
 

 Journal of Computer, Signal, and 
System Research 

 

Vol. 2 No. 5 (2025) 79 https://doi.org/10.71222/n6p5hq54 

Article 

Road Defect Detection System Based on Deep Learning 
Shijie Lin 1,* 

1 School of Computer Science and Big Data, Minjiang College, Fuzhou, 350000, China 
* Correspondence: Shijie Lin, School of Computer Science and Big Data, Minjiang College, Fuzhou, 350000, 

China 

Abstract: Road defect detection plays a vital role in the development of smart cities, enhancing the 
efficiency of road maintenance and providing reliable perception information for automated repair 
and inspection technologies. This article presents a deep learning-based road defect detection model, 
built upon advanced frameworks such as YOLOv8 and YOLOv5. Trained on a large-scale dataset 
of road images, the model is capable of accurately identifying common defect types, including 
cracks, potholes, and pavement deterioration. In addition, we developed a comprehensive road de-
fect detection system featuring a user-friendly graphical interface, which supports real-time detec-
tion and visualization of road defects. Implemented using Python and PyQt5, the system enables 
intuitive display of detection results and provides detailed information for road maintenance plan-
ning. The proposed approach demonstrates promising performance in both static image recognition 
and continuous video monitoring, offering potential applications in intelligent transportation sys-
tems, urban road management, and automated infrastructure maintenance. 

Keywords: YOLOv8; deep learning; road defect; real-time detection; PyQt5 
 

1. Introduction 
Road defect detection plays a crucial role in ensuring traffic safety, prolonging the 

service life of roads, and supporting the sustainable development of modern smart cities. 
With the rapid expansion of urban infrastructure, roads are subjected to heavy traffic 
loads and complex environmental conditions, which often lead to cracks, potholes, and 
other types of surface damage [1]. If these defects are not identified and repaired in a 
timely manner, they may not only accelerate the deterioration of road surfaces but also 
pose serious threats to drivers, pedestrians, and overall traffic flow. Therefore, the ability 
to detect road defects accurately and efficiently has become a fundamental requirement 
for urban management and transportation safety. 

In the context of smart city construction, the integration of intelligent road defect 
detection systems has greatly enhanced the capacity of city administrators to monitor and 
maintain infrastructure. Compared with traditional manual inspection methods, which 
are often labor-intensive, time-consuming, and prone to human error, automated defect 
detection provides significant advantages. It enables real-time monitoring, reduces the 
need for large-scale manual inspections, and offers data-driven support for decision-mak-
ing in maintenance planning. This contributes not only to lowering long-term mainte-
nance costs but also to improving the reliability of transportation networks and the qual-
ity of urban life [2]. 

Automated road defect detection systems have been increasingly applied in various 
domains, including municipal road maintenance, traffic safety supervision, and infra-
structure asset management. By deploying advanced computer vision techniques, city 
management departments can receive immediate feedback regarding road surface condi-
tions and respond promptly with targeted repair measures. Such intelligent systems not 

Received: 25 July 2025 

Revised: 04 August2025 

Accepted: 14 August 2025 

Published: 21 August 2025 

 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 80 https://doi.org/10.71222/n6p5hq54 

only improve the timeliness of maintenance but also optimize resource allocation by pri-
oritizing the most urgent repair tasks. As a result, the efficiency and effectiveness of road 
management are substantially enhanced. 

To address these needs, this study collected a dataset consisting of images and video 
materials of different road defects and developed a road defect detection system with an 
intuitive and user-friendly interface. The system was implemented using Python and 
PyQt5, and it integrates object detection models such as YOLOv8 and YOLOv5. It sup-
ports multiple input modes, including static images, recorded videos, and real-time cam-
era feeds, and is capable of saving detection results for further analysis. This flexibility 
provides users with a comprehensive and practical tool for defect detection in diverse 
scenarios [3]. 

As illustrated in Figure 1, YOLOv8 demonstrates significant accuracy improvements 
over YOLOv5. However, these improvements are accompanied by substantial increases 
in model parameters and floating-point operations (FLOPs), which consequently lead to 
slower inference speeds in most cases. Although numerous enhancements in the YOLO 
series have achieved remarkable performance gains on large-scale benchmark datasets 
such as COCO, their generalization ability on custom, domain-specific datasets has not 
been fully validated. In fact, YOLOv5 is still widely recognized for its relatively strong 
generalization performance and computational efficiency. Taking these trade-offs into ac-
count, the system developed in this study adopts both YOLOv8 and YOLOv5 for com-
puter vision tasks, aiming to leverage the complementary strengths of the two models in 
practical applications. 

 
Figure 1. Official mAP, parameter count, and FLOPs results tested on the COCO Val 2017 dataset. 

2. Overall System Design 
2.1. Overall Design Concept 

The overall architecture of the proposed road defect detection system is illustrated in 
Figure 2, which outlines the sequential workflow from initialization to result output. The 
process begins with program startup, during which the main window is initialized and 
core functional modules are loaded. At this stage, essential configuration files and model 
parameters are also read into memory to ensure consistent operation. The YOLOv8 model 
is then initialized as the core detection engine, while the system simultaneously estab-
lishes signal–slot connections in PyQt5 to bind user actions with backend functions. This 
event-driven design allows the interface to respond dynamically to user commands, such 
as selecting an input source or triggering the detection task, thereby ensuring smooth in-
teraction between the graphical user interface and computational modules [4]. 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 81 https://doi.org/10.71222/n6p5hq54 

 
Figure 2. System flow chart. 

Once initialization and logic binding are completed, the user interface is launched, 
providing an intuitive platform through which users can operate the system. Multiple 
input sources are supported, including static images, video files, and live camera streams, 
all of which are processed by OpenCV before being passed to the detection pipeline. The 
YOLOv8 model performs object detection and classification on the input data, generating 
bounding boxes, confidence scores, and labels that are superimposed on the original 
frame. These annotated results are displayed in real time on the interface, giving users an 
immediate and intuitive understanding of road conditions. For convenience and practical 
application, the system also allows prediction results to be saved locally. Furthermore, the 
PyQt5-based interface was designed with usability in mind, combining modular function-
ality with a user-friendly layout to make the detection process accessible to both technical 
and non-technical users. 

2.2. YOLOV8 Model Introduction 
As shown in Figure 3, the YOLOv8 network architecture is composed of three pri-

mary components: the Backbone, the Neck, and the Head. The Backbone is responsible 
for feature extraction and employs a combination of convolutional and deconvolutional 
layers, residual connections, and bottleneck structures to effectively reduce model size 
while maintaining accuracy. At the core of this design is the C2f module, which replaces 
the C3 module used in YOLOv5. The C2f module introduces a more compact structure 
with fewer parameters while preserving strong feature extraction capabilities, thereby re-
ducing redundancy and improving computational efficiency. In addition, the Backbone 
integrates enhancements such as depthwise separable convolution and dilated convolu-
tion, both of which contribute to richer feature representation across multiple receptive 
fields. These optimizations collectively enable YOLOv8 to extract higher-quality features 
compared with its predecessors [5]. 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 82 https://doi.org/10.71222/n6p5hq54 

 
Figure 3. YOLOv8 network structure diagram. 

The Neck component is dedicated to multi-scale feature fusion, ensuring that infor-
mation captured at different stages of the Backbone is effectively integrated [6]. It incor-
porates several key modules to achieve this goal [7]. The SPPF (Spatial Pyramid Pooling 
Fast) module aggregates feature maps at multiple scales through pooling operations, im-
proving the detection of objects of varying sizes. The PAA (Probabilistic Anchor Assign-
ment) module provides adaptive anchor box assignment, which improves the balance be-
tween positive and negative samples during training and ultimately enhances model ro-
bustness. Furthermore, the Path Aggregation Network (PAN) module is used twice 
within the Neck to reinforce bottom-up and top-down information flow, thereby enhanc-
ing the representational power of fused features. Together, these modules significantly 
strengthen YOLOv8’s ability to detect road defects of different shapes and scales with 
improved precision and efficiency. 

2.3. Model Training Part 
As shown in Figure 4, the model training process begins by specifying two separate 

configuration file paths along with the dataset configuration path, which are essential for 
initializing the YOLO network. In this study, both the baseline YOLOv8s model and an 
enhanced version integrated with the SE (Squeeze-and-Excitation) attention mechanism 
were trained to explore potential improvements in feature representation and detection 
performance. The model.train function was employed to set the training parameters, 
where the number of epochs was fixed at 200 to ensure sufficient iterations for conver-
gence, and the batch size was set to 2 to accommodate the computational limitations of 
the available hardware. During training, the network iteratively updates its weights 
through backpropagation, minimizing a composite loss function that includes bounding 
box regression, objectness, and classification losses. Standard data augmentation tech-
niques, such as random scaling, flipping, and color jittering, were applied to enhance 
model generalization and robustness [6]. 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 83 https://doi.org/10.71222/n6p5hq54 

 
Figure 4. Main parts of model training. 

Upon completion of the training process, the system outputs a weight file containing 
the optimized parameters of the trained network. This weight file can then be loaded into 
the main.py script, allowing the trained model to be directly applied to road defect detec-
tion tasks. By utilizing the enhanced YOLOv8 model with SE attention, the system 
achieves improved detection accuracy, better localization of road defects, and increased 
robustness under varying lighting and background conditions. Overall, this training pro-
cedure ensures that the system can perform reliable and efficient road defect recognition, 
providing a solid foundation for practical applications in urban road management and 
intelligent transportation systems. 

2.4. Model Evaluation Part 
After model evaluation using the val.py script, loss and accuracy curves were gener-

ated, as illustrated in Figure 5. The top row of Figure 5 represents the evaluation results 
on the training set, while the bottom row shows the evaluation on the validation set. The 
evaluation metrics include val/box_loss, val/cls_loss, and val/dfl_loss. Specifically, 
val/box_loss represents the bounding box regression loss on the validation dataset. Its 
downward trend, consistent with that observed during training, indicates that the model 
is gradually fitting the validation data and improving localization accuracy. val/cls_loss 
corresponds to the classification loss on the validation dataset, and the significant decrease 
demonstrates an enhancement in the model's ability to correctly classify road defect cate-
gories. val/dfl_loss, or distribution focus loss, reflects the model's object location regres-
sion performance, and its continuous decline further confirms that the network accurately 
predicts bounding box positions. 

 
Figure 5. Changes in model loss and accuracy. 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 84 https://doi.org/10.71222/n6p5hq54 

In addition to the loss metrics, detection performance was assessed using mean Av-
erage Precision (mAP) metrics. metrics/mAP50(B) indicates the mean Average Precision 
at an IoU threshold of 50%, and its steadily rising curve suggests consistent improvement 
in detection performance on the validation set. Furthermore, metrics/mAP50-95(B) repre-
sents the average mAP over multiple IoU thresholds from 0.5 to 0.95. The gradual increase 
in this metric demonstrates that the model maintains robust detection capabilities even 
under stricter localization requirements. Overall, these evaluation results indicate that the 
trained YOLO model exhibits both accurate classification and precise localization on un-
seen data, confirming its effectiveness and generalization ability for practical road defect 
detection tasks. 

2.5. Model Detect Detection Part 
As illustrated in Figure 6, the main function integrates the YOLO model to perform 

object prediction on incoming images. The workflow begins by invoking the trained 
YOLO model and feeding the captured image into the detection pipeline. Once the pre-
diction process is executed, the system retrieves the recognition results, including the pre-
dicted object category and the corresponding confidence score. To ensure clear visualiza-
tion, a bounding box is automatically drawn around each detected object, providing users 
with intuitive spatial information regarding defect location [7]. In scenarios where the 
model does not return any recognition results, the program is designed to assign default 
values for subsequent operations, thereby avoiding interruptions in the processing pipe-
line and maintaining overall system stability. This design ensures that the detection pro-
cess remains robust, even in the absence of valid predictions, and lays the foundation for 
subsequent visualization and analysis. Overall, the implementation shown in Figure 6 
highlights the role of the main function as the core entry point of the detection workflow, 
bridging the trained YOLO model with real-time input images and enabling seamless 
transition from prediction to result visualization. 

 
Figure 6. Model prediction image. 

Figure 7 further illustrates the implementation details of the frame function, which 
refines the raw detection results and generates the annotated image output. Specifically, 
the function iterates through each detection instance to extract critical attributes, such as 
the defect category name, the prediction confidence score, and the bounding box coordi-
nates. Using these parameters, the function employs the cv2.rectangle method to draw 
precise bounding boxes around the identified objects. To improve readability, particularly 
in complex backgrounds, the category label and confidence score are overlaid on a red 
rectangular background, ensuring that the annotations remain clear under different light-
ing or pavement conditions. After completing the annotation process, the function out-
puts the fully processed frame, which can be directly displayed in the user interface, used 
for real-time video playback, or further analyzed in downstream computational tasks. 
Taken together, the operations in Figure 7 demonstrate how raw detection results are 
transformed into informative and user-friendly visual outputs, thereby enhancing the in-
terpretability, accessibility, and overall practicality of the road defect detection system. 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 85 https://doi.org/10.71222/n6p5hq54 

 
Figure 7. Frame function draw info. 

3. Experimental Performance Test 
3.1. Image Recognition 

As shown in Figure 8, in the image recognition experiment, the system is tasked with 
detecting road defects from static images. The YOLO model demonstrates strong capabil-
ity in accurately identifying common defect types, such as cracks, potholes, and surface 
deterioration, by marking them with bounding boxes and displaying both the correspond-
ing class labels and confidence scores. To evaluate the robustness of the model, a variety 
of static road images were tested under different environmental conditions, including 
changes in illumination (e.g., daytime versus nighttime scenarios), pavement textures (e.g., 
asphalt, cement, and mixed surfaces), and background interference such as shadows, lane 
markings, or small debris. The results show that the system consistently distinguishes 
road defects from normal pavement surfaces, with detection accuracy maintained across 
these challenging conditions. In addition, the graphical interface provides intuitive visual 
feedback, allowing users to clearly interpret the detection results and identify the location 
and severity of road defects. These experimental findings demonstrate that the system 
achieves reliable performance in single-image recognition tasks, confirming its value for 
practical applications in road condition assessment, maintenance planning, and early 
warning systems for infrastructure safety. 

 
Figure 8. Identifying road defects in images. 

3.2. Videosidentification 
As shown in Figure 9, in the video recognition experiment, the system extends its 

functionality to real-time detection on continuous video frames, thereby addressing the 
dynamic characteristics of real-world road monitoring. The YOLO model captures and 
recognizes road defects frame by frame, while simultaneously overlaying bounding boxes 
and class labels on each frame during video playback. Unlike static image detection, video 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 86 https://doi.org/10.71222/n6p5hq54 

input introduces challenges such as motion blur, camera jitter, and rapid changes in illu-
mination. To ensure robustness, each frame is processed individually while temporal con-
sistency of the annotations is maintained across consecutive frames. The results demon-
strate that the system not only retains the accuracy observed in static images but also 
achieves stable and continuous monitoring in dynamic video streams. This enables the 
system to track defects as vehicles move, detect newly appearing defects in real time, and 
maintain reliable detection performance even under fluctuating environmental conditions. 

 
Figure 9. Identifying road defects in a video. 

Overall, the experimental results confirm that the proposed road defect detection sys-
tem, powered by YOLO-based models, performs effectively across both static and dy-
namic input scenarios. Its ability to provide accurate, real-time, and stable detection high-
lights its robustness and generalization capability. These strengths suggest wide applica-
bility in urban road management, traffic safety monitoring, and intelligent transportation 
systems. Moreover, the system’s adaptability to video input indicates promising potential 
for integration with autonomous vehicles, drone-based inspection platforms, and large-
scale smart city infrastructure management. By combining image-level precision with 
real-time video processing, the system represents a step forward toward intelligent, auto-
mated, and data-driven road maintenance strategies. 

4. Conclusion 
The "Road Defect Detection and Identification System," developed using PyQt and 

YOLOv8, provides an efficient and convenient solution for road maintenance and inspec-
tion. The system not only detects and identifies road defects in real time, but also gener-
ates detailed reports that offer valuable insights for road repair, maintenance planning, 
and infrastructure management. With its powerful detection capabilities, stable perfor-
mance under varying conditions, and flexible interface design, the system demonstrates 
significant potential for applications in multiple fields, including urban road management, 
traffic safety, and intelligent transportation systems. In practical terms, the ability to pro-
cess images, videos, and real-time camera streams makes the system adaptable to different 
usage scenarios, from research analysis to deployment in road monitoring vehicles. 

Looking ahead, the system can be further optimized and extended in several direc-
tions. For instance, integrating additional deep learning models and advanced detection 
algorithms could improve accuracy, while model optimization techniques such as prun-
ing or quantization could enhance efficiency for real-time edge deployment. Moreover, 
combining the system with complementary technologies, such as drones or autonomous 
inspection vehicles, may enable more comprehensive monitoring and predictive mainte-
nance. These advancements would contribute to more efficient resource allocation, re-
duced inspection costs, and improved road safety. Ultimately, by continuously improving 

https://doi.org/10.71222/n6p5hq54


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 5 (2025) 87 https://doi.org/10.71222/n6p5hq54 

both the technical foundation and the practical integration of the system, it has the poten-
tial to play a significant role in supporting smart city development and ensuring the long-
term sustainability of transportation infrastructure. 

Reference 
1. L. Zhang, F. Yang, Y. D. Zhang, Y. J. Zhu, "Road crack detection using deep convolutional neural network," 2016 IEEE Int. Conf. 

Image Process. (ICIP), IEEE, 2016, doi: 10.1109/ICIP.2016.7533052. 
2. H. Maeda, et al., " Road damage detection and classification using deep learning," Mach. Intell. Cybern., vol. 4, no. 2, pp. 1–8, 

2018, doi: 10.1111/mice.12387. 
3. A. Alfarrarjeh, D. Trivedi, S. H. Kim, C. Shahabi, "A deep learning approach for road damage detection from smartphone im-

ages," 2018 IEEE Int. Conf. Big Data (Big Data), IEEE, 2018, doi: 10.1109/BigData.2018.8621899. 
4. K. Gopalakrishnan, et al., "Deep convolutional neural networks with transfer learning for computer vision-based data-driven 

pavement distress detection," Constr. Build. Mater., vol. 157, pp. 322-330, 2017, doi: 10.1016/j.conbuildmat.2017.09.110. 
5. M. Eisenbach, et al., "How to get pavement distress detection ready for deep learning? A systematic approach," 2017 Int. Joint 

Conf. Neural Netw. (IJCNN), IEEE, 2017, doi: 10.1109/IJCNN.2017.7966101. 
6. E. Zalama, J. Gómez‐García‐Bermejo, R. Medina, and J. Llamas, "Road crack detection using visual features extracted by Gabor 

filters," Comput.-Aided Civ. Infrastruct. Eng., vol. 29, no. 5, pp. 342–358, 2014, doi: 10.1111/mice.12042. 
7. S. Yang, “The Impact of Continuous Integration and Continuous Delivery on Software Development Efficiency”, J. Comput. 

Signal Syst. Res., vol. 2, no. 3, pp. 59–68, Apr. 2025, doi: 10.71222/pzvfqm21. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 

https://doi.org/10.71222/n6p5hq54
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1111/mice.12387
https://doi.org/10.1109/BigData.2018.8621899
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://doi.org/10.1109/IJCNN.2017.7966101
https://doi.org/10.1111/mice.12042
https://doi.org/10.71222/pzvfqm21

	1. Introduction
	2. Overall System Design
	2.1. Overall Design Concept
	2.2. YOLOV8 Model Introduction
	2.3. Model Training Part
	2.4. Model Evaluation Part
	2.5. Model Detect Detection Part

	3. Experimental Performance Test
	3.1. Image Recognition
	3.2. Videosidentification

	4. Conclusion
	Reference

