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Abstract: With the popularization of smart home systems, users' demand for multilingual voice 
interaction is increasing day by day. This paper proposes a multilingual natural language pro-
cessing system architecture for the smart home environment, designs core modules such as speech 
recognition, semantic understanding and instruction mapping, and conducts system deployment 
and experimental tests in the multilingual home environment. The experimental results show that 
the system has a high language recognition accuracy rate and good human-computer adaptability. 
It can support the realization of multi-language intelligent interaction. 
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1. Introduction 
With the development of artificial intelligence and Internet technology, the human-

computer interaction mode of smart home systems is gradually evolving towards a new 
interaction mode with natural language as the bridge. Mainstream voice control systems 
only support a single language and cannot meet the actual needs of multilingual families. 
Therefore, this paper studies a natural language processing technology for multilingual 
interaction, conducts in-depth discussions on key issues such as language recognition, se-
mantic understanding and multilingual switching, and verifies the feasibility of this tech-
nology in practical scenarios through application research. 

2. The Multilingual Requirements in Human-Computer Interaction of Smart Homes 
In multilingual families, cross-cultural communities and international market envi-

ronments, different user groups prefer to use multiple languages for human-computer 
interaction. Traditional voice assistants usually only support one mainstream language. 
In a multilingual environment, it is difficult to achieve human-computer interaction, 
which may cause communication difficulties or even render the system unusable. Users 
generally expect the system to have the ability to automatically determine language types 
and switch seamlessly, while accurately understanding the semantics of multilingual in-
puts, thereby achieving cross-language human-machine instruction recognition and re-
sponse [1]. In some areas, due to the presence of a large number of local languages, dia-
lects or low-resource languages, the support for these languages in the existing systems 
is relatively limited, which further restricts the coverage and potential user scale of smart 
home systems. Under the background of international deployment, the multilingual 
adaptability of voice systems and their evaluation effects have become one of the im-
portant factors for measuring their intelligence level and market competitiveness. 
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3. Design of Multilingual Natural Language Processing Technology Architecture 
3.1. Overall System Architecture Design 

The overall framework of a multilingual natural language processing system can be 
divided into five main parts, including speech input, language recognition, semantic un-
derstanding, intermediate semantic layer and instruction mapping, and home control ex-
ecution. Users issue voice commands through the voice terminal. Language recognition is 
performed by the voice recognition module, which converts the commands into standard-
ized text information. The text is then processed by the multilingual semantic understand-
ing module, which uses a pre-trained language model to identify user intent and extract 
relevant parameters. To improve language consistency, the system introduces an interme-
diate semantic layer, abstracts the semantic contents expressed in different languages into 
a unified format, converts them into control instructions, such as light switches, air con-
ditioning adjustments, etc., and issues them to the corresponding devices through the in-
terface module to complete the control operations [2]. This system adopts a modular de-
sign concept, supports real-time addition, deletion and on-demand loading of language 
packs, and is capable of adapting to users' language preferences and usage environment 
requirements. The application of the intermediate semantic layer has successfully decou-
pled language understanding from control logic. This allows semantic expression to be 
independent of specific languages, improves the system's maintainability and scalability, 
and creates favorable conditions for future expansion into multimodal interaction (such 
as image recognition and gesture control) and integrated applications on edge computing 
platforms (Figure 1). 

 
Figure 1. Overall Architecture Diagram of the Multilingual Natural Language Processing System. 

3.2. Design of Multilingual Natural Language Understanding Module 
The multilingual Natural Language Understanding (M-NLU) module is the core 

foundation of the intelligent voice interaction system. Its main functions are to achieve 
intention recognition and slot filling in different language environments, accurately un-
derstand the input content in different languages, and map it into structured home appli-
ance control commands. Therefore, the multilingual natural language understanding 
module needs to address issues such as disordered word order and ambiguous semantic 
expression caused by differences in language structure, as well as the difficulty of model 
transfer in low-resource languages [3]. 

The system uses multilingual pre-trained language models with shared parameters 
(e.g., mBERT or XLM-R) as its base encoder. The input of the model is the multilingual 
text sequence transcribed by the user through speech recognition, and the output is the 
corresponding intention classification result and the semantic vector of slot labeling. The 
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input sequence is denoted as 𝑋𝑋 = {𝑥𝑥₁, 𝑥𝑥₂, . . . , 𝑥𝑥ₙ}. After being encoded by the encoder 𝑓𝑓𝜃𝜃, 
the context representation is computed as follows: 

𝐻𝐻 = 𝑓𝑓𝜃𝜃(𝛸𝛸) = {ℎ1, ℎ2, … , ℎ𝑛𝑛}, ℎ𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑         (1) 

Here, ℎ𝑖𝑖 represents the context semantic representation of the i-th word, and d is the 
dimension of the hidden layer. The semantic summary vector ℎ𝐶𝐶𝐶𝐶𝐶𝐶 of the entire sequence 
is used for sentence-level intention recognition, and its intention category prediction for-
mula is: 

𝑦𝑦�𝑖𝑖𝑛𝑛𝑖𝑖 𝑒𝑒𝑛𝑛𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠 𝑚𝑚𝑚𝑚𝑥𝑥(𝑊𝑊𝑖𝑖𝑛𝑛𝑖𝑖 𝑒𝑒𝑛𝑛𝑖𝑖 ⋅ ℎ𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑏𝑏𝑖𝑖𝑛𝑛𝑖𝑖 𝑒𝑒𝑛𝑛𝑖𝑖)       (2) 

Slot filling uses a sequence labeling method to classify each word vector ℎ𝑖𝑖: 

𝑦𝑦�𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠 𝑚𝑚𝑚𝑚𝑥𝑥(𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ⋅ ℎ𝑖𝑖 + 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖)         (3) 

The model training adopts the joint optimization strategy of intent classification loss 
and slot filling loss, and the total loss function is defined as follows: 

𝐿𝐿(1 − 𝜆𝜆)𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗𝑠𝑠𝑗𝑗𝑗𝑗𝑠𝑠𝑗𝑗𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖            (4) 

Among them, 𝜆𝜆 ∈ [0,1] is a hyperparameter, which is used to adjust the training 
weights of the two types of tasks. Through end-to-end joint modeling, the system can bet-
ter capture semantic relations in a multilingual context and has good cross-language gen-
eralization ability. 

To adapt to low-resource languages, this system uses a cross-language transfer strat-
egy during the training process. By sharing the representation space, the language 
knowledge in high-resource languages is effectively transferred to low-resource lan-
guages. This cross-language migration strategy effectively alleviates the data imbalance 
problem among multiple languages by sharing the word embedding layer and encoding 
layer between the source language and the target language. 

This module supports language-independent semantic encoding and includes a joint 
modeling mechanism for intent recognition and slot parsing. It also enables cross-lan-
guage transfer learning and can achieve high-precision semantic and command parsing 
in a multilingual smart home environment [4]. 

3.3. Multilingual Speech Recognition and Synthesis Interface 
In the voice interaction system of smart home, the speech recognition (ASR) and 

speech synthesis (TTS) modules are the core parts of the human-computer natural lan-
guage closed-loop interaction. For a multilingual environment, ASR should have the func-
tions of language recognition and dynamic model selection. During voice input, it should 
automatically identify the language and invoke the corresponding recognition model to 
ensure accurate multilingual transcription. To improve the matching degree and robust-
ness, this paper adopts a unified multilingual recognition model and combines it with a 
lightweight language detector, effectively simplifying the processing steps during the op-
eration. The system performs semantic analysis on the recognized text, extracts instruction 
information, and achieves accurate intent understanding. The TTS module generates 
speech responses. It must support multilingual synthesis and provide features like per-
sonalized speaker settings and pitch control to produce speech that closely resembles nat-
ural human conversation. Meanwhile, in order to improve the response efficiency and 
scalability, the architecture adopts the decoupling of ASR and TTS modules and the mod-
ular design of interfaces, enabling ASR and TTS to operate independently. This not only 
supports local deployment but also allows for flexible networked installation. At the same 
time, it is convenient to integrate with mainstream voice apis or self-developed models. It 
can be adapted to the computing power and performance requirements of different house-
hold devices to ensure that the smart home system achieves a smooth and natural voice 
interaction experience in a multi-language environment. 
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3.4. Intermediate Semantic Layer and Instruction Mapping Mechanism 
In multilingual intelligent speech systems, different languages have significant dif-

ferences in grammatical structure and expressed meaning. Directly mapping the NLU re-
sults of different languages to operation commands can lead to semantic inconsistency 
due to structural and syntactic differences among languages, making it difficult to main-
tain uniform intent interpretation and hindering future system expansion. To solve these 
problems, this paper introduces an intermediate semantic layer as an intermediary mech-
anism between language understanding and device control to unify the expression forms 
of different language intentions. This process will uniformly transform the input intent 
and its parameters of all languages. For example, for the command "Turn on the bedroom 
light", regardless of the language used for expression, the system can standardize it into a 
unified format (such as intent: "TURN_ON", parameters: "LOCATION: BEDROOM", "DE-
VICE: LIGHT"), achieve language-independent processing at the semantic level. Based on 
this unified semantic representation, the system can apply rule mapping or template 
matching to translate user intents into executable commands, which in turn enables con-
trol over various types of devices such as lights, air conditioners, and audio equipment. 
The instruction format is designed hierarchically and modularly to ensure compatibility 
with different manufacturers' protocols, thereby offering excellent scalability and integra-
tion flexibility. The intermediate semantic layer not only enhances the interpretability and 
stability of semantic information processing, but also improves the adaptability of the sys-
tem in complex interaction scenarios such as multilingual mixed input and user-defined 
expressions, providing a unified semantic structure basis for subsequent language expan-
sion and functional upgrades. 

4. Applied Research and Result Analysis 
4.1. Multilingual Home Environment Deployment 

To verify the practicality and language adaptability of multilingual natural language 
processing technology, this paper selected six families with multilingual usage experience, 
deployed and tested the proposed system in the actual living environment, including six 
language environments covering Chinese, English, Spanish, French, Arabic and Russian. 
Each family includes 2 to 5 individuals from different countries and regions. Each member 
has their own native language and there are frequent language switching behaviors in 
daily life [5]. The experimental period lasted for one month, and the research contents 
included functions such as voice control, device linkage, automatic language recognition 
and multi-round command response. 

The system deployment involves voice interaction terminals (smart speakers or voice 
central control screens), cloud-based multilingual NLP processing modules, local seman-
tic parsing and control interfaces, as well as smart lighting, curtains, thermostats and other 
devices that support multi-brand protocols. Family members do not need to manually 
switch language modes. The system recognizes the language used by the user through the 
preset language detection mechanism and matches the corresponding language pro-
cessing model, allowing family members to freely communicate with the system in any 
language. The language composition, the number of devices and the average daily voice 
interaction frequency of each family are shown in Table 1 as follows: 

Table 1. Statistics Table of Basic Information for Multilingual Home Deployment. 

Family 
number 

Main language 
used 

Number of 
members 

The number of 
connected devices 

The average daily number 
of voice interactions 

F1 Chinese + English 4 12 52 
F2 Spanish + English 3 9 35 
F3 Chinese + French 5 15 58 
F4 Arabic + English 4 10 40 
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F5 Chinese + Russian 2 7 26 

F6 
English + French + 

Arabic 
5 13 47 

It can be seen from the table that in a multilingual environment, the average daily 
number of voice interactions of users is approximately 26 to 58 times, and the language 
switching rate is positively correlated with the diversity of native languages spoken by 
family members. Especially in the case of frequent switching among multiple languages 
(such as F3 and F6), the overall operation of the system is stable without any delay, indi-
cating that the language recognition and model switching mechanism demonstrating 
strong real-time responsiveness and robustness against interference. 

4.2. Evaluation Indicators 
To objectively measure the performance of multilingual natural language processing 

systems in the smart home environment, this paper designs a multi-level evaluation index 
system, covering multiple aspects such as the accuracy of speech recognition, the effect of 
semantic understanding, the system response efficiency and the subjective satisfaction of 
users. 

In the speech recognition stage, the Word Error Rate (WER) is adopted as the core 
evaluation index and is defined as follows: 

𝑊𝑊𝑊𝑊𝑅𝑅 = 𝐶𝐶+𝐷𝐷+𝐼𝐼
𝑁𝑁

            (5) 

Among them, S represents the number of replacement errors, D represents the num-
ber of deletion errors, I represents the number of insertion errors, and N is the total num-
ber of reference words. Lower WER indicates higher speech recognition accuracy. The 
language identification accuracy is also used as a supplementary indicator to assess the 
system's ability to correctly detect the language of input speech. 

In the semantic understanding part, the system adopts the Accuracy evaluation for 
the intention recognition task: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑦𝑦 = Number of Correct Predictions
Total Samples

         (6) 

Slot filling is framed as a sequence labeling task, requiring token-level classification 
to extract structured information. the F1 score is used as the primary metric, integrating 
both Precision and Recall to provide a balanced evaluation: 

𝐹𝐹1 = 2⋅𝑃𝑃⋅𝑅𝑅
𝑃𝑃+𝑅𝑅

             (7) 

Among them, 

𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑅𝑅

             (8) 

𝑅𝑅 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁

             (9) 

The system interaction efficiency is measured by the average Response Time and in-
struction execution success rate. Response time measures the delay between voice input 
and device action, while success rate represents the ratio of executed instructions to total 
issued commands. 

Based on the above evaluation criteria, the system can quantitatively measure the 
interaction effects in multiple languages and scenarios, providing theoretical basis and 
practical reference for subsequent algorithm optimization and user experience improve-
ment. 

4.3. Experimental Comparison 
To comprehensively evaluate the applicability of multilingual natural language pro-

cessing systems in different language environments, this paper conducts comparative 
tests in six language environments: Chinese, English, Spanish, Arabic, French and Russian. 
And eight performance indicators are set as the evaluation basis, including word error 
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rate (WER), intent recognition accuracy rate, slot filling F1 score, multi-round dialogue 
understanding accuracy rate, average response time, execution success rate, first recogni-
tion success rate and system stable operation time, etc. (Table 2). 

Table 2. Experimental Performance Expansion Comparison Table of Multilingual Smart Home Sys-
tem (n = 300 Instructions/Language). 

Language WER 
Intention 

recognition 
F1 score 

Multi-round 
accuracy rate 

Response time 
(seconds) 

Chinese 0.062 0.960 0.93 0.952 1.21 
English 0.087 0.940 0.91 0.928 1.38 
Spanish 0.093 0.913 0.89 0.895 1.52 
Arabic 0.108 0.890 0.86 0.872 1.67 
French 0.089 0.925 0.90 0.914 1.45 
Russian 0.095 0.910 0.88 0.887 1.58 

It can be seen from the table data that Chinese performs the best among various in-
dicators. Its word error rate (WER) is the lowest, only 6.2%, the intent recognition accuracy 
rate is as high as 96.0%, the F1 value is the highest (0.93), and with a response time of only 
1.21 seconds, it outperforms all other languages in speed. English and French also perform 
well in terms of language understanding and interaction effects, while Spanish and Rus-
sian exhibit slightly lower performance in recognition accuracy and response time. Alt-
hough its performance is slightly lower, the overall system stability still meets the practi-
cal requirements of smart home usage. However, due to the significant phonetic changes 
in Arabic, it brings certain difficulties to the system recognition. As a result, it lags behind 
other languages in terms of WER, initial recognition rate, and response latency. But it 
achieves more than 89% intention understanding and more than 90% instruction success 
rate. 

4.4. User Feedback Data Analysis 
To further assess user interaction experiences with multilingual NLP systems in real-

world home environments, this paper conducts a subjective satisfaction survey on multi-
lingual user groups (including Chinese, English, Spanish, French, Arabic and Russian). 
The survey content involves the accuracy of speech recognition, the naturalness of speech 
synthesis, the satisfaction of response speed, the smoothness of language switching, the 
coherence of multi-round dialogues and the overall satisfaction. A five-point Likert scale 
(ranging from 1: very dissatisfied to 5: very satisfied) was adopted for quantitative analy-
sis. The data organization results are shown in Table 3. 

Table 3. Summary of Multilingual User Feedback Ratings (Full Score: 5 Points). 

Evaluation dimension Chinese English Spanish French Arabic Russian 
Accuracy of speech recognition 4.8 4.6 4.4 4.5 4.2 4.3 
Naturalness of speech synthesis 4.6 4.5 4.3 4.4 4.1 4.2 
Satisfaction with response speed 4.7 4.4 4.2 4.3 4.0 4.1 
Fluency in language switching 4.6 4.5 4.1 4.2 3.9 4.0 

Coherence of multiple rounds of 
dialogue 

4.7 4.5 4.3 4.4 4.0 4.1 

Overall satisfaction 4.7 4.5 4.3 4.4 4.1 4.2 
Among all groups, Chinese users reported the highest satisfaction, with an average 

score of more than 4.6 points, indicating that the system has good recognition accuracy 
and response speed in the Chinese environment. Secondly, there are English and French 
users, indicating the system's strong performance in Western European language envi-
ronments as well. The ratings of Spanish and Russian users were slightly lower, mainly 
reflected in the slightly inferior evaluation of the diversity processing of speech formats 
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and the response speed. Arabic users reported the lowest satisfaction, primarily due to 
the system's limited ability to handle diverse morphological structures and maintain con-
textual continuity in dialogue, suggesting that existing models require further optimiza-
tion to better accommodate morphologically rich and context-dependent languages. 

Despite variations in language-specific performance, all user groups gave average 
satisfaction scores above 4.1, indicating that the system has reached a usable level in terms 
of the naturalness of human-computer interaction, cross-language adaptability, and over-
all operational stability, demonstrating its practical viability for deployment in multilin-
gual, multi-user smart home environments. 

5. Conclusion 
This paper comprehensively studies the application of multilingual natural language 

processing technology in the intelligent home system, proposes a natural language inter-
action architecture that integrates multilingual recognition, semantic understanding and 
instruction mapping, and conducts systematic testing and user evaluation of its perfor-
mance in multiple language environments such as Chinese, English and Spanish. The ex-
perimental results show that the average word error rate (WER) of the system is less than 
9.5%, the accuracy rate of intention recognition is not less than 92%, the F1 value of slot 
filling reaches above 0.90, the response speed is between 1.2 and 1.7 seconds, and the av-
erage user satisfaction score is 4.5 points. These results demonstrate the system's strong 
adaptability and stability across both high-resource and low-resource languages. This 
study verified the practical application value of the proposed system architecture in the 
multilingual home environment. Furthermore, it provides a scalable technical framework 
and empirical foundation for future advancements in multilingual human-computer in-
teraction (HMI) system design and deployment. 
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