

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 4 (2025) 38 https://doi.org/10.71222/3rm8gb33

Article

Distributed Data Processing and Real-Time Query Optimiza-
tion in Microservice Architecture
Jin Li 1,*

1 Morgan Stanley, 65 Irby Ave NW, Atlanta, GA, 30305, United States
* Correspondence: Jin Li, Morgan Stanley, 65 Irby Ave NW, Atlanta, GA, 30305, United States

Abstract: Today, the rapid advancement of information technology, the Internet, and big data has
promoted the widespread application of microservice architecture in contemporary software engi-
neering, especially in distributed data processing and real-time query optimization, which shows
great potential for development. This article explores the optimization path of data distributed pro-
cessing and real-time queries under microservice architecture. A series of real-time query perfor-
mance optimization strategies have been proposed based on the characteristics of microservice ar-
chitecture, such as caching mechanism for query results, optimization of indexes, monitoring and
analysis of query performance, as well as the use of asynchronous processing and message queues.
By adopting appropriate technology and architecture design, microservice architecture improves
the operational performance and fast response to queries of distributed systems, meeting the con-
stantly evolving needs for efficient data processing.

Keywords: microservice architecture; distributed data processing; real time query optimization;
query cache; performance monitoring

1. Introduction
With the continuous advancement of cloud computing and intelligent technology,

distributed systems have become popular in many fields, especially in the areas of big
data processing and real-time query requirements, where the growth momentum is par-
ticularly evident. Microservice architecture occupies a core position in contemporary dis-
tributed system design due to its excellent scalability, mobility, and reliability. However,
the introduction of microservices has also brought new challenges in distributed data pro-
cessing and real-time query optimization. How to achieve high efficiency in data storage,
querying, and processing under microservice architecture has become a core issue in en-
suring efficient system operation. Researchers have explored various technologies for dis-
tributed data processing under microservice architecture and proposed optimization so-
lutions to enhance real-time query performance. This paper discusses the practical appli-
cation of distributed database technology, aiming to solve the problems of low query ef-
ficiency and data consistency in distributed scenarios.

2. Core Components of Microservice Architecture
The implementation of microservice architecture relies on a series of core compo-

nents and technologies, as shown in Figure 1. The registration and query of services are
the core components of this architecture. Service registration nodes (such as Eureka and
Consul) can complete real-time registration and search of services, ensuring dynamic up-
dates and correct guidance of communication between services. The API portal plays an
important role as a unified interface to handle front-end requests, perform tasks such as
routing allocation, load balancing, security verification, and traffic control, and simplify
the interaction process between the front-end and microservices. Tools such as Zuul and

Received: 02 May 2025

Revised: 08 May 2025

Accepted: 23 May 2025

Published: 27 May 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/3rm8gb33

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 39 https://doi.org/10.71222/3rm8gb33

Kong are typical representatives of API portals [1]. In the microservice system, configura-
tion management hubs such as Spring Cloud Config and Consul can be used to centrally
maintain configuration information for various microservices, making maintenance and
updates of configuration information more convenient. Message queue technologies such
as Kafka and RabbitMQ play a bridging role in asynchronous communication between
microservices, achieving decoupling between services. In addition, centralized manage-
ment of logs and system monitoring are also important components of microservice ar-
chitecture. By using log aggregation systems (such as ELK Stack) and monitoring systems
(such as Prometheus, Grafana), developers can track and troubleshoot service status in
real time, ensuring stable system operation and excellent performance.

Figure 1. Core Components of Microservice Management.

3. Distributed Data Processing Technology
3.1. Fundamentals of Distributed Data Processing

Distributed data processing refers to the technology of storing and processing data
in a decentralized manner across multiple physical or virtual nodes. Due to the emergence
of massive amounts of information, relying solely on a single processing unit is no longer
sufficient for data storage, processing, and analysis. Distributed processing has become a
critical coping strategy. This technology divides data into several parts to achieve storage
and parallel computing across multiple nodes, enhancing the speed of data processing
and system scalability [2].

In a distributed data management framework, information is subdivided into nu-
merous data units, which are evenly distributed across numerous servers. This layout can
reduce bottleneck issues in stored procedures and optimize the efficiency of storage re-
source utilization. The information units processed by each server maintain independence,
and they must cooperate with each other through network connections to ensure data
consistency and integrity. The distributed data management framework mainly consists
of three basic parts: data storage layer, data processing layer, and data transmission layer.
The data storage layer focuses on long-term storage of information, the data processing
layer is responsible for processing information, and the data transmission layer is respon-
sible for information transmission between servers. Hadoop, as a representative distrib-
uted data processing platform, relies on the MapReduce algorithm to achieve distributed
computing of massive data. Under this framework, data is subdivided into numerous
blocks and stored in HDFS. Processing tasks are dispersed across multiple nodes, each
performing Map and Reduce steps. During the execution process, nodes can call local data
blocks and interact with other nodes as necessary to improve data processing efficiency.
Thanks to its distributed structure, Hadoop has demonstrated outstanding performance
and stability in handling massive amounts of data [3].

https://doi.org/10.71222/3rm8gb33

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 40 https://doi.org/10.71222/3rm8gb33

3.2. Distributed Database Technology
Distributed database technology, as the cornerstone of distributed data processing,

is committed to dispersing the storage and management functions of data across numer-
ous physical servers, enhancing system availability, scalability, and fault recovery capa-
bilities. In contrast, traditional relational databases often suffer from performance issues
when dealing with large amounts of data due to their inherent structural and design con-
straints. This distributed database overcomes the performance limitations of monolithic
databases by splitting data into numerous fragments (i.e. shards) and distributing these
fragments across different servers.

In distributed database architecture, consistency, stability, and data persistence are
achieved through a series of distributed consistency algorithms. Typical algorithms such
as Paxos and Raft synchronize data between numerous replicas to address issues such as
server failures. Distributed databases also propose a distributed transaction processing
mechanism. Given that data is stored in various nodes, transaction processing needs to
span across different database entities, which requires distributed database systems to be
able to manage transaction consistency across nodes. Two stages commit protocol (2PC)
and three stage commit protocol (3PC) are two commonly used distributed transaction
processing protocols that ensure the coordination and consistency of all participating
nodes during transaction execution through a step-by-step verification mechanism [4,5].

For example, Google's Spanner database relies on advanced technologies such as dis-
tributed protocols and global time synchronization to provide a distributed storage solu-
tion with strict consistency on a global scale. This database utilizes a distributed transac-
tion control mechanism, Paxos algorithm, and TrueTime interface to synchronize the data
status of different regions, ensuring that even in complex network distribution situations,
the system can still demonstrate excellent reliability and fast data reading performance.
In mathematics, the performance of distributed databases is measured by query latency
and throughput. If 𝐿𝐿 is the average query latency, 𝑁𝑁 is the number of database nodes,
and 𝑇𝑇 is the throughput, then the overall query performance of the system can be ex-
pressed by the following formula:

𝐿𝐿 = 𝐶𝐶
𝑇𝑇⋅𝑁𝑁

 (1)

In formula (1), 𝐶𝐶 is a constant related to factors such as data distribution and net-
work transmission. This formula indicates that, with reasonable data allocation and opti-
mized query strategies, the system's query latency can decrease as the number of nodes
increases; however, excessive node expansion may introduce additional overhead that
impacts latency [6].

3.3. Distributed Data Processing Framework
Distributed data processing framework is one of the core technologies for processing

massive amounts of data and improving computational efficiency. This architecture
achieves parallel processing of tasks across multiple nodes by partitioning data into mul-
tiple parts and storing these parts dispersed across numerous nodes, accelerating data
processing speed and enhancing system scalability. Most of these architectures are based
on distributed file storage systems (such as HDFS) and distributed computing paradigms
(such as MapReduce, Spark), and are equipped with advanced task allocation and re-
source management capabilities. The core concept of distributed data processing architec-
ture is to distribute data to numerous computing nodes, with each node independently
processing a fragment of the data. Under these architectures, data processing typically
involves cutting the data into smaller fragments (known as sharding) and then utilizing
parallel computing paradigms to perform the processing. Each node communicates and
cooperates with each other through the Internet, and integrates the processing results.
Distributed architecture can effectively handle large amounts of static data and can also
handle real-time data streams, demonstrating its high flexibility and versatility [7].

https://doi.org/10.71222/3rm8gb33

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 41 https://doi.org/10.71222/3rm8gb33

Apache Flink represents an advanced architecture for distributed processing of large-
scale datasets, which excels in real-time data stream processing. Unlike conventional
batch processing systems such as Hadoop, Flink adopts the concept of stream processing,
enabling it to process and provide real-time feedback on real-time data streams. In the
Flink architecture, data is transmitted as independent events, and each processing node
independently processes the data stream it receives and maintains data synchronization
through traffic management mechanisms. Flink is known for its low latency and excellent
throughput, and has been widely used in industries such as finance and supply chain.
Especially on e-commerce platforms, Flink can analyze consumer behavior data and rec-
ommend products or adjust pricing strategies to businesses in real-time. Compared with
traditional batch processing systems, Flink can complete data processing tasks and output
analysis results in hundreds of milliseconds, improving the response speed and accuracy
of business decisions on e-commerce platforms.

4. Real Time Query Optimization under Microservice Architecture
4.1. Query Cache and Index Optimization

In microservice architecture, optimizing query performance is particularly crucial as
the amount of information expands and the frequency of service calls increases. Query
caching and index optimization are key means to improve database query efficiency, re-
ducing database burden and accelerating response speed.

By temporarily storing frequently accessed information in memory, query caching
can reduce duplicate queries to the database and lower access latency. In microservice
systems, this type of cache is typically deployed on distributed cache servers (such as Re-
dis, Memcached). Faced with frequent queries, the system can directly read data from the
cache to avoid querying the database every time. By building indexes on database col-
umns, data retrieval efficiency can be improved. Among the types of indexes, there are
single field indexes, multi field indexes, and full-text search indexes. Multi field indexing
is particularly effective for retrieval operations involving multiple conditions, as it can
integrate different fields into one index and reduce the data scope of database retrieval.
Under the microservice architecture, databases are usually deployed in various service
nodes, and proper index construction can enhance data retrieval efficiency across service
nodes and reduce response time [8].

Combining query caching with index optimization can further improve the efficiency
of data retrieval. Once the query cache can match the request, the data will be directly
read from the cache. When the cache does not match, index optimization is used to execute
the query. By appropriate caching and indexing settings, query response speed and re-
source utilization can be balanced. For example, on an e-commerce platform, when users
search for product information, the system first searches for popular product information
in the cache. If there is no relevant data in the cache, the system will use multi field indexes
to efficiently query product categories and prices. Set the query time as:

𝑇𝑇𝑇𝑇 = 𝑁𝑁𝑁𝑁
𝐶𝐶

+ 𝐼𝐼𝑇𝑇 (2)
In formula (2), 𝑇𝑇𝑇𝑇 represents the query time, 𝑁𝑁𝑁𝑁 is the amount of data to be scanned,

𝐶𝐶 is the cache hit rate, and 𝐼𝐼𝑇𝑇 is the index query time. Optimizing cache and indexing
can reduce query time and improve system performance.

4.2. Query Performance Monitoring and Analysis
In microservice systems, query performance is one of the key factors affecting system

response speed and user experience. With service decomposition and data distribution, a
query may need to cross numerous microservices and databases. Real-time monitoring
and in-depth analysis of query performance have become core to ensure system stability
and responsiveness. Monitoring and analyzing query performance helps developers iden-
tify system performance bottlenecks and provides decision-making basis for further opti-
mization of the system.

https://doi.org/10.71222/3rm8gb33

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 42 https://doi.org/10.71222/3rm8gb33

Monitoring query performance typically involves evaluating indicators from multi-
ple dimensions, such as query response time, database workload, cache efficiency, and
probability of query failure. These indicators enable developers to instantly grasp perfor-
mance barriers during query execution and quickly identify potential performance risks.
For example, if the query response time is too long, it may indicate that the database index
needs to be optimized or cache failure leads to frequent direct queries. If the database
pressure is too high, it may be due to overly dense database interactions between services,
which may require optimizing query logic or improving load balancing efficiency.

In order to achieve real-time monitoring of query efficiency, commonly adopted
methods include deep log analysis, distributed tracing techniques (such as Jaeger, Zipkin,
etc.), and performance monitoring systems (such as Prometheus, Grafana, etc.). This type
of tool can track the process of requests from beginning to end, meticulously record the
feedback time and processing path of each query, and generate intuitive query efficiency
analysis charts. With the help of these monitoring data, the R&D team has the ability to
identify core issues that affect query efficiency and take targeted measures to improve
them. In a certain e-commerce platform, the query performance monitoring Table 1 is
shown below, which displays the response time and database load of different query
types:

Table 1. Query Performance Monitoring Table.

Query type
Average response

time (ms)
Cache hit

rate(%) Database load(%) Error rate(%)

User Information Inquiry 120 95 30 0.5
Product search query 200 80 50 1.0
Order details inquiry 150 85 45 0.3

Payment information inquiry 250 70 60 1.5
By analyzing the data in Table 1, the development team can take measures such as

optimizing indexes, increasing cache, or performing query sharding to improve query ef-
ficiency. Through continuous query performance monitoring and data analysis, query op-
timization under microservice architecture can be iteratively improved, helping the sys-
tem achieve higher performance and better user experience.

4.3. Asynchronous Processing and Message Queuing
In microservice systems, the performance of real-time retrieval is often limited by the

constraints of database queries and synchronous service calls. Introducing asynchronous
processing and message queue mechanisms is a feasible strategy to improve efficiency in
order to accelerate system response time and enhance processing capabilities. This strat-
egy enables the system to delay time-consuming operations and immediately return re-
sponses to users upon receiving their requests. After asynchronous processing is com-
pleted, the system will inform the user of the result through callback functions or notifi-
cation mechanisms. This approach reduces the coupling between services and enhances
the scalability and flexibility of the system. Asynchronous processing can reduce response
latency when handling complex queries and large-scale data processing tasks. Message
queue technology (such as Kafka, RabbitMQ, etc.) is the mainstream means of implement-
ing asynchronous processing. In the application of microservice architecture, message
queues adopt a publish-subscribe model to achieve low coupling communication between
services. The tasks are transmitted to the corresponding consumer services in the form of
messages, which are processed asynchronously by the consumers, improving the scala-
bility and robustness of the entire system. On an e-commerce platform, whenever a con-
sumer requests a payment instruction, the payment process requires collaboration with
multiple microservices such as inventory control, order processing, and payment inter-
faces. With the help of message queue mechanism, the system is able to asynchronously

https://doi.org/10.71222/3rm8gb33

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 43 https://doi.org/10.71222/3rm8gb33

transmit payment instructions to relevant microservices without waiting for their re-
sponse directly. Once the payment transaction is completed, the relevant modules will
asynchronously refresh inventory data, update order status, and send notifications to
other services through a message queue. This design ensures that the processing delay of
a single microservice does not affect the progress of the entire consumer request, improv-
ing the system's processing capacity and response efficiency. The request processing time
of the system consists of synchronous processing time 𝑇𝑇 and asynchronous processing
time 𝑇𝑇𝑇𝑇, and the overall performance of the system can be expressed by the following
formula:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑁𝑁
𝐶𝐶

+ 𝑇𝑇𝑇𝑇 + 𝑁𝑁𝑁𝑁
𝐶𝐶𝑁𝑁

+ 𝑇𝑇𝑇𝑇 (3)
In formula (3), 𝑁𝑁 is the total number of requests, 𝐶𝐶 is the cache hit rate, 𝑇𝑇𝑇𝑇 is the

synchronous operation time, 𝑁𝑁𝑇𝑇 is the number of asynchronous tasks, 𝐶𝐶𝑇𝑇 is the pro-
cessing capacity of asynchronous tasks, and 𝑇𝑇𝑇𝑇 is the processing time of each asynchro-
nous task. By reasonably designing the configuration of asynchronous processing and
message queues, the delay caused by synchronous operations can be reduced, and the
overall response speed and processing capability of the system can be improved.

5. Conclusion
In the contemporary field of software engineering, microservice architecture, as a

critical design framework, has been widely promoted to various large-scale distributed
systems. It has become the preferred solution for enterprises to achieve the digital trans-
formation process with its high flexibility and convenient scalability. With the advance-
ment of cloud technology and big data, the distributed storage and processing capabilities
of data have been enhanced, providing strong support for processing large-scale data in
microservice architectures. Unlike traditional single architecture, in microservice architec-
ture, each service unit is often equipped with its own data storage method. Therefore,
when designing a data processing system, it is necessary to focus on data consistency,
stability, and scalability. By utilizing distributed database technology, we can effectively
address issues such as data redundancy and performance limitations, and improve the
overall operational efficiency of the system.

References
1. H. Raza, W. Abbasi, K. Aurangzeb, N. M. Khan, M. S. Anwar, and M. Alhussein, "Parameter estimation of the systems with

irregularly missing data by using sequentially parallel distributed adaptive signal processing architecture," Alexandria Eng. J.,
vol. 82, pp. 139–144, 2023, doi: 10.1016/j.aej.2023.09.051.

2. R. Chen, G. Cai, J. Chen, and Y. Hong, "Integrated method for distributed processing of large XML data," Cluster Comput., vol.
27, no. 2, pp. 1375–1399, 2024, doi: 10.1007/s10586-023-04010-0.

3. M. A. Poltavtseva and V. A. Torgov, "Applying distributed ledger technology to auditing and incident investigation in big data
processing systems," Autom. Control Comput. Sci., vol. 56, no. 8, pp. 874–882, 2022, doi: 10.3103/S0146411622080193.

4. A. Alexandrescu, "Parallel processing of sensor data in a distributed rules engine environment through clustering and data flow
reconfiguration," Sensors, vol. 23, no. 3, p. 1543, 2023, doi: 10.3390/s23031543.

5. S. Cui, "Online education based on distributed multi-layer data processing technology," Procedia Comput. Sci., vol. 228, pp. 688–
700, 2023, doi: 10.1016/j.procs.2023.11.080.

6. H. Miyajima, N. Shigei, H. Miyajima, and N. Shiratori, "Scalability improvement of simplified, secure distributed processing
with decomposition data," Nonlinear Theory Its Appl., IEICE, vol. 14, no. 2, pp. 140–151, 2023, doi: 10.1587/nolta.14.140.

7. L. Wang, B. Yu, F. Chen, C. Li, B. Li, and N. Wang, "A cluster-based partition method of remote sensing data for efficient
distributed image processing," Remote Sens., vol. 14, no. 19, p. 4964, 2022, doi: 10.3390/rs14194964.

8. E. Fakiris, G. Papatheodorou, D. Christodoulou, Z. Roumelioti, E. Sokos, M. Geraga, et al., "Using distributed temperature
sensing for long-term monitoring of pockmark activity in the Gulf of Patras (Greece): Data processing hints and preliminary
findings," Sensors, vol. 23, no. 20, p. 8520, 2023, doi: 10.3390/s23208520.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/3rm8gb33
http://doi.org/10.1016/j.aej.2023.09.051
http://doi.org/10.1007/s10586-023-04010-0
http://doi.org/10.3103/S0146411622080193
http://doi.org/10.3390/s23031543
http://doi.org/10.1016/j.procs.2023.11.080
http://doi.org/10.1587/nolta.14.140
http://doi.org/10.3390/rs14194964
http://doi.org/10.3390/s23208520

	1. Introduction
	2. Core Components of Microservice Architecture
	3. Distributed Data Processing Technology
	3.1. Fundamentals of Distributed Data Processing
	3.2. Distributed Database Technology
	3.3. Distributed Data Processing Framework

	4. Real Time Query Optimization under Microservice Architecture
	4.1. Query Cache and Index Optimization
	4.2. Query Performance Monitoring and Analysis
	4.3. Asynchronous Processing and Message Queuing

	5. Conclusion
	References

