

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 4 (2025) 51 https://doi.org/10.71222/ppr9bp05

Article

Optimization of Vulnerability Detection and Repair Strategies
Based on Static Application Security Testing
Shuang Yuan 1,*

1 Technology Risk Management, American Airlines, Fort Worth, Texas, 76155, United States
* Correspondence: Shuang Yuan, Technology Risk Management, American Airlines, Fort Worth, Texas,

76155, United States

Abstract: Static Application Security Testing (SAST), as an important vulnerability detection and
repair technology, plays a key role in ensuring software security. However, existing static applica-
tion security testing still faces challenges such as delays in vulnerability detection and inefficiencies
in the repair process. This paper starts with the analysis of the current situation, discusses the prob-
lem of the delay of vulnerability detection and the inefficiency of repair, and puts forward the spe-
cific method of optimizing the vulnerability detection strategy and repair strategy of static applica-
tion security testing. By introducing multi-dimensional analysis to improve detection accuracy, op-
timizing static analysis algorithm to improve detection efficiency, and applying automated and in-
telligent repair strategies, the purpose is to improve the efficiency and effect of vulnerability detec-
tion and repair. It is hoped that the implementation of optimization strategy can provide a more
efficient solution for security protection in software development.

Keywords: static application security testing; vulnerability detection; bug repair; optimization strat-
egy; automate

1. Introduction
In today's information society, software security issues are becoming increasingly

important. Vulnerabilities in application programs often become entry points for attackers,
bringing huge risks to enterprises and users. Static Application security testing (SAST), as
an important means to detect and repair code vulnerabilities, has been widely used in the
security of software development. By scanning source code, bytecode, or binary code,
static analysis can detect potential security vulnerabilities early in development and avoid
costly fixes later. However, static analysis tools still face problems such as delayed detec-
tion and low repair efficiency in practical applications, which affect the timeliness and
quality of vulnerability repair. To address these challenges, this paper proposes a series
of optimization strategies to improve the effectiveness and efficiency of static application
security testing in vulnerability detection and repair.

2. Current Situation of Static Application Security Vulnerability Detection and Repair
2.1. The Lag of Vulnerability Detection

The lag of static application security testing (SAST) in vulnerability detection is
mainly reflected in the timeliness and accuracy of analysis results. As the software devel-
opment process accelerates and the source code is constantly updated, static analysis tools
often cannot keep up with the changes, resulting in delayed detection results. This lag is
mainly due to the scanning mechanism of static analysis tools [1]. The analysis process is
complex and time-consuming, especially when dealing with large code bases, causing
scan cycles to grow significantly. As a result, developers often face the problem that the

Received: 05 May 2025

Revised: 10 May 2025

Accepted: 29 May 2025

Published: 30 May 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/ppr9bp05

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 52 https://doi.org/10.71222/ppr9bp05

detection results are inconsistent with the current code status when conducting vulnera-
bility detection. In addition, static analysis tools are mainly based on the way of matching
rules and patterns in vulnerability identification. This method is usually not flexible
enough in the face of changing and complex program architecture and new vulnerability
types, which may cause the omission or misdetection of vulnerabilities. Tools' detection
rules are often based on the characteristics of known vulnerabilities, and static analysis is
less adaptable to unknown or emerging vulnerabilities. The detection of vulnerabilities
often lags behind their introduction, causing developers to be unable to identify and patch
new security problems in a timely manner. In addition, the disconnect between static anal-
ysis tools and the development process is also a cause of lag problems. Existing static
analysis tools are not effectively integrated with the development environment, resulting
in analysis results not being fed back to developers in real time, which delays the speed
of vulnerability detection [2].

2.2. The Inefficiency of Bug Fixes
In static application security testing (SAST), the inefficiency of vulnerability repair is

mainly due to excessive manual intervention in the repair process, poor adaptability of
the repair scheme, and insufficient follow-up verification. At present, the fix recommen-
dations provided by most static analysis tools are usually static and basic, and do not
implement intelligent automatic repair functions, resulting in the need for manual inter-
vention in bug repair. While some tools provide automated repair capabilities, their repair
recommendations are often not targeted and lack intelligent reasoning for complex vul-
nerability scenarios, resulting in a significant amount of manual adjustment. The manual
repair mode not only prolongs the repair cycle but also easily produces new errors or
omissions in the repair process, affecting the repair effect. The existing repair strategies
lack sufficient flexibility and scalability. With the expansion of project scale or changes in
the development environment, the repair schemes of static analysis tools often cannot
quickly adapt to new requirements. This failure to respond timely to changing develop-
ment needs leads to inefficiency in the repair process. Traditional restoration schemes are
usually fixed and singular. They lack variety and adaptability, and cannot be flexibly ad-
justed according to actual situations, limiting their application in complex engineering
projects. At the same time, the regression testing and verification after vulnerability repair
are inefficient. Code that has been fixed often needs to undergo extensive regression test-
ing and validation to ensure that the fix does not introduce new bugs. However, regres-
sion testing often lacks automation and efficiency [3]. The high cost and inefficiency of
manual testing make the verification process extremely complex and time-consuming. Es-
pecially in large-scale projects, regression testing is often the most time-consuming part
of the repair process. These problems together lead to the inefficiency of the vulnerability
repair process, which greatly affects the timeliness and accuracy of the repair work.

3. Optimize Vulnerability Detection Strategies Based on Static Application Security
Testing
3.1. Introduce Multidimensional Analysis to Reduce False Positives and False Positives

False positives and false negatives in static application security testing (SAST) often
stem from single rule matching and lack of context analysis, which limits the accuracy of
vulnerability detection. By combining data flow analysis, control flow analysis, semantic
analysis, and other methods, the introduction of a multi-dimensional analysis strategy can
identify potential vulnerabilities in a comprehensive manner and reduce false positives
and false negatives. Through data flow analysis, we can track the flow of data within the
program, grasp the whole process of variables from creation to destruction, and then find
the risk points of data leakage or illegal operations. Control flow analysis focuses on re-
viewing the process execution path and identifying possible underreporting under com-
plex conditions [4]. From the perspective of business logic and functional requirements,

https://doi.org/10.71222/ppr9bp05

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 53 https://doi.org/10.71222/ppr9bp05

semantic analysis evaluates whether the actual behavior of the program is reasonable and
identifies potential security risks. In addition, the analysis combined with the context and
historical data of the program helps to improve the accuracy of the detection. Through
cross-validation of multi-dimensional data, false positives that may be caused by a single
analysis method can be eliminated, and the efficiency and effect of vulnerability detection
can be improved. In the analysis process, the probability of vulnerability detection
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐. And the probability of underreporting 𝑃𝑃𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚. They are:

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

,𝑃𝑃𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹

 (1)

𝑇𝑇𝑃𝑃 represent true cases (real vulnerabilities detected), 𝐹𝐹𝑃𝑃 false positive, 𝐹𝐹𝐹𝐹 false
counter example, 𝑇𝑇𝐹𝐹 true counterexample. In addition, by introducing machine learning
algorithms, the model can be trained to recognize common false positive patterns for dy-
namic adjustment. Machine learning not only continuously refines the rules during scan-
ning, but also automatically adjusts the classifications and priorities based on the context
of the vulnerability. For example, the algorithm can flexibly adjust the repair scheme ac-
cording to the influence range of the vulnerability, the difficulty of repair and other factors,
and effectively improve the accuracy and efficiency of detection. The multi-dimensional
analysis strategy can effectively reduce false positives and false negatives in static analysis,
thereby improving the accuracy of vulnerability detection, reducing unnecessary manual
intervention, and improving the overall development efficiency and security.

3.2. Improve Collaboration between Static Analysis and the Development Tool Chain
Static analysis tools alone may not meet the needs of rapid development and contin-

uous integration, so working in concert with the development tool chain is critical. Static
analysis is tightly integrated with integrated development environments (ides), version
control systems, and continuous integration (CI) systems, enabling real-time feedback and
automated vulnerability detection. Integrating static analysis tools into the IDE makes it
easier for developers to receive feedback on security vulnerabilities at the coding stage.
This IDE integration enables developers to identify and fix potential security risks during
the code writing and debugging phase, reducing the cost of later fixes. Combining static
analysis with a version control system can automatically trigger vulnerability scanning
when code is committed or merged to analyze new and modified code. The combination
with CI system further improves the degree of automation of vulnerability detection.
Whenever the code is updated, the CI system automatically runs a static analysis tool,
scans the code base, and generates a report that gives feedback to the developer to fix it.
Automated real-time feedback greatly improves the efficiency of vulnerability detection
and reduces the time required to fix vulnerabilities during the development phase. As the
DevOps culture advances, automated toolchains and continuous integration processes are
being optimized to make vulnerability detection and remediation more efficient. This col-
laborative working mechanism can also play an advantage in large-scale team develop-
ment, automation tools can centralize vulnerability information into a security issue track-
ing system, facilitate collaboration and problem tracking among team members, and con-
stantly fix vulnerabilities through automated testing to maintain software security and
stability [5].

3.3. Optimize Static Analysis Algorithm to Improve Scanning Efficiency
The optimization of static analysis algorithm is the key to improve the efficiency of

vulnerability detection. Traditional static analysis methods are usually based on recursive
search and exhaustive algorithms, which may lead to slow detection process and huge
resource consumption as the project scale expands. In order to improve the scanning effi-
ciency, it is necessary to optimize the algorithm design and architecture. Using incremen-
tal analysis technology can greatly improve the efficiency of scanning. This technique per-
forms a local scan of the changed code by comparing the differences between the current

https://doi.org/10.71222/ppr9bp05

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 54 https://doi.org/10.71222/ppr9bp05

version and the previous version, avoiding the need to scan the entire project. This ap-
proach reduces unnecessary calculations, improves efficiency, and ensures the timeliness
of vulnerability detection. With parallel processing and distributed analysis architectures,
the speed of static analysis is significantly increased. By using distributed computing
frameworks such as Apache Hadoop and Spark, analysis tasks can be distributed to mul-
tiple computing nodes, and multi-core and multi-machine resources can be used to pro-
cess multiple analysis tasks in parallel, thus shortening the overall analysis time, which is
especially suitable for processing large-scale complex projects. The total time of parallel
computation can be expressed by the following formula:

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝 = 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑐𝑐

 (2)
𝑇𝑇𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑝𝑝 is the total time required for single-core processing, 𝑛𝑛 indicates the number of

nodes in parallel processing. The time complexity of optimization algorithm is also an
important means to improve efficiency. By using a more efficient path analysis algorithm
instead of the traditional algorithm, it can ensure the comprehensiveness of detection, re-
duce the computational complexity and reduce unnecessary calculations, thereby increas-
ing scanning speed, accelerating vulnerability detection and remediation, and signifi-
cantly enhancing development and maintenance efficiency.

4. Optimize Vulnerability Remediation Strategies Based on Static Application Secu-
rity Testing
4.1. Improve the Automation and Intelligence of Vulnerability Repair

With the increasing complexity of software development, the automation and intel-
ligence of vulnerability repair are particularly important. Automated repair can not only
significantly improve repair efficiency, but also reduce the workload of developers. In
traditional manual fixes, developers often rely on the results of static analysis to locate
vulnerabilities and manually write fix code, which is not only inefficient, but also prone
to errors. In contrast, automated repair tools can automatically provide repair suggestions
or even implement repair directly through predefined repair rules and policies. For exam-
ple, in the face of SQL injection vulnerabilities, such tools can automatically modify code
to secure parameterized queries according to rules, avoiding manual omissions. Intelli-
gent repair further improves the accuracy and intelligence level of vulnerability repair. By
introducing a machine learning model, we analyze historical data to determine the most
effective fixes and automatically generate fixes based on the specific circumstances of the
vulnerability. Through numerous repair cases, these models can accurately identify and
infer the most appropriate repair methods, reducing the need for manual intervention.
When dealing with complex vulnerabilities, smart fixes provide developers with more
precise solutions. Smart repair can also flexibly adjust repair strategies based on the con-
text of the vulnerability, reduce the occurrence of errors, and improve overall repair qual-
ity. The combination of automation and intelligence makes the vulnerability repair pro-
cess more efficient and accurate, enhances the security of the software, and ensures the
quality and safety of the code during the development process. With the continuous de-
velopment of artificial intelligence technology, intelligent repair can not only effectively
detect vulnerabilities, but also predict possible vulnerabilities through big data analysis
and automatically implement protective measures.

4.2. Improve the Scalability and Flexibility of the Repair Strategy
The scalability and flexibility of a bug fix strategy is a key factor in dealing with an

increasingly complex and changing development environment. With the rise of new de-
velopment methods such as microservice architecture and containerization technology,
vulnerability repair is no longer the repair of a single code module, and more and more
vulnerability repair needs to consider the impact of cross-module and cross-platform.
Therefore, the scalability of the remediation strategy is particularly important, and it must
be compatible with multiple development environments, architectures, and technology

https://doi.org/10.71222/ppr9bp05

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 55 https://doi.org/10.71222/ppr9bp05

stacks to ensure that the remediation measures can be effectively implemented in a variety
of different environments. The extensibility of this strategy also requires that it work
smoothly across a variety of development frameworks and toolchains. For large scale or
microservices-based systems, the fix strategy should be able to coordinate effectively
across multiple services, overcoming the limitations of a single codebase or technology
stack. In addition, the remediation strategy should not only be modular, but should also
be able to match multiple development tools (such as integrated development environ-
ments, continuous integration and continuous deployment toolchains, etc.) and various
environments (such as cloud computing environments, containerized environments, etc.).
In terms of flexibility, the fix strategy should automatically match the appropriate fix
based on the type of vulnerability. For example, for some serious vulnerabilities, a system-
level architectural tweak may be required, while for other, more minor vulnerabilities, a
simple code fix may be sufficient. Therefore, in the solution to the vulnerability, the repair
method should be flexibly adjusted according to the complexity and repair cost of the
vulnerability, so as to avoid over-repair or missing important fixes. At the same time, the
repair strategy should also have a certain personalization function, so developers can ad-
just repair priorities and workflows according to specific project requirements and secu-
rity policies. In addition, the scalability of the fix strategy needs to take into account dif-
ferent team and business needs, allowing for rapid adaptation and updates. Especially in
the case of the implementation of microservices architecture and containerization technol-
ogy, the repair strategy must be flexible to respond to the requirements of different ver-
sions and different services, to ensure that the vulnerability repair can fully cover each
component and platform, and to ensure the efficiency and comprehensiveness of the re-
pair measures. By improving the scalability and flexibility of the repair strategy, we can
ensure that a variety of complex vulnerability repair needs are addressed in different de-
velopment environments, thereby improving overall security and development efficiency.

4.3. Strengthen Regression Testing and Verification after Vulnerability Repair
Regression testing and verification after vulnerability repair are critical to ensuring

the effectiveness of fixes and preventing the introduction of new vulnerabilities. This test
verifies not only that the vulnerability has been fixed, but also whether new issues have
emerged during the repair. In order to guarantee the quality of repaired code, implement
effective regression testing strategy. The core of regression testing is to fully scan the re-
paired application using an automated testing framework to ensure comprehensive fixes
and validate that system functionality remains intact. Maximizing test coverage is a core
objective of any regression testing strategy. The quality of regression tests can be ex-
pressed by the following formula:

Qualitytest =
𝐶𝐶after−𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏

𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏
× 100% (3)

The test coverage before vulnerability repair is 𝐶𝐶𝑏𝑏𝑑𝑑𝑏𝑏𝑐𝑐𝑝𝑝𝑑𝑑 , the test coverage after repair
is 𝐶𝐶𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝 , this formula shows that the quality of regression testing depends on the im-
proved test coverage after repair. High-coverage regression testing is an effective way to
catch potential new vulnerabilities, especially those that may have been overlooked or
introduced during the fix process. In addition to regular functional regression testing, per-
formance regression testing is also very important. In the process of vulnerability repair,
especially when the core code is modified, the performance of the system may be affected.
Therefore, the performance regression test can ensure that the repaired system still runs
stably under high concurrency scenarios through stress testing, load testing and other
methods. By enhancing regression test coverage and incorporating functional, perfor-
mance, and security tests, the quality of fixes can be ensured while minimizing the risk of
new issues, thereby improving security and stability throughout the software develop-
ment lifecycle.

https://doi.org/10.71222/ppr9bp05

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 56 https://doi.org/10.71222/ppr9bp05

5. Conclusion
With the diversification of network security threats, Static application security testing

(SAST) has become an indispensable tool for ensuring software security. However, cur-
rent static analysis tools still face the problem of lag and inefficiency in the process of
vulnerability detection and repair. By introducing multi-dimensional analysis, optimizing
static analysis algorithms, and improving automated repair capabilities, the accuracy and
efficiency of vulnerability detection can be significantly improved, and the repair process
can be optimized. In the future, with the continuous development of artificial intelligence
and automation technology, the vulnerability detection and repair strategy of static appli-
cation security testing will be more intelligent and refined, providing a more efficient and
reliable solution for security protection in the software development process. Further re-
search and practice will also drive technological advances in this area to meet the growing
security needs.

References
1. K. Gong, X. Song, N. Wang, C. Wang, and H. Zhu, “SCGformer: Smart contract vulnerability detection based on control flow

graph and transformer,” IET Blockchain, vol. 3, no. 4, pp. 213–221, 2023, doi: 10.1049/blc2.12046.
2. L. Zhang, Y. Li, R. Guo, G. Wang, J. Qiu, S. Su, et al., “A novel smart contract reentrancy vulnerability detection model based

on BiGAS,” J. Signal Process. Syst., vol. 96, no. 3, pp. 215–237, 2024, doi: 10.1007/s11265-023-01859-7.
3. B. Xia, W. Liu, Q. He, F. Liu, J. Pang, R. Yang, et al., “Binary vulnerability similarity detection based on function parameter

dependency,” Int. J. Semant. Web Inf. Syst., vol. 19, no. 1, pp. 1–16, 2023, doi: 10.4018/IJSWIS.322392.
4. S. Gephard, “Transplantation of prespawn adult Sea Lampreys as an important restoration strategy,” N. Am. J. Fish. Manage.,

vol. 43, no. 6, pp. 1584–1595, 2023, doi: 10.1002/nafm.10941.
5. B. Korkut, E. T. Bayraktar, D. Tağtekin, H. Çolak, and M. Özcan, “Cracked tooth syndrome and strategies for restoring,” Curr.

Oral Health Rep., vol. 10, no. 4, pp. 212–222, 2023, doi: 10.1007/s40496-023-00352-1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/ppr9bp05
http://doi.org/10.1049/blc2.12046
http://doi.org/10.1007/s11265-023-01859-7
http://doi.org/10.4018/IJSWIS.322392
http://doi.org/10.1002/nafm.10941
http://doi.org/10.1007/s40496-023-00352-1

	1. Introduction
	2. Current Situation of Static Application Security Vulnerability Detection and Repair
	2.1. The Lag of Vulnerability Detection
	2.2. The Inefficiency of Bug Fixes

	3. Optimize Vulnerability Detection Strategies Based on Static Application Security Testing
	3.1. Introduce Multidimensional Analysis to Reduce False Positives and False Positives
	3.2. Improve Collaboration between Static Analysis and the Development Tool Chain
	3.3. Optimize Static Analysis Algorithm to Improve Scanning Efficiency

	4. Optimize Vulnerability Remediation Strategies Based on Static Application Security Testing
	4.1. Improve the Automation and Intelligence of Vulnerability Repair
	4.2. Improve the Scalability and Flexibility of the Repair Strategy
	4.3. Strengthen Regression Testing and Verification after Vulnerability Repair

	5. Conclusion
	References

