
 

 Journal of Computer, Signal, and 
System Research 

 

Vol. 2 No. 4 (2025) 97 https://doi.org/10.71222/zjjdc487 

Article 

Research Progress of Content Generation Model Based on EEG 
Signals 
Bukun Ren 1,* 

1 College of Engineering, University of California Berkeley, Berkeley, 94720, USA 
* Correspondence: Bukun Ren, College of Engineering, University of California Berkeley, Berkeley, 94720, 

USA 

Abstract: The EEG-based content generation model holds great promise in areas such as emotion 
recognition, thought decoding, and multimodal interaction. EEG signals can monitor the state of 
brain activity in real time, thereby enabling the decoding of information related to brain activity, 
such as emotional states or thought patterns. However, there exist problems such as noise interfer-
ence, low recognition accuracy, difficulty in signal synchronization, and time delay with action sig-
nals. To address these issues, this paper proposes using Independent Component Analysis (ICA) 
for noise reduction, deep convolutional neural networks for spatial feature extraction, and Dynamic 
Time Warping (DTW) and Long Short-Term Memory (LSTM) networks for signal alignment. These 
methods aim to improve signal processing accuracy and alignment efficiency, thereby advancing 
brain-computer interface technologies. 
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1. Introduction 
With the development of brain-computer interfaces, content models generated based 

on EEG signals have broad application prospects in applications such as emotion compu-
ting, thinking decoding, and multimodal interaction. EEG signals can record brain activity 
in real time and decode key information related to cognition and emotional states. How-
ever, due to limitations such as low signal-to-noise ratio, noise interference, individual 
differences, and the difficulty in synchronizing EEG signals with data of other patterns, 
its practical application is restricted. To improve the accuracy and real-time performance 
of EEG signals in content generation, multiple schemes such as noise reduction based on 
independent component analysis, feature extraction based on deep learning, and signal 
synchronization using dynamic time warping or long short-term memory networks have 
been proposed. These methods are likely to promote the more efficient application of EEG 
signals in the fields of brain-computer interfaces and intelligent interaction. 

2. Basic Characteristics of EEG Signals 
2.1. Frequency Characteristics of EEG Signals 

The spectral characteristics of EEG signals represent multiple frequency bands of 
brain activity, and each frequency band represents different types of cognitive and phys-
iological states. EEG signals are routinely divided into several frequency bands, with spe-
cific typical values being δ waves (0.5-4Hz), θ waves (4-8Hz), α waves (8-13Hz), β waves 
(13-30Hz), and γ waves (30-40Hz). δ waves usually occur in a state of deep sleep or un-
consciousness, representing a lower frequency of brain activity. Theta waves are usually 
accompanied by non-deep sleep, meditation, relaxation states, and often represent some 
emotional or recall processes. Alpha waves typically occur in a waking and relaxed envi-
ronment, especially when the eyes are closed, and usually indicate that the brain is in a 
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quiet and free state. Beta waves typically occur during the processes of concentration, 
problem-solving, and advanced cognitive behaviors (thinking, language, and decision-
making), often accompanied by increased tension, excitement, and agitation. Gamma 
waves are typically associated with high-level cognitive processes in the brain, especially 
during complex sensory tasks or information integration. They are characterized by high 
frequency and are considered indicative of intense mental activity. From the frequency-
domain analysis results of EEG signals, people's psychological and physiological states 
can be known, which are applied in the fields of emotion analysis, cognitive analysis, and 
human-computer interaction. (See Table 1). 

Table 1. Frequency Characteristics of EEG Signals. 

Frequen
cy band 

Frequenc
y range 

Corresponding to the state of 
electroencephalogram activity 

Main functions/performance 

δ wave 0.5-4 Hz 
Deep sleep, coma, deep 

relaxation 

The brainwave activity is the least, 
mainly related to deep sleep and 

restorative rest. 

θ wave 4-8 Hz 
Relaxation and rest, meditation, 

chatting idly, anxiety, 
innovative behavior. 

It is related to memory processing, 
meditation, emotion regulation and 

light sleep. 

α wave 8-13 Hz 
Rest: Lie flat, rest in bed, and lie 

still. 

It is associated with relaxation, 
concentration and attention control in 

the resting state. 

β wave 13-30 Hz 
Attention, thinking, problem-

solving, tension. 
It is related to cognitive behavior, 

concentration and anxiety. 

Γ wave 30-40 Hz 
Abstract logic, information 

fusion and attention. 

Attention dysfunction is related to 
advanced cognitive activities and 

perceptual processing. 
The above table shows the main frequency domain range of the EEG signal and the 

corresponding frequency range, as well as the state of the electroencephalogram. Each 
frequency domain range is associated with specific psychological and physiological states, 
as established by extensive empirical studies. 

2.2. Spatial Characteristics of EEG signals 
The spatial characteristics of EEG reflect neural activity across different brain regions, 

providing information about specific anatomical locations based on the brain's regional 
divisions. The commonly used international 10-20 electrode placement system helps re-
searchers observe changes in neural activity across different brain regions under various 
conditions. For example, the frontal lobe is associated with emotion regulation, decision-
making, and planning. The parietal lobe is related to spatial processing, sensory input and 
motor control. The occipital lobe is mainly responsible for visual processing. For the anal-
ysis of EEG spatial features, the main focus is on extracting the changes in the activities of 
various parts of the brain, so as to facilitate the activity responses of each part of the brain 
and the completion of corresponding cognitive activities. In the research of human-com-
puter interaction, in terms of spatial feature analysis, it is conducive to the localization 
research of brain activity responses, that is, to study the relationship between brain activ-
ity responses and the thinking responses and content correspondence of brain activities 
to specific tasks. Meanwhile, EEG signals primarily capture cortical surface activity, mak-
ing it difficult to observe neural processes occurring in deeper brain regions. This directly 
affects the temporal and spatial analytical ability of electroencephalogram. 
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3. Research Status of Content Generation Models Based on EEG Signals 
3.1. Noise Interference and Signal Accuracy Decline in Affective Computing 

Emotion computing based on EEG signals is confronted with noise interference 
caused by various reasons, such as eye movement, motor electromyography signals and 
surrounding noise, which leads to the distortion of EEG signals and affects their accuracy. 
Among them, eye movement artifacts and electromyography signal artifacts have high 
frequencies and are prone to aliasing with the frequencies of emotional signals, thereby 
affecting emotional signals. These artifacts significantly impact the accuracy of emotion 
computing models, particularly in quiet or low cognitive stress states where emotional 
features in EEG signals are inherently weak, making them more susceptible to noise in-
terference. Furthermore, due to the different electroencephalogram (EEG) activities of 
each individual, the EEG signals respond uniquely to the emotions of each individual, 
making it difficult for the emotion calculation model to transfer among individuals and 
affecting the accuracy of the model. To solve the above problems, various noise removal 
strategies for suppressing false signals and improving the accuracy of emotion calculation 
have been proposed. However, even so, noise signals still cause great computational pres-
sure for real-time data processing. Efficiently removing noise while preserving the integ-
rity of emotional information remains a major challenge in the field of affective computing 
research. 

3.2. The Signal Decoding Accuracy in the Decoding of Thinking Content Is Low 
Although decoding thought content from EEG signals is feasible, the accuracy re-

mains very low. This is mainly due to the low signal-to-noise ratio and limited spatial 
resolution of EEG signals, making it difficult to understand the activities of brain regions. 
This is not conducive to understanding complex cognitive processes. Moreover, physio-
logical noises such as muscle movement and eye movement can also cause thought signals 
and reduce the accurate decoding of thought signals. Especially in the performance of 
complex cognitive tasks, the fluctuations of electroencephalogram (EEG) are tiny and un-
predictable, and how to effectively distinguish the relevant characteristics is the core dif-
ficulty of the research. In recent years, deep learning methods such as convolutional neu-
ral networks and Long Short-Term Memory (LSTM) networks have achieved break-
throughs in automated feature extraction and accurate decoding. However, there are still 
certain deficiencies in multi-task decoding and generalization decoding. The key chal-
lenge lies in enhancing the spatial and temporal resolution of EEG signals within their 
inherent physical limitations to improve decoding accuracy. 

3.3. Inconsistency of Time and Space in Multimodal Signal Fusion 
Temporal and spatial inconsistencies between EEG signals and other modalities 

(such as vision, hearing, and language) often pose challenges for multimodal signal fusion. 
EEG signals have high temporal resolution, whereas other modalities such as video and 
auditory signals generally have lower temporal resolution for real-time processing. There-
fore, when conducting real-time processing, it is difficult to synchronize the data of each 
modality, which also results in low quality of signal aggregation and content generation. 
Furthermore, the spatial resolvability of EEG signals is relatively weak. It is also difficult 
to pair EEG with visual information with strong spatial resolvability (such as facial ex-
pressions or gestures, etc.), which will also make data fusion more complex. To solve these 
problems, the time synchronization problem is addressed by Dynamic time warping 
(DTW), and the spatial domain requirements are solved by cross-modal learning. Alt-
hough the above-mentioned methods have brought about some improvements, there is 
still a lot of room for enhancing efficiency in practical applications. 
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3.4. Time Delay in the Synchronization of Electroencephalogram (EEG) Signals and Behavioral 
Data 

In terms of BCI and game interaction design, how to handle the synchronization be-
tween EEG signals and behavioral data is a key issue. Limited by the high temporal reso-
lution of EEG signals, on the other hand, behaviors are collected by external sensors, pre-
senting characteristics of lower temporal resolution and response time. This may cause 
certain delays, and in the interactive scenarios of virtual reality or augmented reality, the 
impact of delays is very obvious. Therefore, to handle this problem, Dynamic Time Warp-
ing (DTW), Long Short-Term Memory Networks (LSTM), and other methods are used to 
coordinate the synchronization between EEG signals and behavioral data by analyzing 
temporal relationships. Although the above-mentioned methods can effectively eliminate 
delays and ensure the coordination among data, they also face high computational costs 
and the problem of real-time efficiency in scenarios with multi-channel data or high sam-
pling rate data. 

4. Research Strategies for Content Generation Models Based on EEG Signals 
4.1. Use Independent Component Analysis for Denoising 

Due to artifacts caused by eye movements, muscle activity, and electrode grounding, 
EEG signals are usually contaminated by noise, and the purity of EEG signals has a nega-
tive impact on their application in emotional computing, cognitive understanding, and 
multi-information processing, etc. Independent Component Analysis (ICA) is widely 
used for noise suppression in EEG signals. The general steps of ICA for noise suppression 
in EEG signals are as follows: First, the EEG signal needs to be preprocessed, such as using 
a bandpass filter to remove low-frequency and high-frequency noise. Then, the ICA is 
used to decompose the complex signal into multiple independent components, which can 
distinguish the components of neuronal signals and other noises in the EEG signal. During 
this process, by examining the nature of each component, the components related to arti-
facts can be separated, such as the illusions produced by eye movement and muscle move-
ment, and then the noise components can be removed, retaining only the signal compo-
nents related to the brain. The EEG signals decomposed by ICA into independent compo-
nents are relatively clear. The EEG signals denoised by ICA can better reflect functions 
such as emotions and cognition, and improve the task accuracy and reliability of functions 
such as emotion computing and thinking decoding. (See Table 2). 

Table 2. Denoising Steps of Independent Component Analysis (ICA). 

Steps Method description Function/Purpose Application example 

Signal 
preproce

ssing 

Perform preliminary 
preprocessing on the 
EEG signal (remove 

noise and standardize, 
such as bandpass 

filtering). 

Filter out the low-
frequency interference and 

high-frequency noise 
irrelevant to the EEG 

signal (such as 
electromyography 
interference, eye 

movement artifacts, etc.). 

Signal preprocessing 
applied to eliminating 

false signals and baselines. 

Signal 
decomp
osition 

The independent 
component analysis of 

EEG signals was carried 
out using the ICA 

algorithm. 

Separate the compound 
signal into independent 
signals and separate the 

noise source and effective 
information. 

ICA can extract 
independent components 
related to brain activity 
and remove interfering 

signals 
Identific
ation of 

noise 

The noise sources are 
discriminated based on 

the inherent 

Identify and label isolated 
components related to 

false signals, such as eye 

Identify eye movement 
and electromyographic 

pseudo-signals, and mask 
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compon
ents 

characteristics of the 
signal components (such 

as frequency, time 
waveform, etc.). 

movement false signals 
and electromyographic 

components. 

them during the process of 
calculating emotions. 

Noise 
removal 

Remove the noise related 
to the occurrence of some 

of the obtained signals, 
and what remains is the 
electroencephalogram 

(EEG) signal. 

Retain the components 
related to memory, 

sensation, etc. in the EEG 
signal, and remove the 

confounding components. 

Eliminate the components 
related to eye movement 
and electromyographic 
artifacts to improve the 

recognition effect of 
emotional signals. 

Reconstr
uct the 
signal 

Reshape the EEG using 
independent components 

for noise reduction. 

Therefore, after the signal 
is reconstructed through 
denoising, a clear EEG 

signal can be 
reconstructed. 

The reconstructed EEG 
signals are applied in 

processing tasks such as 
emotion computing and 

decoding thinking. 
Therefore, the denoising function of ICA is crucial and can improve the quality of 

EEG signals, providing high-quality signal support for subsequent data generation and 
brain-computer interface implementations. 

4.2. Use Deep Convolutional Neural Networks to Extract Spatial Features 
Deep Convolutional Neural Networks (CNNs) are powerful feature learning tools 

widely applied in computer vision and speech processing. They are also effective for ex-
tracting spatial features from EEG signals. When extracting spatial features from EEG sig-
nals, convolution operations in deep CNNs automatically capture features at multiple 
spatial scales. The core formula of the convolution operation is as follows: 

𝑦𝑦(𝑡𝑡) = (𝑥𝑥 ∗ 𝑤𝑤)(𝑡𝑡) = ∑ 𝑥𝑥(𝑡𝑡 − 𝑖𝑖)𝑁𝑁
𝑖𝑖=1 𝑤𝑤(𝑖𝑖)        (1) 

x(t) represents the input EEG signal (time-domain signal), w(i) represents the con-
volution kernel or filter, which automatically extracts features from the data through 
learning, ∗ represent the convolution operation, y(t)  represents the output after 
convolution, that is, the extracted spatial features. The advantage of convolution operation 
lies in its ability to automatically learn the most representative spatial features from the 
data without the need for manual feature design. Based on the adaptability of CNN, the 
analysis of EEG signals is better and it has important applications in aspects such as 
emotion computing and brain-computer interfaces. In the study of EEG signals, generally 
speaking, spatial attributes refer to the distribution of electrical activity in various regions 
of the brain, which can reflect the activation carried by the brain when performing a 
certain operation or expressing a certain emotion. EEG signals are usually data 
information obtained through a set of electrodes, and this set of electrodes can record the 
electrical activity of the cerebral cortex. The data obtained through these electrodes have 
relatively high spatial attribute information. CNN can obtain the spatial attributes and 
features of EEG signals based on convolutional layers and aggregation layers. Especially 
for the analysis of complex problems, the relevant feature patterns of the activity 
connections of each brain region can be extracted from EEG signals. The trained deep 
convolutional neural network can obtain the spatial attributes of EEG signals and apply 
them in the subsequent content generation. 

4.3. Dynamic Time Warping Synchronization Signals Are Adopted 
Signal synchronization using Dynamic Time Warping (DTW) involves addressing 

timing signal synchronization and multimodal signal fusion, while also considering com-
putational complexity and optimization methods. Regarding the synchronization of tem-
poral signals, DTW solves the delay problem between EEG signals and other data types 

https://doi.org/10.71222/zjjdc487


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 4 (2025) 102 https://doi.org/10.71222/zjjdc487 

by finding an optimal alignment that minimizes the cumulative distance between se-
quences, allowing flexible temporal matching, ensuring the accurate positioning and reg-
istration of the signals. For the fusion of multiple modalities, DTW helps coordinate the 
timing sequences in each mode, thereby increasing the learning efficiency across modali-
ties. Furthermore, it solves the synchronization problem between EEG signals and other 
signals, ultimately enabling the creation of high-quality interactive products. Due to the 
high computational complexity of DTW, especially in real-time applications, optimization 
techniques such as windowing constraints (e.g., Sakoe-Chiba band) and parallel pro-
cessing are employed to improve efficiency to improve the computational complexity in 
order to meet the requirements of real-time synchronization. Through this method, DTW 
can provide reliable signal synchronization services in the production of real-time brain-
computer interfaces and multimodal (Figure 1). 

 
Figure 1. Adopts the Dynamic Time Warping Synchronization Signal. 

4.4. Synchronize EEG Signals and Behavioral Data Using Long Short-Term Memory Networks 
Synchronizing EEG signals with behavioral data is a critical issue in brain-computer 

interfaces and multimodal content generation. EEG signals have a relatively high tem-
poral resolution and can provide real-time information on brain activities. However, the 
collection of behavioral data usually has a relatively low temporal resolution, which leads 
to a time delay problem when synchronizing these two types of signals. LSTM is a deep 
learning model suitable for time series data and can effectively capture temporal depend-
encies between EEG signals and behavioral data. Through its unique gating mechanism, 
LSTM is capable of capturing short-term and long-term dependencies in signals and is 
particularly suitable for synchronization of time series data. LSTM's gating mechanisms 
enable it to learn temporal dependencies, facilitating effective synchronization between 
EEG and behavioral signals. The key formulas of LSTM are as follows: 

Forget Gate: 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑤𝑤𝑓𝑓 ⋅ �ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡� + 𝑏𝑏𝑓𝑓�        (2) 

Among them, ft  is the output of the forgetting Gate. σ is the sigmoid activation 
function. 𝑤𝑤𝑓𝑓 is the weight matrix. ℎ𝑡𝑡−1 is the hidden state of the previous moment. 𝑥𝑥𝑡𝑡  is 
the input at the current moment (such as EEG signals or behavioral data), 𝑏𝑏𝑓𝑓 is the bias 
term. 

Input gate: 𝑖𝑖𝑡𝑡 = 𝜎𝜎�𝑤𝑤𝑖𝑖 ⋅ �ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡� + 𝑏𝑏𝑖𝑖�        (3) 

Among them, 𝑖𝑖𝑡𝑡  is the output of the input gate, control which information will be 
stored in the cellular state. When synchronizing EEG signals with behavioral data, LSTM 
can predict behavioral data based on past signal states, thereby solving the problems of 
time delay and synchronization between signals. By using LSTM, the model can learn and 
adjust the time deviation between EEG signals and behavioral data in real time, ensure 
the synchronization of these two types of data, and thereby improve the accuracy and 
real-time performance of content generation. 
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5. Conclusion 
The content generation model based on EEG signals has the prospect of wide appli-

cation in functions such as emotion computing, thinking decoding and multimodal inter-
action. Although there are still problems such as signal noise, decoding accuracy and data 
synchronization of EEG signals, the adoption of ICA to eliminate noise, CNN to extract 
spatial information, DTW signal synchronization and LSTM to synchronize EEG signals 
and behavioral data can further improve the processing effect and efficiency of EEG sig-
nals. With the development of technology, EEG signal-driven content generation models 
have more possibilities and can bring new impacts on brain-computer interfaces, intelli-
gent interaction, personalized medical care, etc., further promoting the development of 
intelligent systems. 
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