)) GEORGE BROWN PRESS ]oumal Of Computer, Signal, and

System Research

Article

Resource Demand Prediction and Optimization Based on Time
Series Analysis in Cloud Computing Platform

Jiaying Huang *

Received: 25 May 2025
Revised: 07 June 2025
Accepted: 23 June 2025
Published: 25 June 2025

Copyright: © 2025 by the authors.
Submitted for possible open access
publication under the terms and
conditions of the Creative Commons
Attribution (CC  BY) license
(https://creativecommons.org/license

s/by/4.0/).

1 EC2 Core Platform, Amazon.com Services LLC, Seattle, Washington, 98121, United States
* Correspondence: Jiaying Huang, EC2 Core Platform, Amazon.com Services LLC, Seattle, Washington,
98121, United States

Abstract: In the cloud computing environment, dynamic load changes pose higher requirements for
the predictive ability of resource scheduling. To improve resource utilization and reduce the risk of
SLA default, this paper proposes a multi-model integrated resource demand prediction framework,
combining ARIMA and LSTM to capture linear and nonlinear features in time series data. The
framework uses Alibaba Cloud Tianchi load data, including CPU, memory, and network metrics,
as learning samples for model training and evaluation; Experiments show that the ARIMA-LSTM
hybrid model has better performance in both RMSE and MAE indicators than the single model, with
the minimum RMSE being 7.32. To further improve the efficiency of resource allocation driven by
prediction, the study introduces the ensemble learning method based on LightGBM, the hierarchical
time series analysis mechanism, and the ridge regression dynamic allocation strategy combined
with L1 regularization. In the deployment environment of the hybrid cloud platform, this frame-
work has increased resource utilization by 19.6% and reduced service Level Agreement (SLA) de-
fault events by more than 50%, mainly due to improved prediction accuracy that minimizes exces-
sive reservations and prediction deviations. The research results provide practical and effective
methods and examples for the accurate and secure resource scheduling of cloud service platforms
and the implementation of cloud services.
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1. Introduction

With the increasingly complex business of cloud computing platforms, the uncer-
tainty of required resources and the emergence of multiple peaks at the same time have
put great pressure on traditional static based resource allocation methods, which cannot
effectively predict future situations and lead to wastage of resource allocation, reducing
service reliability and overall system efficiency. Time series analysis is a technical means
of continuous dynamic analysis and processing, which can effectively fit and identify fac-
tors such as trend, periodicity, and abnormal interference, and is widely used in load fore-
casting. In response to the complex characteristics of resource behavior on cloud plat-
forms, it is necessary to construct a prediction framework composed of various time series
methods to enhance the model's responsiveness to various characteristics and provide
relatively stable inputs for resource scheduling algorithms.

2. Overview of Time Series Analysis Methods

Time series analysis technology can simulate sequences with time-series related data
by constructing models, analyzing their trends, periods, and anomalous disturbance at-
tributes, and accurately predicting future development trends. The ARIMA model is de-
rived by combining autoregression and moving average structures on the basis of differ-
ential stationarity, and is very suitable for analyzing linear and periodic trends, with good
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interpretability. LSTM is a type of RNN family that can store long-term relevant infor-
mation by using gating mechanisms, making it more suitable for handling sudden load
increases and nonlinear disturbance problems [1]. Given that the activity characteristics
of resources on cloud service platforms have both linear and nonlinear features, this paper
uses a combination of ARIMA-LSTM for modeling. Firstly, ARIMA is used to describe the
main trends, and then the residual sequence is input into LSTM to process nonlinear dis-
turbances, thereby achieving hierarchical modeling and improving accuracy.

3. Resource Demand Prediction and Analysis in Cloud Computing Platforms
3.1. Resource Management Structure of the Cloud Computing Platform

The resource management framework of cloud computing platforms mainly consists
of four parts: resource monitoring, predictor, scheduler, and elastic adjuster. The basic
part is to use virtualization technologies such as KVM or Docker to transform physical
devices into units that can be scheduled (such as vMemory). The platform obtains real-
time resource utilization and converts the data into time series data for the predictor to
process. The scheduler (such as Kubernetes) calculates the location where the container
should be deployed based on predicted data and scheduling algorithms (such as binpack).
The elastic regulator will automatically adjust the number of replicas or nodes based on
the predicted load. The system requires low latency API connections and high consistency
state sharing between the predictor and scheduling system to support resource optimiza-
tion configuration and response under high dynamic loads.

3.2. Key Factors in Resource Demand Forecasting

Accurate prediction of resource demand depends on whether the main influencing
factors in modeling are fully captured. For example, daily working hours, holidays, etc.
can have a huge impact on resource scheduling; Different task types also have different
resource usage patterns. For example, the CPU and memory usage of web services is much
higher than that of big data processing; User behavior activities (such as session intervals,
dwell time, etc.) also need to be considered [2]. Therefore, when modeling, it is necessary
to construct time-lagged features using sliding windows, introduce statistical indicators
such as mean, variance, and extreme values, and add external triggering conditions (such
as software upgrades) to enhance the sensitivity of the model.

3.3. Application of Time Series Analysis in Resource Demand Forecasting

When predicting cloud platform resources, time series analysis techniques can trans-
form variable resource information into function sequences through modeling, in order
to extract patterns and make predictions. The ARIMA algorithm performs differential op-
erations on the data to make the sequence stationary, and then uses autoregression and
moving average to establish a linear model. However, the LSTM network based on RNN
introduces a gating mechanism, which can retain long-term dependencies to capture non-
linear changes. In practice, the platform collects sample data from the CPU or memory
according to a fixed time window (such as every half hour) as input for the prediction
model, forming a feature matrix. At the application stage, the model is encapsulated in
microservice form and continuously receives new data through APIs to predict future
short-term resource requirements (such as 5-minute CPU usage), reducing SLA default
risk.

3.4. Characteristics and Patterns of Cloud Computing Resource Requirements

The demand for cloud computing resources presents characteristics such as instabil-
ity, high frequency, and diversity, which require models to technically characterize them.
From a resource perspective, parameters such as CPU, RAM, hard disk I/O, and network
bandwidth often exhibit different temporal characteristics and require separate modeling;
From a temporal perspective, the periodicity of days/weeks is often disrupted by irregular
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events, such as a large influx of users, which increases the difficulty of prediction; Some
resources have intermittent peak distributions, which make traditional mean methods un-
able to accurately characterize them; Due to user behavior driven factors, there is often a
superposition of multi-source changes, such as the simultaneous increase of I/O and CPU,
which requires multiple time series to jointly model.

4. Resource Demand Forecasting Model Based on Time Series Analysis
4.1. Selection and Application of Time Series Analysis Methods

When building a resource demand forecasting model, select appropriate modeling
methods based on the characteristics of cloud platform load data. Usually, resource se-
quences contain long-and short-term trends and cyclical components, making them more
suitable for linear fitting using ARIMA models; Due to the influence of user behavior,
resource sequences exhibit nonlinear characteristics, making them more suitable for mod-
eling using LSTM models [3]. This article uses the ADF testing method to verify whether
the sequence satisfies first-order differencing stationarity. It uses ARIMA (p, 1, q) model-
ing for trend mining, and adjusts parameters using AIC and residual white noise tests.

In practical applications, ARIMA is used to establish a linear model for resource se-
quences, and its residuals are used as LSTM inputs to process nonlinear disturbance terms,
forming a hierarchical prediction model that improves accuracy and model reliability. The
cascading model is deployed as microservices in containers, which can simultaneously
perform predictive calculations for multiple resources and achieve automated data flow
interaction through APIs. The predicted results serve as inputs for the scheduler, optimiz-
ing dynamic resources and improving response speed and resource utilization efficiency.

4.2. Acquisition and Processing of Datasets

In order to build a practical resource demand prediction model, this article uses a
dataset from key resource indicators such as CPU utilization, memory usage, and network
throughput provided by Alibaba Cloud Tianchi. The data sample has a duration of 30
days and a time granularity of 1 minute. The data is sampled and recorded according to
resource nodes, with each record containing a time point, resource sequence number, and
resource related values. This study uses scripts to automatically collect data and store it
in CSV format. In the preprocessing stage, unnecessary information and nodes will be
filtered out or removed to ensure the remaining data are complete and valid. At the same
time, the extreme value data will be identified and processed using a 3-fold standard de-
viation method, and the missing parts will be filled forward according to the chronologi-
cal relationship to avoid affecting temporal continuity.

Using the linearization normalization method, all feature values are extended to the
range of [0,1], expressed mathematically as:

1 _  X—Xmin

X = Xmax~*min (1)

Among them, x represents the initial feature value, and x,,;, and x4, respectively
represent the minimum and maximum values in the corresponding training set. This
method can ensure stable feature distribution, improve the training convergence rate and
prediction stability of the model in different feature dimensions.

4.3. Training and Validation of the Predictive Model

The ARIMA-LSTM cascade model is based on a staged training mode, which in-
cludes sample construction, model building, defining loss functions, and designing vali-
dation systems. Use ARIMA to model the linear and periodic features in the original se-
quence, with the residual sequence as the input for LSTM. ARIMA uses ADF testing and
AIC standards to determine parameters, ensuring that the residual sequence is stable and
learnable [4]. LSTM consists of two LSTM layers, each with 128 hidden units, and uses
tanh as the activation function. Choose Adam as the optimizer, with an initial learning
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rate of 0.001, a batch size of 64, and 100 training iterations. The loss function adopts mean
square error:

1 ~
Lusg = ;Z?’ﬂ(}’i - ¥i)* )
Among them, §;,y; represents the predicted value and the true value, and N repre-
sents the number of samples. To prevent overfitting of the model; Dropout is introduced
during the model training process; Use EarlyStop to stop iterating when the validation
loss has not decreased further. We split the validation data in chronological order to pre-

vent future information leakage. This model is run on the TensorFlow platform for use in
prediction scheduling systems.

4.4. Accuracy Evaluation of the Model

The accuracy evaluation of models is the main content of resource prediction systems,
which is related to the reliability of scheduling strategies and the completion of scheduling.
The roots mean square error, mean absolute error, and mean absolute percentage error
are used to evaluate the error magnitude, stability, and relative accuracy of the ARIMA-
LSTM model in predicting resource demand.

If there are N samples in the test set, the model output is ¥;, and the actual observa-
tion value is yj, then the three indicators are defined as follows:

1 ~
MSE = /ﬁzle(yi - )%

1 .
MAE = ;Z?Iﬂ |9 — yil;

100% N
N &Zi=1

e ©

yite

MAPE =

In the formula, € is a small positive number used to prevent the denominator from
being zero. The three measures assess the performance of the model in terms of numerical
accuracy, volatility sensitivity, and business interpretability. In addition, for multi-dimen-
sional schedulers with multiple resource dimension attributes such as CPU, memory, and
network, an independent evaluation strategy is applied individually, with weighted av-
erage error used as the overall evaluation metric.

5. Optimization Strategies for Resource Management in Cloud Computing Platforms
5.1. Adopt the Ensemble Learning Method

In order to improve the stability and universality of resource demand prediction, this
paper introduces the integrated learning method based on ARIMA-LSTM to overcome
the limitations of a single model. In the integrated framework, LSTM is used as the basic
prediction model, and LightGBM is introduced as the secondary learner to construct a
stacking ensemble model, which can combine the outputs from different base models.

LightGBM has the characteristics of optimizing gradient direction and leaf-wise split-
ting, so it performs well in handling high-dimensional sparse input features and is supe-
rior in dealing with behavioral changes of complex resources. During the training phase,
the LSTM model first outputs preliminary predicted values yt“),yt(z),...,yt(“), and then con-
struct a fusion function using Light GBM:

~fi ~(k
i = Sioawi 900 + b 4)

Among them, wy is the weight coefficient of each base model, and b is the bias term.
LightGBM can independently determine the allocation of weights in the model, allowing
it to perform better in unstable and volatile parts.

5.2. Construct Multi-Level Time Series Models

Based on changes in resource activity patterns at different time scales, the multi-level
time series analysis method can summarize various change patterns. Based on this, a high-
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precision sequence structure can be constructed to enhance the model's ability to identify
multi-frequency information.

The model is designed with multi-channel inputs, using time windows (15 minutes,
1 hour, 4 hours) as inputs for different LSTM "channels", extracting time features at dif-
ferent levels, and integrating them into a fully connected layer for output. Assuming the
predicted value of the j-th time window is }Alt(j), the total output can be defined as:

9o =39 (5)

Among them, ¢ is the weighting coefficient for each time level, which is automati-
cally optimized through backpropagation.

A multi-level structure can enable the model to better adapt to load changes at dif-
ferent granularities, adapt well to periodic disturbances such as large fluctuations during
holidays and day night alternation, and effectively improve the scheduling system's fault
tolerance for prediction errors.

5.3. Use Multivariate Time Series Analysis Methods

There is a high correlation among multiple resource dimensions such as CPU,
memory, disk IO, and network traffic, which exhibit interactive and synchronous fluctu-
ations [5]. In order to better reflect the correlation between various resources, this paper
models based on multivariate time series, uniformly representing the dimensions of vari-
ous resources as multidimensional input tensors, and embedding multivariate LSTM
units in the model to achieve parallel modeling.

Let the multidimensional resource state vector at time ¢ be:

e = (7,11, 210, 31 ©)

Take the corresponding inputs of L consecutive time steps as a three-dimensional
tensor X € REX*F define B as batch size, L as time window length, and F as feature di-
mension. The LSTM network receives input tensors and updates all hidden state infor-
mation, simulating dynamic correlation processes covering different resources, overcom-
ing the problem of insufficient response to systematic fluctuations in single variable pre-
diction, and enhancing the flexibility of prediction driven scheduling.

5.4. Apply Regularization Techniques

In multidimensional resource prediction, input data often has redundancy or low
correlation. Without effective structural control measures, it may lead to problems such
as overfitting due to redundant model parameters and decreased generalization ability.
In this regard, this article introduces the L1 regularization technique, which utilizes spar-
sity to constrain network parameters to improve the simplicity and noise resistance of the
model structure. That is to say, the L1 regularization term is added to the loss function of
the fully connected prediction layer, which is defined as follows:

1 -
L=y =907 + AE5- 1wl @)
Among them, A is the parameter that controls regularization, and w; represents the
jth weight of the model. L1 regularization has the ability of automatic feature selection,

which can select important features and suppress weak signals, providing a solid input
foundation for subsequent scheduling and control.

6. Empirical Research and Case Analysis

An experimental system was designed based on a simulated hybrid cloud platform,
equipped with an 8-core CPU, 32GB of memory, and CentOS 7.6 operating system. Docker
resource virtualization and Kubernetes management were implemented on this system.
The deployment of this experimental environment was achieved by utilizing monitoring
log data resources from real machines on the Alibaba Cloud Tianchi Competition official
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website. Implement ARIMA-LSTM model using TensorFlow tool, encapsulate the model
with microservice software architecture, and connect to the scheduler using RESTful APL

The predictive performance of each model was evaluated based on RMSE, MAE, and
MAPE, and the results are compared in Figure 1:
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Figure 1. Comparison of Prediction Performance of Different Models.

It can be seen from the data in the figure that when ARIMA and LSTM methods are
used comprehensively, the performance of each part is better than that of the single model
structure, especially the MAPE index decreases significantly, indicating that this method
has better ability to control relative errors. After incorporating LightGBM ensemble learn-
ing, the overall error is further reduced.

Based on the model prediction results, the scheduler dynamically adjusts the number
of Pod replicas. The performance of static strategy and predictive driven strategy in terms
of CPU utilization and SLA default frequency is shown in Table 1 below:

Table 1. Comparison of Scheduling Effectiveness between Predictive Driven and Static Strategies.

Scheduling Strategy = Average CPU Utilization Increased =~ SLA Default Rates Are Down
Static Strategy Base Line Value Base Line Value

Predictive Driving

Strategy 119.6% 151.2%

The predictive auxiliary scheduling scheme significantly reduces resource redun-
dancy and service failure events, and has practical significance.

The experimental results have verified the stability and prediction accuracy of the
proposed model in the face of large-scale changes in resource demand. Ensemble learning
and regularization mechanisms can enhance the generalizability of models. The schedul-
ing system integrates the predicted results through APIs, achieving dynamic adjustment
based on data-driven methods while ensuring service quality. This provides a practical
foundation for intelligent scheduling of cloud platforms.

7. Conclusion

This study conclusively demonstrates the efficacy of a multi-model framework inte-
grating ARIMA, LSTM, and LightGBM-based ensemble learning for accurate cloud re-
source demand forecasting. The model achieved a minimum RMSE of 7.32 and signifi-
cantly outperformed single-model approaches across RMSE, MAE, and MAPE metrics.
The incorporation of hierarchical time series analysis and L1 regularization further en-
hanced model robustness against volatile workloads. Deployment on a hybrid cloud plat-
form validated tangible operational improvements, including a 19.6% increase in resource
utilization and over 50% reduction in SLA violation events through proactive, prediction-
driven resource optimization. This establishes a scalable and data-driven methodology
for balancing computational efficiency with stringent QoS requirements in dynamic cloud
environments. Future research will focus on extending this framework to multi-tenant
heterogeneous infrastructures and real-time edge-cloud coordination.
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