

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 4 (2025) 69 https://doi.org/10.71222/82kxzb25

Article

Application of Efficient Load Test Strategies in Infrastructure
Buqin Wang 1,*

1 Meta Platforms / Infrastructure, Menlo Park, CA, 94025, United States
* Correspondence: Buqin Wang, Meta Platforms / Infrastructure, Menlo Park, CA, 94025, United States

Abstract: Load testing is an important means of evaluating the performance of infrastructure under
different load conditions. This article discusses the application of efficient load testing strategies in
infrastructure, with a focus on analyzing automatic scalability testing, high concurrency load simu-
lation, and virtual machine load testing. It reveals the practice of building diverse load scenarios to
test the reliability and stability of infrastructure. Further elaborated on measures to ensure efficient
load testing, including utilizing automation and intelligent tools to improve testing efficiency, opti-
mizing resource allocation through elastic resource management and intelligent scheduling, and
adopting layered and continuous testing to ensure comprehensive and accurate testing coverage,
providing theoretical basis and practical guidance for load testing in practical operations.

Keywords: load testing; infrastructure; automatic scaling; high concurrency; virtual machine

1. Introduction
Against the backdrop of the increasing expansion of infrastructure scale and the up-

grading of technological difficulty, load testing is an important link in ensuring the stable
operation of systems under high loads. By simulating different load scenarios, load testing
can effectively evaluate the performance bottlenecks of the system and reveal potential
risk points. Especially in technological environments such as cloud computing, big data,
and virtualization, traditional load testing methods face new challenges. Efficient load
testing not only requires the use of intelligent tools to improve testing efficiency, but also
needs to be combined with strategies such as elastic resource management and intelligent
scheduling to ensure efficiency and accuracy in a dynamically changing environment.

2. Definition and Principle of Load Testing
Load testing is a type of performance testing, whose core purpose is to test the sys-

tem's responsiveness and stability under specific loads. By simulating actual user opera-
tions or preset load scenarios, load testing can reveal potential constraints on system per-
formance. Its main objective is to measure the response time, throughput, concurrent pro-
cessing capability, and resource consumption of the system under different load condi-
tions, in order to ensure the stability and reliability of the system under high loads [1].

The principle of load testing is to simulate the running load of the system by creating
virtual users or requests, and gradually increase the load during the testing process to
monitor the performance of the system. These virtual user requests mimic various behav-
iors of real users, including database queries, file uploads and downloads, page loading,
and other diverse operations. Using load generation tools such as JMeter and LoadRunner,
these requests are sent to the target system, and the system's resource usage (such as CPU,
memory, disk I/O, and network bandwidth) is monitored in real-time.

When conducting load testing, the key lies in the system's load-bearing limit, which
is the maximum concurrent requests that the system can handle, as well as the response
time, which is the system's processing speed under high load. In addition, load testing
helps to confirm the reliability of the system and verify whether the system can maintain

Received: 10 May 2025

Revised: 14 May 2025

Accepted: 29 May 2025

Published: 03 June 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/82kxzb25

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 70 https://doi.org/10.71222/82kxzb25

normal operation without failure in the face of continuous or sudden high loads [2]. At
the same time, load testing also involves the scalability of the system, observing whether
the testing system can effectively expand resources to meet greater demand as the load
gradually increases.

3. The specific Application of Efficient Load Testing in Infrastructure
3.1. Automatic Scalability Test

In efficient load testing, automatic scalability testing is an important step in verifying
whether the system can dynamically expand or contract resources as needed under load
fluctuations. By constructing various load scenarios and monitoring the automatic scaling
response of the system, its ability to cope with high concurrency and sudden loads can be
evaluated [3].

Assuming that the load of the system at time t is L(t), the resource capacity of the
system is C(t), and C(t) automatically adjusts with changes in load. The load threshold
and scaling rules can be achieved by assuming that the system has set a load threshold
Lmax and Lmin. When the system load L(t) exceeds Lmax, the automatic scaling mecha-
nism will trigger resource expansion. When the load drops to Lmin, the automatic con-
traction mechanism will be activated. The scaling operation of the system can be repre-
sented by the following formula:

C(t) = �
C(t − 1) + ∆C，ifL(t) > Lmax
C(t − 1) − ∆C，ifL(t) < Lmin
C(t − 1)， otherwise

 (1)

Among them, ∆C represents the amount of resource change during each scaling. The
response time R(t) of the system will be affected by the current load L(t) and resource
capacity C(t). The relationship between load and response time can be obtained:

R(t) = f�L(t),C(t)�
C(t)

 (2)
Among them, f�L(t), C(t)� is the time function required for the system to process the

load L(t). The resource utilization rate U(t) of the system is defined as the proportion of
current resource usage:

U(t) = L(t)
C(t)

 (3)
When the load L(t) exceeds the resource C(t), the system's resource utilization rate

U(t) will exceed 1, indicating system overload and the need for expansion. By simulating
different load working conditions, calculating the above formula, and analyzing the effec-
tiveness of scaling strategies, it can be verified whether the system can allocate resources
appropriately according to actual needs to achieve efficient load management under var-
ious load conditions [4].

3.2. High Concurrency Load Simulation
Conducting high concurrency load simulation experiments is crucial for evaluating

the operational efficiency, stability, and reliability of a system under immense access pres-
sure. In such experimental processes, the system must respond to synchronous actions
from numerous users or requests, and then quantitatively analyze key performance indi-
cators such as response time, throughput, and resource utilization under high concur-
rency conditions [5].

Assuming the number of concurrent requests processed by the system at time t is
N(t), these requests come from different users or applications. The inflow of requests can
be viewed as a stochastic process, and a Poisson process can be used to model the pattern
of request arrival. Assuming the arrival rate of requests is λ, the average number of re-
quests received per unit time N(t) follows a Poisson distribution:

P(N(t) = n) = (λt)n℮−λt

n!
 (4)

Among them, n represents the number of requests that arrive within the time t, and
λ is the average request arrival rate per unit time. And the throughput T(t) of the system

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/82kxzb25

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 71 https://doi.org/10.71222/82kxzb25

is the number of requests processed by the system per unit time. The throughput is di-
rectly related to the concurrency capability of the system. When the system load reaches
a bottleneck, the throughput will reach its maximum value, which is called the "peak
throughput" of the system. Assuming the maximum throughput of the system is Tmax,
the throughput of the system under load N(t) can be approximated by the following for-
mula:

T(t) = min(λt, Tmax) (5)
Among them, T(t) increases with the increase of concurrent requests, but when the

maximum throughput is reached, the system's throughput no longer increases. The re-
sponse time R(t) of the system refers to the time required for the system to process re-
quests. The response time usually increases with the increase of concurrent requests, es-
pecially under high concurrent loads. Given that the response time is related to the current
load and system resources, it can be represented by the following model:

R(t) = C(t)+αN(t)
T(t)

 (6)
Among them, C(t) is the basic response time of the system (the response time when

not affected by load), α is the coefficient representing the impact of system load on re-
sponse time, N(t) is the current number of concurrent requests, and T(t) is the system
throughput. By simulating different concurrent load scenarios and applying the above
mathematical formulas, the performance of the system under high concurrent loads can
be comprehensively evaluated, potential bottleneck problems can be identified, and sys-
tem optimization design can be guided to improve its performance in actual production
environments.

3.3. Virtual Machine Load Test
The virtual machine load test aims to evaluate the performance, resource allocation,

and scalability of virtual machines (VM) under different load conditions in a virtualized
environment. By simulating different types of workloads, we can comprehensively un-
derstand the response and efficiency of virtual machines in processing computing tasks,
storage operations, network traffic, and other aspects, thereby optimizing the resource
scheduling and management of virtualization platforms.

In a virtualization environment, the resources of each virtual machine (such as CPU,
memory, and disk space) are allocated from the resource pool of the physical server. As-
suming that the total resources of the physical host are 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and the resource require-
ments of the virtual machine are 𝑅𝑅𝑖𝑖. In order to ensure system stability, the resource allo-
cation 𝑅𝑅𝑖𝑖 of virtual machines should meet the following requirements:

∑ 𝑅𝑅𝑖𝑖 ≤ 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛
𝑖𝑖=1 (7)

Among them, 𝑛𝑛 is the number of virtual machines. The CPU, memory, storage, and
network bandwidth resources of each virtual machine should be dynamically allocated
according to its load requirements. When assuming that the CPU usage of a virtual ma-
chine is 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡), under load conditions, the CPU usage varies with the workload of the
virtual machine. If the load model follows a negative exponential distribution, the CPU
usage of the virtual machine can be expressed as:

𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = 1 −℮−λt (8)
Among them, λ is the arrival rate of the load, and t is the time. As the workload

increases over time, the CPU usage of the virtual machine gradually increases until it ap-
proaches its maximum capacity. The relationship between virtual machine response time
and throughput, under high load, the response time R(t) of virtual machines will in-
crease with the increase of system load. Assuming the throughput of the system is Tvm(t),
the response time can be described by the following formula:

R(t) = f(L(t),Rtotal)
Tvm(t)

 (9)
Among them, f(L(t), Rtotal)is a function of load and total resources, representing the

impact of load on response time, while Tvm(t) is the throughput of the virtual machine,

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/82kxzb25

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 72 https://doi.org/10.71222/82kxzb25

affected by the current load L(t). By mathematically modeling resource allocation, CPU
usage, memory utilization, I/O performance, and network bandwidth in virtual machine
load testing, we can better understand the performance of virtual machines in high load
environments, and provide a basis for optimizing virtualization platforms and load bal-
ancing strategies.

4. Measures to Ensure Efficient Load Testing in Infrastructure
4.1. Utilize Automation and Intelligent Tools

Automation and intelligent tools are key technologies for improving efficiency and
accuracy in load testing. Automated tools greatly reduce the pressure of manual testing
and minimize the possibility of operational errors by simulating a large number of con-
current requests, ensuring the consistency and credibility of test results. These tools play
an indispensable role in the load testing process, capable of simulating various business
scenarios and load patterns, thereby providing accurate performance indicators for sys-
tem evaluation.

Intelligent tools combine machine learning and artificial intelligence technologies,
and can autonomously optimize load testing solutions based on real-time data feedback.
For example, intelligent tools can predict potential performance bottlenecks in the system
by analyzing historical data, and then allocate load reasonably, adjusting the concurrency
level and request method of testing in real time. These tools can not only identify perfor-
mance barriers in the system, but also provide optimization suggestions based on test re-
sults, significantly enhancing the system's performance. For example, common automated
load testing tools such as JMeter and Gatling can simulate scenarios of concurrent user
requests and collect detailed performance metrics. Additionally, intelligent tools such as
Test.ai can use the data generated during the testing process to automatically adjust the
load strategy, helping testers reveal potential risk points in the system.

As shown in Table 1, the integration of automation and intelligent tools not only sig-
nificantly improves the precision of load testing, but also makes the process of identifying
and resolving system performance bottlenecks more efficient.

Table 1. Advantages and Characteristics of Automation and Intelligent Tool Functions.

Tool type Major function Advantage Feature Description

Automated
testing tools

Simulate concurrent user
requests, generate

performance reports, and
support scenario simulation

Reduce manual
intervention, improve
testing efficiency, and
generate standardized

reports

High concurrency
simulation, supporting

distributed testing,
real-time monitoring
of performance data

Intelligent
testing tool

Automatically optimize
testing strategies, predict
system bottlenecks, and
adjust load generation

Based on historical
data and real-time

feedback, dynamically
adjust testing strategies

to accurately predict
bottlenecks

AI driven load
optimization,

intelligent monitoring,
and real-time feedback

Performance
monitoring

tool

Real time monitoring of
system, detection of

resource consumption, and
generation of performance

data reports

Provide real-time data
support to help

identify potential
performance
bottlenecks

Display performance
data in chart format,

supporting
monitoring in big data

environments

4.2. Through Elastic Resource Management and Intelligent Scheduling
Elastic resource management and intelligent scheduling are key means to ensure that

the system can cope with high concurrency loads during load testing. Elastic resource

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/82kxzb25

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 73 https://doi.org/10.71222/82kxzb25

management can automatically adjust computing, storage, and network resources accord-
ing to actual workload changes, expanding resources under high load conditions and re-
claiming them when the load decreases to avoid waste. This flexible resource allocation
not only helps to continuously optimize system performance, but also helps to reduce
operational economic costs.

Intelligent scheduling optimizes the use of resources through reasonable algorithms
and strategies, ensuring that various resources are allocated appropriately according to
their importance and actual load conditions. For containerization and virtualization envi-
ronments, platforms such as Kubernetes provide automated resource scheduling capabil-
ities that can automatically start new container instances when system load increases to
ensure service persistence and reliability. For example, AWS Auto Scaling and Kubernetes
can automatically expand and reduce computing resources based on real-time changes in
load, helping maintain service stability under varying load pressures. In some complex
business scenarios, intelligent scheduling systems have the ability to detect fluctuations
in resource demand and plan resource adjustments in advance, thereby preventing per-
formance degradation caused by sudden load increases.

As shown in Table 2, through elastic resource management and intelligent schedul-
ing, the system can flexibly adjust resource configuration according to load fluctuations,
ensuring stability and efficiency in high load environments.

Table 2. Strategy Analysis of Elastic Resource Management and Intelligent Scheduling.

Strategy
type

Major function Advantage Characteristic description

Elastic
Resource

Management

Automatically adjust
computing, storage,

and network resources
based on load

Dynamically allocate
resources to avoid
resource waste and

improve performance

Automatically scaling based
on peak load to ensure

efficient system operation

Intelligent
dispatching

Allocate resources
based on task priority

and load to avoid
resource contention

Optimize resource
allocation, reduce
bottlenecks, and

improve resource
utilization efficiency

Automatically schedule
containers based on load

conditions, supporting load
balancing between

containers and virtual
machines

Resource
monitoring
and early
warning

Real time monitoring
of resource usage,

prediction of future
resource demands,

and allocation

Provide load change
prediction, automate
resource adjustment,

and improve
responsiveness

Predict future load changes,
provide system resource

allocation suggestions, and
avoid bottlenecks

4.3. Adopting Layered and Continuous Testing
Layered and continuous testing is a method of conducting load testing on different

levels of a system, such as databases, applications, networks, in sequence. This strategy
can help testers analyze and identify performance bottlenecks from various levels, ensur-
ing that each module can operate normally under different load conditions. Through lay-
ered testing, developers can accurately identify and eliminate specific performance barri-
ers in the system, avoiding unnecessary time and resource consumption in global testing.

Continuous testing integrates load testing into the CI/CD process, allowing auto-
matic validation of load performance after each system change. This method ensures that
every code submission is accompanied by thorough load testing, in order to promptly
detect any performance issues that may arise after the system update. Combining layering
and continuous testing can ensure that all levels and overall architecture of the system can

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/82kxzb25

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 74 https://doi.org/10.71222/82kxzb25

operate smoothly under load pressure. For example, in a typical layered testing, perfor-
mance testing is first conducted on the application layer to verify its response time and
throughput under high concurrency requests, and then independent testing is conducted
on the database layer to analyze its performance when handling a large number of con-
current queries. Continuous testing is automatically conducted after each update, ensur-
ing consistency and reliability of system performance through automated processes.

As shown in Table 3, through layering and continuous testing, the system is able to
fully identify potential hazards during load testing and maintain stable performance
throughout continuous development iterations.

Table 3. Advantages and Implementation Details of Layered and Continuous Testing.

Strategy
type

Major function Advantage Characteristic description

Layered
testing

Conduct
independent load

testing for different
levels and analyze

performance
bottlenecks

Accurately locate the
bottleneck of each

module, optimize layer by
layer, and improve the

accuracy of testing

Conduct independent
performance analysis at the

system level to improve
optimization efficiency

Continuous
load testing

Integrate load
testing into the

CI/CD process for
automated testing

Ensure that system
performance does not

degrade after each
update, and quickly

identify and fix
performance issues

Automatically trigger testing
to ensure stable system load
capacity after code changes

Performance
analysis

tools

Collect
performance data

and conduct
detailed analysis to
identify potential

bottlenecks

Provide performance data
to assist the development

team in analyzing and
optimizing system

performance

Provide system performance
reports based on data

analysis to help identify
potential issues

5. Conclusion
In infrastructure load testing, adopting efficient load testing strategies is the key to

ensuring system stability and high performance. The application of automation and intel-
ligent tools can significantly improve the efficiency and accuracy of load testing, reduce
human intervention, and quickly identify system performance bottlenecks. The combina-
tion of elastic resource management and intelligent scheduling strategies enables the sys-
tem to adapt to various workload conditions, achieve maximum resource utilization, and
avoid waste. Layered and continuous testing ensure stable operation of each level of the
system under different loads through refined analysis and automated integration. By uti-
lizing efficient load testing strategies, organizations can ensure the sustainable develop-
ment and stable operation of their systems.

References
1. T. Fan, W. Guo, Z. Zhang, and Z. Cui, “A many-objective optimization based intelligent algorithm for virtual machine migration

in mobile edge computing,” Concurrency Comput.: Pract. Exp., vol. 35, no. 23, p. e7770, 2023, doi: 10.1002/cpe.7770.
2. A. R. Hummaida, N. W. Paton, and R. Sakellariou, “A hierarchical decentralized architecture to enable adaptive scalable virtual

machine migration,” Concurrency Comput.: Pract. Exp., vol. 35, no. 2, p. e7487, 2023, doi: 10.1002/cpe.7487.
3. D. A. Zaitsev, T. R. Shmeleva, Q. Zhang, and H. Zhao, “Virtual machine and integrated developer environment for Sleptsov net

computing,” Parallel Process. Lett., vol. 33, no. 3, p. 2350006, 2023, doi: 10.1142/S0129626423500068.

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/82kxzb25
https://doi.org/10.1002/cpe.7770
https://doi.org/10.1002/cpe.7487
https://doi.org/10.1142/S0129626423500068

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 75 https://doi.org/10.71222/82kxzb25

4. E. B. Dano, “Systems engineering integration and test challenges due to security measures in a cloud-based system,” INCOSE
Int. Symp., vol. 32, no. 1, pp. 224–232, Jul. 2022, doi: 10.1002/iis2.12927.

5. A. Hassannezhad Najjari and A. A. Pourhaji Kazem, “A systematic overview of live virtual machine migration methods,” Con-
currency Comput.: Pract. Exp., vol. 34, no. 17, p. e6915, 2022, doi: 10.1002/cpe.6915.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.gbspress.com/index.php/JCSSR
https://doi.org/10.71222/82kxzb25
https://doi.org/10.1002/iis2.12927
https://doi.org/10.1002/cpe.6915

	1. Introduction
	2. Definition and Principle of Load Testing
	3. The specific Application of Efficient Load Testing in Infrastructure
	3.1. Automatic Scalability Test
	3.2. High Concurrency Load Simulation
	3.3. Virtual Machine Load Test

	4. Measures to Ensure Efficient Load Testing in Infrastructure
	4.1. Utilize Automation and Intelligent Tools
	4.2. Through Elastic Resource Management and Intelligent Scheduling
	4.3. Adopting Layered and Continuous Testing

	5. Conclusion
	References

