on capital liquidity. Fur-
thermore, we design early-warning mechanisms and clustering-based response strategies to antici-
pate liquidity risks, simulate stress scenarios, and develop a dynamic network transmission model
that maps the propagation of market shocks. The results provide a comprehensive theoretical and
practical reference for index management, risk mitigation, and the maintenance of financial market
stability, offering valuable insights for both regulators and institutional investors.

Keywords: index weight prediction; capital liquidity; data science; multi-model integration; net-
work conduction

1. Introduction

Indices serve as crucial price signals and guides for capital allocation, and with the
continued deepening and sophistication of financial markets, changes in index composi-
tion and weightings have increasingly significant effects on market structure and liquidity
dynamics. The construction of indices and the adjustment of their weights have become
central topics in quantitative investment, portfolio management, and risk assessment re-
search. Leveraging big data analytics and machine learning techniques, multi-agent pre-
diction algorithms can integrate multi-source information to forecast weight adjustments
more accurately, identify fund flow patterns, enhance market stability, and improve
transparency. These predictive capabilities provide critical decision-support tools for both
regulatory authorities and institutional investors, enabling more informed interventions
and strategic planning.

For example, when Coinbase was successfully added to the S&P 500 index on May
16, 2025, its trading volume surged to 72 million shares on that single day-nearly ten times
its average daily volume of 7 million shares. This dramatic spike illustrates the profound
impact that index rebalancing events have on stock market liquidity, particularly affecting
transactions dominated by passive investment funds. Such events highlight the urgent
need for a predictive system capable of anticipating changes in index components,
thereby facilitating proactive liquidity management and reducing systemic market risks.
Developing such a system is not only a pressing practical necessity but also a critical step
toward more resilient and adaptive financial markets.
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2. The Basis of the Relationship Between the Index Composition Mechanism and
Capital Liquidity
2.1. Weight Distribution Mechanism

Index adjustments directly influence the redistribution of passive capital, as changes
in component weights immediately affect the holdings of ETFs and index-tracking funds.
In major global indices such as the MSCI or S&P 500, weight modifications often prompt
funds to implement concentrated buy or sell orders within very short timeframes, leading
to temporary surges in trading volume and short-term price volatility. Such operations
place substantial demands on market liquidity. If the underlying assets exhibit low intrin-
sic liquidity, these adjustments can result in significant price deviations, elevated transac-
tion costs, and amplified market shocks.

Incorporating liquidity considerations into the index construction and rebalancing
process can therefore mitigate trading bottlenecks and preserve overall market stability.
Beyond the magnitude of weight adjustments, additional factors-such as the frequency of
index rebalancing, the timing of announcements, and the transparency of inclusion or ex-
clusion criteria-also shape market participants’ expectations regarding buying and selling
behaviors. These expectations, in turn, can either exacerbate or dampen liquidity shocks
arising from fund flows. Collectively, these phenomena underscore that index systems do
not merely reflect market fundamentals but actively shape the flow of capital, making
them a critical element in liquidity analysis and risk management frameworks.

2.2. Conduction Path of Weight Changes

Predicting the pressure of large-scale stock sell-offs through models of index weight
adjustments is crucial for establishing effective liquidity early-warning mechanisms. Such
predictive models typically draw upon historical weight adjustment data, observed mar-
ket reactions, and recorded capital flows. For example, stocks experiencing significant
weight increases often receive sustained net inflows of capital around the adjustment's
effective date, whereas stocks with reduced weights or those being removed from the in-
dex frequently face net outflows over one or more trading sessions.

Machine learning techniques, including regression modeling and change-point de-
tection, can identify key inflection points in these flows, enabling regulators and institu-
tional investors to implement risk-sensitive, pre-emptive interventions. To improve pre-
dictive accuracy and responsiveness, short-term liquidity indicators-such as bid-ask
spread fluctuations, transaction frequency, and order book depth-should be embedded in
these models. By incorporating market microstructure data, the resulting dynamic feed-
back system can provide a comprehensive, agile, and real-time view of liquidity pressures
at the trading level, enhancing both early-warning and risk mitigation capabilities.

2.3. Liquidity Indicators and Modeling Requirements

Swap transactions within index adjustments can further amplify liquidity pressures.
For instance, Coinbase's inclusion in the S&P 500 on May 16, 2025, triggered a trading
volume of 72 million shares, vastly exceeding its average daily volume of 7 million shares.
This surge reflected the rapid participation of numerous passive investors, highlighting
both the liquidity tolerance threshold of the market and the intensive demand generated
by index rebalancing.

For smaller or less liquid companies, such concentrated inflows can create imbal-
ances between supply and demand, increasing transaction costs and potentially causing
abnormal price movements. To counteract such risks, buffering measures-such as multi-
phase adjustment schedules and staggered implementation dates-can be incorporated
into index rebalancing rules to enhance the market's self-regulatory capacity. Moreover,
real-time monitoring of trading volumes for rebalanced assets enables regulators to detect
emerging liquidity risks promptly and intervene as needed, reducing systemic structural
vulnerabilities.
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In sum, understanding the mechanisms of weight distribution, the conduction paths
of changes, and the role of liquidity indicators is essential for designing robust index man-
agement frameworks. By integrating predictive modeling, real-time monitoring, and pro-
active buffering strategies, it is possible to mitigate liquidity shocks and promote sustain-
able market stability.

3. Construction of exponential weight prediction model based on data science meth-
ods

As the core analytical framework of this study, the index weight prediction model
serves a dual purpose: it elucidates the internal dynamics of the index structure and pro-
vides essential input variables for subsequent analyses on how index rebalancing impacts
market liquidity. By leveraging data-driven methods, this model captures both the tem-
poral evolution of index components and the underlying mechanisms driving weight ad-
justments.

3.1. Data System Construction

Dynamic index weight changes represent the combined influence of market prices,
pricing structures, and institutional arrangements. Building a comprehensive numerical
framework is therefore fundamental to the prediction model. The required dataset can be
categorized into three primary dimensions: market-level data, fundamental company
data, and institutional data.

e  Market-level data include indicators such as security prices, trading volumes, bid-
ask spreads, order book depth, and capital flow metrics, which collectively capture
market sentiment, liquidity conditions, and short-term trading pressures.

¢ Fundamental company data encompass firm size, revenue growth rates, valuation
ratios, debt-paying ability, and other financial indicators that reflect the medium- to
long-term investment value of constituent stocks within the index.

e Institutional data comprise index compilation rules, historical adjustments of con-
stituent stocks, weight-determination methodologies, recalibration intervals, and the
timing of index provider announcements. These data reveal the structural principles
governing weight changes and encode the operational logic of index construction.

Given the heterogeneity of these datasets, preprocessing is critical. Cleaning, integra-
tion, and normalization must be performed based on a unified time-series index. Key tasks
include filling missing values, smoothing boundary outliers, phase alignment, and time-
frequency resampling, all of which ensure consistency, real-time performance, and data
reliability. Additionally, constructing a feature matrix that captures both static attributes
and dynamic changes is essential. This matrix forms the foundation for robust feature
engineering, enabling the extraction of high-quality, predictive variables for subsequent
modeling.

3.2. Feature Engineering and Variable Screening

Feature extraction constitutes a critical step in predicting index weights, as these de-
rived features serve as key input variables for subsequent analyses, including liquidity
assessment and risk modeling. The primary objective is to identify and construct struc-
tural indicators from the raw data that exhibit both high correlation and stability with
respect to changes in index weights. In the context of time-series data, the sliding window
technique is frequently employed to generate dynamic statistical features. Commonly uti-
lized metrics include the n-day moving average (MA) to capture trend information, roll-
ing standard deviation (Vol) to quantify volatility, the maximum-minimum ratio
(Max/Min Ratio) to reflect relative price fluctuations, and price momentum (Momentum)
to assess the speed and direction of market movements.

MA,(t) = ~ 7] P,_, Momentum, () = P, = P,_ (1)
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To further capture nonlinear structural changes in the market, additional features
such as the abnormal trading volume ratio, volume-price correlation coefficient, net capi-
tal inflow rate, and short-term volatility index (SVI) are incorporated. These features ena-
ble the model to extract richer information about market microstructure dynamics and
transient liquidity pressures. Following feature construction, redundancy control and im-
portance verification are performed to ensure the quality and relevance of the input vari-
ables.

Dimensionality reduction techniques, such as Principal Component Analysis (PCA),
can be applied to these high-dimensional, complex variables, preserving the explanatory
power of the principal components while reducing noise and multicollinearity. Alterna-
tively, metrics such as information entropy, the Maximum Information Coefficient (MIC),
and Pearson or Spearman correlation coefficients can be used to assess the impact of each
feature on the target variable and to classify them into relevance tiers. Additionally,
model-based feature importance evaluation methods allow for the identification of con-
sistently influential factors, while mitigating the risk of overfitting during the feature se-
lection process. Collectively, these procedures generate a high-quality and robust input
matrix, laying a solid foundation for subsequent model training and predictive analysis.

3.3. Design of Exponential Weight Prediction Architecture for Multi-Model Integration

Given the nonlinear and dynamic nature of exponential index weights, a single pre-
dictive model is often insufficient to capture all potential trends and fluctuations. To ad-
dress this limitation, a multi-model integration framework is employed to enhance both
the stability and adaptability of predictions. The overall workflow encompasses data anal-
ysis, feature decomposition, multi-model training, and model fusion.

Within this framework, the underlying computational platform executes diverse
model types in parallel to exploit their respective strengths. For instance, XGBoost is em-
ployed for processing structured features, LSTM networks capture temporal dependen-
cies in the time-series data, and LightGBM handles high-dimensional feature interactions.
Each model generates preliminary predictions independently, which are subsequently ag-
gregated and optimized through a fusion layer-such as stacking, weighted averaging, or
ensemble learning techniques-to produce the final estimated index weights (see Figure 1).

This multi-model architecture not only leverages complementary strengths across
different algorithms but also mitigates the risk of model-specific biases and overfitting,
resulting in a more robust and accurate predictive performance suitable for downstream
liquidity analysis and risk management applications.

Original data

Feature engineering +
cleaning

Model input
construction

v v ¥

XGBoost LST™M LightGBM ‘

! ! '

Prediction results of each model (parallel
output)

Integrated fusion layer:
Stacking/Weighted averaging

The final weight
prediction result

Figure 1. Flowchart of the exponential weight prediction architecture for multi-model integration.

This study employs the S&P 500 index as the validation dataset for the model, with
data prior to January 1, 2020, designated as the training set and data from 2020 onwards
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used as the test set to ensure rigorous out-of-sample evaluation. The LSTM model ingests
multi-dimensional input data-including trading volume, volatility, turnover rate, and the
direction of capital inflows and outflows-and outputs predicted changes in stock position
weights over the subsequent five trading days. Since the S&P 500 undergoes quarterly
rebalancing and the effective weights are determined based on the closing price of the
reference day (e.g., the Q2 2025 rebalance effective on June 20 is determined by the June
13 close), directly predicting weights is both reasonable and practical. Prior to the refer-
ence day, constituent stocks and prices are uncertain, and machine learning models pro-
vide forward-looking estimates to address this uncertainty.

The model achieves a Mean Absolute Error (MAE) of 0.012 and an R2 of 0.65 on the
test set, indicating strong predictive performance, robust trend capture, and effective sim-
ulation capabilities. These predicted stock weights are then used as input parameters for
constructing subsequent liquidity and market sentiment dissemination network models,
thereby providing crucial support for downstream analysis.

3.4. Model Output Evaluation and Prediction Result Analysis Mechanism

Evaluating the model's output requires not only assessing numerical accuracy but
also examining the underlying predictive mechanism and the robustness of the model
structure. For exponential weight prediction, standard error metrics-such as Mean Square
Error (MSE) and Mean Absolute Error (MAE)-quantify the numerical deviation of predic-
tions. However, the direction of index weight changes has a more substantial impact on
asset allocation decisions. Therefore, the Direction Accuracy (DA) metric should be incor-
porated to assess the correctness of predicted movement directions.

Furthermore, a Trend Consistency Index (TCI) can be constructed to evaluate the
alignment of predicted and actual weight growth trends over continuous intervals. This
index is defined as the ratio of predicted and actual weight changes that move in the same
direction within a specified period, providing a quantitative measure of the model's abil-
ity to capture dynamic trend patterns in index weights. This comprehensive evaluation
framework ensures that the model is not only accurate in magnitude but also reliable in
capturing the temporal dynamics critical for portfolio and liquidity management.

S ZTE(sign(Wi(t)—Wit_l)=sign(wi(t)_Wi(t_l))) ; o
T ~t=

In this context, the indicative function is employed to determine whether the pre-
dicted and actual weight change directions are consistent. At the explanatory level, it is
essential to quantify the causal pathways through which the integrated model influences
the predicted values, thereby enhancing both transparency and interpretability. The
SHAP (SHapley Additive exPlanations) algorithm is applied to assess the incremental
contribution of each variable to the predictions, generating ranking graphs for both local
and global feature importance. This facilitates the identification of the primary drivers of
index weight changes.

For example, a significant proportion of the volume-price correlation coefficient in
the global SHAP contribution highlights its substantial influence. By analyzing the under-
lying mechanisms, this variable can be interpreted as a mediator linking fund liquidity
and the intensity of weight adjustments. Specifically, an increase in this coefficient sug-
gests that investors' trading behaviors are becoming more synchronized, thereby ampli-
fying market responses to the rebalancing of constituent stocks and resulting in more pro-
nounced weight changes. These findings not only provide statistical validation but also
elucidate the operational dynamics occurring during the rebalancing process.

Model output deviations are further monitored using an error residual analysis
framework, particularly during periods of high market volatility or significant weight ad-
justments, to facilitate risk control. Implementing a rolling time window cross-validation
strategy enhances temporal stability, allowing dynamic evaluation of model performance
at each time point. The sample set is updated in real time to mitigate risks arising from
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data drift, thereby ensuring the robustness and reliability of the model across multiple
market cycles.

4. Analysis of the Liquidity Response Mechanism of Funds Based on Prediction
Weights

4.1. Construction of Liquidity Early Warning Model

Building upon the predictive framework established in the previous section, this
study investigates how redistributions of index weights-obtained through exponential
weight forecasting-affect market capital flows. Forecasted index weights not only inform
the asset allocation strategies of passive investment funds that track these indices but also
provide a strategic "first-mover" advantage for anticipating market liquidity stress.

For example, on August 29, 2015, when Coinbase was included in the S&P 500 index,
its stock price surged by nearly 20%, and trading volume spiked to more than ten times
its normal level. This event illustrates the abnormal liquidity pressure caused by index
rebalancing and highlights the critical role of prior prediction in mitigating market dis-
ruptions.

To address such liquidity risks, this study designs a liquidity early warning system
capable of identifying potential disruptions in capital flows induced by index adjustments.
The design process involves several steps:

1. Feature Construction: Key indicators include the magnitude and direction of pre-
dicted weight changes as well as their fluctuation trends, which collectively form the
characteristic data for analysis.

2. Integration of Market Activity Metrics: Supplementary trading data-such as overall
market capitalization, turnover rates, and trading activity levels-are incorporated to
provide multidimensional inputs.

3. Model Training: Historical data are used to train classifiers or scoring models that
quantify the risk levels for the subsequent period.

4. Risk Output and Interpretation: The system outputs graded risk levels-low, me-
dium, or high-which can inform asset allocation decisions, trading strategies, regula-
tory monitoring, and other operational measures (see Figure 2).

Exponential weight prediction
result (time series)

Y

Feature extraction (variation range, volatility,
capital density, etc.)

Y

Construction of historical tags
and risk level samples

A

Training and optimization of
Risk classification models

Y

Input and output the risk
warning level in real time

Figure 2. Flowchart of the liquidity early warning Model construction.
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By systematically combining predictive weight information with market microstruc-
ture data, this early warning framework enables proactive identification and mitigation
of liquidity stress, thereby enhancing market resilience and supporting informed deci-
sion-making for both investors and regulators.

4.2. Stress Scenario Path Simulation

The objective of stress scenario path simulation is to capture the nonlinear effects on
market dynamics under extreme conditions induced by predicted changes in index
weights. By constructing diverse shock scenarios, the transmission patterns resulting from
abrupt fluctuations in price spreads, policy shifts, and large-scale capital inflows or out-
flows can be systematically analyzed. Changes in index weights reflect shifts in resource
demand, which can, in turn, generate circulation pressures such as slippage, trading con-
gestion, and settlement delays within the transaction execution system.

Beyond static price shocks, the simulation incorporates trading behaviors, including
variations in pending order density, thinning of order book depth, and increased order
cancellation activity. System parameters can be dynamically modeled, and feedback
mechanisms introduced, allowing variables to adjust in real time according to market con-
ditions-for example, subsequent redemptions triggered by price declines or amplified ef-
fects of passive ETF sales on the spot market.

To enhance the realism and robustness of the simulation, a wide range of market
conditions is considered, encompassing periods of high volatility, low trading volume,
and scheduled index adjustments. Multiple path sets are generated to systematically test
system vulnerabilities under different stress levels. The simulation outputs include the
distribution of liquidity risks, identification of extreme values, and delineation of poten-
tial system instability boundaries, providing actionable insights for risk mitigation and
strategy formulation.

4.3. Liquidity Clustering and Dynamic Analysis

Fluctuations in index weights induce phased changes in market liquidity, often char-
acterized by concentration and spatial-temporal transfer of liquidity. Unsupervised clus-
tering models can classify the market into typical liquidity regimes-such as extremely high,
moderate, restricted, and discrete liquidity states-allowing the detection and quantifica-
tion of associated risk ranges. In this study, the market is segmented into four liquidity
types, each reflecting distinct combinations of trading volume, price volatility, and trans-
action costs.

Cluster modeling relies on a multi-dimensional feature framework, encompassing
price stability, trading behavior, order book depth, and transaction friction. This approach
captures the complex interactions among market participants and allows for dynamic
monitoring of liquidity transitions. Table 1 summarizes commonly used features for li-
quidity clustering, highlighting their relevance in identifying risk-prone periods and in-
forming liquidity management strategies.

By combining stress scenario simulations with liquidity clustering, this framework
provides a comprehensive and dynamic understanding of how index rebalancing propa-
gates through market microstructure, supporting both preemptive risk management and
the design of targeted intervention strategies.

Table 1. Explanation of the Liquidity Clustering Feature System and Dimensions.

Category Feature example Description

Transaction  Rate of change in trading volume and ~ Capture market participation
behavior density of trading value and activity
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Common clustering algorithms employed in liquidity analysis include K-means,
Gaussian Mixture Models (GMM), and spectral clustering, among others. To capture the
temporal evolution of liquidity states, the resulting state sequences can be modeled using
Markov processes or Hidden Markov Models (HMMs), which provide a probabilistic
framework for representing state transitions over time.

The clustering results indicate that the market can be classified into four distinct li-
quidity states:

1. High trading volume - low volatility,

2. Medium trading volume - medium volatility,
3. Low trading volume - high volatility,

4. Irregular or discrete type.

The observed proportions of these states in the sample are 28%, 36%, 22%, and 14%,
respectively. By integrating these liquidity states with predicted index weight changes, a
dynamic state response pattern can be established. This pattern provides valuable insights
into how liquidity conditions evolve in response to index rebalancing and serves as a
foundational input for subsequent network analysis and risk evaluation, enabling more
precise monitoring and management of market liquidity.

4.4. Network Conduction Modeling and Stability Testing

The constituent stocks of an index form a potential liquidity network through indus-
try affiliations, style correlations, and capital flow linkages. Deviations in the predicted
weights can cause passive funds to propagate along these network paths, potentially trig-
gering localized or even systemic liquidity shocks. By modeling this system as a weighted
directed graph, critical transmission channels and high-risk nodes can be identified using
advanced techniques such as graph neural networks (GNNs).

Building on this network representation, interference simulations are introduced to
conduct robust stress tests of the liquidity network, encompassing scenarios such as ab-
normal node behavior, variations in edge weights, and structural changes in network to-
pology. In parallel, the amplitude of fluctuations for each index component is calculated
to evaluate the overall system resilience under different stress conditions (see Table 2).
This framework provides a quantitative basis for assessing network vulnerabilities, iden-
tifying potential contagion pathways, and informing targeted risk mitigation strategies.

Table 2. Schematic Table of Stability Test Results under Network structure perturbation.

. Changes in The .
Disturbance Changes in PageRank Average path probability of Estimated
network length recovery
scene connectivity(%) at key variation(%) subgraph time (days)
y nodes(%) breakage y
The weights 5.6 +18.3 2.1 Low(54)  Medium(3)
were
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reduction
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stock)
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124 +37.5 +6.9 Medium(22.1)  Slow(5)

Extremely

low(1.2) Fast(1)

High-frequency
capital
disturbance
simulation
Random node
removal (10%)

7.9 +14.8 +4.3 Medium(16.7) Medium(2)

-20.5 23 +9.1 High(41.8)  Slow(6)

Note: The recovery time estimation is based on the average period for the simulated capital flow to
recover to 80% of the initial connectivity.

As shown in Table 2, structural changes exert a significant influence on the robust-
ness and stability of the entire liquidity system. When critical nodes or major stock prices
exhibit abnormal behavior, their effects are amplified, further increasing systemic risk.
The probability of subgraph breakage is positively correlated with the network recovery
time, indicating that once the market is disrupted, restoring the liquidity network may
require substantial time. In contrast, changes in industry concentration tend to be gradual
and relatively stable, with comparatively lower impact intensity. Although the simulation
approaches employed vary, their results converge on a central insight: anticipated
changes in index weights-particularly those resulting from recompositions-propagate in-
directly through the financial flow network formed by constituent stocks. By treating pre-
dicted index weights as the initiating cause, this study establishes logical consistency and
clear analytical focus across the different components of the model.

5. Conclusion

Guided by the concept of index structure and leveraging big data technologies, this
study has developed a novel index weight prediction algorithm coupled with a capital
liquidity response system, forming an integrated technical framework encompassing
model design, feature engineering, early warning mechanisms, and network transmission
analysis. This framework not only provides a theoretical basis for analyzing and control-
ling the evolution of complex financial system structures but also offers practical technical
support for market participants and regulators. By linking predictive modeling with li-
quidity network analysis, the study delivers actionable insights into how index adjust-
ments propagate through financial markets, enhancing both market stability and risk
management capabilities.
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