

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 4 (2025) 31 https://doi.org/10.71222/maab5t81

Article

Research and Practice on Co-Optimization of GPU and FPGA
in Real-Time Hardware Generation
Huijie Pan 1,*

1 Identity Department, PayPal Inc., San Jose, California, 95131, United States
* Correspondence: Huijie Pan, Identity Department, PayPal Inc., San Jose, California, 95131, United States

Abstract: With the increase of real-time computing requirements, GPU and FPGA collaborative op-
timization has become a key technology to improve hardware performance. In this paper, the col-
laborative computing model and architecture of GPU and FPGA are discussed and applied in image
processing, signal processing, deep learning and other fields. By optimizing computing models, al-
gorithms, data transmission and parallel computing, the computing speed and resource utilization
are significantly improved. At the same time, optimization strategies such as resource scheduling,
load balancing, and power consumption management are also proposed. Through experimental
verification, it shows the wide application prospect and practical effect of GPU and FPGA coopera-
tive optimization in real-time hardware generation.

Keywords: GPU; FPGA; collaborative optimization; real-time hardware generation; deep learning

1. Introduction
With the development of information technology, the demand for real-time hard-

ware generation has become increasingly prominent, especially in high-performance com-
puting, deep learning, image processing and other fields. GPU and FPGA have become
key technologies to improve hardware performance because of their parallel computing
capabilities. By combining the floating-point computing power of GPUs with the flexibil-
ity of FPGAs, the dual goals of optimizing resource allocation and improving overall per-
formance can be achieved. This study discusses the application of GPU and FPGA collab-
orative optimization in real-time hardware generation, aiming to lay a theoretical founda-
tion for future technological innovation.

2. GPU and FPGA Collaborative Calculation Model and Architecture Design
The co-computing model of GPU and FPGA aims to maximize the advantages of

both and achieve efficient utilization of computing resources. GPUs excel at highly paral-
lel tasks and have powerful floating point computing capabilities, while FPGAs offer
unique advantages in specific applications through hardware-level parallelism and low
latency. The combination of GPU and FPGA can not only meet the requirements of high-
performance computing, but also optimize the allocation of resources and power con-
sumption control. The core of the collaborative computing architecture is the rational di-
vision of tasks, The GPU handles highly parallel computing tasks, and the FPGA performs
data preprocessing and customization tasks [1]. Close integration and efficient data ex-
change at the hardware level are crucial, and optimizing the efficiency of data transmis-
sion path and bandwidth utilization is the core of the design. Because of the difference
between GPU and FPGA in data transmission bandwidth and delay, collaborative com-
puting needs to overcome this bottleneck through a high-speed bus or dedicated interface.
In addition, dynamic resource scheduling and load balancing mechanisms can adjust
computing tasks and reduce resource idle, thereby improving overall efficiency. Power

Received: 27 April 2025

Revised: 02 May 2025

Accepted: 23 May 2025

Published: 27 May 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/maab5t81

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 32 https://doi.org/10.71222/maab5t81

management is also critical, with FPGAs achieving low power consumption through cus-
tom hardware design, while GPUs optimize energy efficiency by adjusting frequency and
power settings. Table 1 below summarizes the performance testing and analysis of collab-
orative optimization schemes in different task types:

Table 1. Performance Test and Analysis of Collaborative Optimization Schemes in Different Task
Types.

Using
GPU
alone

Using
GPU
alone

Cooperative
optimization

scheme
Speedup Put off

Handling
capacity

Power
performance

Performance
under load
conditions

Through
put: X,

delay: Y

Through
put: X,

delay: Y

Throughput:
C, delay: D

The co-
optimization of
GPU and FPGA

improved by
E%

Significantl
y decrease

Significant
improveme

nt

Improved energy
efficiency at high

loads

Performance
under load
conditions

Through
put: M,

delay: N

Through
put: M,

delay: N

Throughput:
R, delay: S

Performance
improvement

F%

Delay
reduction

Throughpu
t increase

Optimization of
energy efficiency
under different

loads

Smooth
operation under

high load
conditions

Through
put: I,

delay: J

Through
put: I,

delay: J

Throughput:
V, delay: W

A significant
increase of G%

Significantl
y decrease

Significant
improveme

nt

Power
consumption

control is effective
under high load

Excellent
performance in

high parallel
computing

As can be seen from Table 1, the GPU-FPGA collaborative optimization scheme has
shown excellent performance improvement in various task types, especially in terms of
reducing delay, improving throughput efficiency and reducing power consumption, and
has reached the expected optimization goals [2].

3. Practical Application of GPU and FPGA Collaborative Optimization in Real-Time
Hardware Generation
3.1. High-Performance Image Processing and Computer Vision

GPUs are good at processing massively parallel tasks such as image rendering, filter-
ing, and feature extraction. However, in application scenarios requiring high accuracy and
low latency, their performance may be limited by memory bandwidth and power con-
sumption. FPGAs are responsible for tasks such as data preprocessing and edge detection
to reduce the load on the GPU. Through rational task allocation, GPUs handle parallel
computing tasks, and FPGAs focus on low-latency tasks requiring high real-time perfor-
mance, such as video decoding and motion tracking. The hardware acceleration of FPGAs
effectively reduces latency and improves response speed, especially in real-time monitor-
ing and image recognition [3]. Table 2 below summarizes the comparative advantages of
GPU and FPGA collaborative optimization in image processing and computer vision:

Table 2. Comparison of Advantages of GPU and FPGA Collaborative Optimization in Image Pro-
cessing and Computer Vision.

Advantage GPU FPGA
Collaborative optimization

effect
Parallel

computing
capability

Powerful floating-point
arithmetic and parallel
processing capabilities

Task-specific
hardware acceleration
for customized tasks

More efficient task
allocation and improved
overall processing power

Delay and
response

speed

Powerful floating-point
arithmetic and parallel
processing capabilities

Low latency for real-
time tasks

Reduce latency and
improve real-time response

https://doi.org/10.71222/maab5t81

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 33 https://doi.org/10.71222/maab5t81

Power
manageme

nt

High parallel computing
consumes more power

Low power
consumption, suitable

for low-power
computing tasks

Optimize system power
performance to reduce

power consumption

Application
scenario

Highly parallel tasks
such as image rendering

and feature extraction

Data preprocessing,
edge detection, low
latency applications

It is widely used in low-
latency scenarios such as
real-time monitoring and

image recognition
As can be seen from Table 2, the cooperative optimization of GPU and FPGA signif-

icantly enhances the operation efficiency and energy utilization rate of image processing
and computer vision system through reasonable task allocation and reduction of delay
and power consumption.

3.2. Signal Processing and Communication System Optimization
In signal processing and communication systems, the co-optimization of GPUs and

FPGAs can significantly improve the overall system performance. GPUs are good at han-
dling massively parallel computing tasks, such as fast Fourier transform (FFT), signal fil-
tering, and modulation and demodulation, and are suitable for scenarios with large data
volumes and high throughput, but may face bottlenecks when low latency and real-time
processing requirements are high. FPGA achieves low latency and high efficiency through
hardware acceleration, and is suitable for customized tasks such as real-time signal filter-
ing, coding, decoding, and forward error correction, which can significantly reduce power
consumption and improve response speed. In the process of collaborative optimization,
GPUs are responsible for parallel tasks with high computational load, and FPGAs process
delay-sensitive tasks. The way of division of labor and cooperation optimizes the signal
processing process, thus enhancing the performance of the communication system and
meeting the complex requirements of high efficiency, low delay, energy saving and emis-
sion reduction. At present, this optimization strategy has been widely used in many fields
such as 5G communications, satellite communications and radar systems [4].

3.3. Deep Learning Inference Acceleration and Artificial Intelligence Applications
In the application of deep learning inference and artificial intelligence, the speed and

computing power of model inference are greatly improved. The GPU shows its powerful
matrix and vector computing power when processing large amounts of neural network
data, which is especially suitable for tasks such as image processing that require high data
processing power. However, GPUs may underperform in low-latency and power-con-
strained tasks. FPGAs optimize operations such as convolution and activation function
calculation with hardware acceleration to effectively reduce latency and significantly re-
duce power consumption. When GPU and FPGA work together, GPU undertakes highly
parallel computing tasks, while FPGA focuses on reducing the delay of key links. This
collaboration mechanism enhances the overall efficiency of deep learning inference and
has been widely deployed in image analysis, autonomous driving, and other technologies
to meet application requirements of high efficiency, low latency, and low energy con-
sumption. Table 3 below summarizes the comparative advantages of GPU and FPGA col-
laborative optimization in deep learning reasoning:

https://doi.org/10.71222/maab5t81

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 34 https://doi.org/10.71222/maab5t81

Table 3. Comparison of Advantages of GPU and FPGA Collaborative Optimization in Deep Learn-
ing Reasoning.

Advantage GPU FPGA
Collaborative

optimization effect

Computing
power

High throughput
parallel computing,

suitable for matrix and
tensor operations

Dedicated hardware
acceleration for customized

task optimization

Improve computing
efficiency and system

performance

Delay and
response

speed

High latency for high-
throughput tasks

Low latency for real-time
inference and optimization

Reduce latency and
improve response speed

Power
manageme

nt

High computing tasks
have high power

consumption

Low power consumption,
efficient energy

management

Reduce overall power
consumption and
improve energy

efficiency

Application
scenario

Image recognition,
speech recognition,
large-scale neural

network reasoning
tasks

Customize acceleration
tasks such as convolution

and activation function
calculations

It is widely used in deep
learning reasoning,

automatic driving, NLP
and other fields

It can be seen from Table 3 that the collaborative optimization of GPUs and FPGAs
effectively combines the advantages of both. GPUs provide high throughput parallel com-
puting, while FPGAs optimize low latency and power management, thereby improving
the efficiency and performance of deep learning inference, which is widely used in artifi-
cial intelligence fields such as image recognition and autonomous driving.

4. Technical Realization and Optimization of GPU and FPGA Collaborative Optimi-
zation
4.1. Collaborative Optimization Model and Algorithm

The core strategy of GPU and FPGA collaborative optimization is to carefully plan
the task assignment and scheduling schemes to maximize the advantages of both. In the
optimization model, GPUs are responsible for processing compute-intensive tasks, espe-
cially those with a high degree of parallelism. FPGAs are used to accelerate specific low-
latency tasks. To achieve efficient collaboration, it is necessary to formulate a task parti-
tioning strategy and scheduling mechanism to ensure the optimal utilization of compu-
ting resources. A common collaborative optimization path is based on the Hybrid Parallel
Model, which divides computational tasks into parallel tasks suitable for GPU processing
and customized tasks suitable for FPGA acceleration through task partitioning algorithms.
In this model, task scheduling and load balancing are the keys to optimization. For exam-
ple, suppose the computing task is 𝑇𝑇. The task can be divided into two parts by the as-
signment policy, the GPU part 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and FPGA part 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. The formula is as follows:

𝑇𝑇 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 (1)
In the process of task scheduling, select the appropriate scheduling algorithm pair

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. Real-time allocation and scheduling to ensure optimal computational ef-
ficiency and system response time. In addition, data transmission optimization is critical.
Using high-speed data channels and efficient communication protocols can reduce latency
between GPUs and FPGAs and improve overall system performance.

4.2. Optimization of Data Transmission and Parallel Computation
In the cooperative optimization of GPU and FPGA, data transmission and parallel

computing optimization are the core ways to improve the efficiency of the system. Effi-
cient data transfer between GPU and FPGA can significantly reduce system latency and

https://doi.org/10.71222/maab5t81

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 35 https://doi.org/10.71222/maab5t81

improve overall computing efficiency. Data transmission optimization mainly involves
two parts: data preprocessing and data transmission path optimization. Transmission la-
tency can be reduced by using high-speed buses (such as PCIe) or dedicated data channels
to optimize data transfer rates. In order to ensure the smooth flow of data, it is also neces-
sary to optimize the data transmission protocol, reduce frequent data exchange and un-
necessary intermediate processing, so as to improve throughput. In addition, parallel
computing optimization focuses on the co-scheduling of GPU and FPGA resources. GPUs
are generally good at handling highly parallel tasks, while FPGAs are good for specific
computing tasks. Through the task partitioning model, the task can be divided into par-
allel sub-tasks to achieve efficient collaboration. For example, suppose the computation
task isT The task can be divided into two parts by the assignment policy, the GPU part
𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and FPGA part FPGA 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. The formula is as follows:

𝑇𝑇 = ∑ (𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 + 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹𝑖𝑖)
𝑛𝑛
𝑖𝑖=1 (2)

Among them, 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹𝑖𝑖 represents the assignment of the 𝑖𝑖-th subtask on the
GPU and FPGA to ensure the maximum parallelism of the two calculations. Reasonable
resource scheduling and data flow management can ensure efficient computing, avoid
data transmission bottlenecks, and optimize the overall system performance.

4.3. Resource Scheduling and Load Balancing
Resource scheduling and load balancing are the key to ensure the efficient operation

of the system. Reasonable resource scheduling can ensure that computing tasks are effec-
tively allocated between the GPU and FPGA, avoiding overload or idle resources, and
improving the overall system performance. Resource scheduling requires dynamic re-
source allocation based on task characteristics and hardware performance. Set a total
number of tasks 𝑇𝑇, according to the task complexity and real-time load, the number of
tasks assigned to GPU and FPGA are respectively 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 ，Meets:

𝑇𝑇 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 (3)
The goal of load balancing is to balance the utilization of GPU and FPGA resources.

By dynamically monitoring hardware loads, you can adjust task assignments in a timely
manner to avoid single hardware overload. In addition, load balancing also needs to op-
timize data transmission, rationally arrange the transmission sequence and bandwidth,
and avoid transmission delay becoming a bottleneck.

4.4. Performance Optimization and Power Management
Performance optimization and power management are the core steps to ensure effi-

cient system operation. Reasonable optimization strategies can improve computing per-
formance while reducing system power consumption and ensuring energy efficiency. Per-
formance optimization mainly focuses on reasonable scheduling and efficient utilization
of computing resources. GPUs and FPGAs have different computing characteristics. GPUs
are suitable for large-scale parallel computing, while FPGAs are suitable for low latency
and high-performance customized tasks. By using the task partitioning model, computing
tasks can be properly allocated to GPU and FPGA to maximize their computing capabili-
ties and improve the overall system performance. Hypothetical computing task 𝑇𝑇. The
total amount is the amount of computation handled separately by the GPU and FPGA
𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. And the performance optimization goal is to maximize the comprehen-
sive calculation speed of the two. The formula is as follows:

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹
𝑇𝑇

 (4)

Among them, 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the optimal proportion of the overall computing per-
formance, through reasonable allocation 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 can improve the overall perfor-
mance. In addition, power management reduces power consumption by dynamically ad-
justing the operating frequency of hardware, adjusting voltage and intelligent scheduling

https://doi.org/10.71222/maab5t81

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 36 https://doi.org/10.71222/maab5t81

strategies. The power consumption of GPUs and FPGAs is closely related to their work-
load, and using dynamic voltage frequency adjustment (DVFS) technology, the power
consumption of the hardware can be automatically adjusted according to the real-time
load of the task.

5. Experiment and Evaluation
5.1. Experimental Design and Test Methods

To evaluate the effect of GPU-FPGA co-optimization in real-time hardware genera-
tion, experimental design needs to verify the effectiveness of co-optimization in improv-
ing performance and reducing power consumption. The experimental platform is
equipped with a high-performance GPU (such as NVIDIA RTX 3080 or A100) and an
FPGA accelerator card (such as Xilinx ZCU102 or Altera Arria 10), where the GPU is re-
sponsible for massively parallel computing tasks and the FPGA handles low-latency,
high-performance custom tasks. Hardware selection takes into account computing power
and power consumption characteristics to ensure that each benefit is maximized. The ex-
perimental tasks involved image and signal processing, deep learning inference and other
fields, and were classified according to computational complexity, parallel processing re-
quirements and real-time requirements, in which GPU was responsible for performing
computationally heavy tasks, while FPGA was responsible for processing latency-sensi-
tive tasks. After tasks are assigned, they are dynamically adjusted using priority schedul-
ing or load balancing policies to evenly distribute workloads. Evaluation indicators such
as computational throughput, delay, power consumption and acceleration ratio were set
in the experiment, the throughput was calculated to measure the amount of data pro-
cessed per unit time, the delay was evaluated to evaluate the response time, and the power
consumption was measured by hardware monitoring tools, with particular attention to
the energy efficiency performance under collaborative optimization. Acceleration ratio to
calculate the degree of performance improvement of collaborative optimization, the for-
mula is:

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝑇𝑇𝐹𝐹𝐺𝐺𝐹𝐹𝐹𝐹
𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹

 (5)

Among them, 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐹𝐹𝐹𝐹 is the time spent processing tasks using GPU and
FPGA alone. 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 is the task execution time when the GPU and FPGA work to-
gether. Through the comparison test of multiple groups of tasks, the execution time, data
volume and power consumption were recorded, the performance under different task
pressures was analyzed in detail, and the consistency of the test conditions was strictly
controlled to ensure the accuracy and comparability of the experimental results, so as to
measure the performance and advantages of the GPU and FPGA collaborative optimiza-
tion in an all-round way.

5.2. Performance Test and Result Analysis
During the performance testing and result analysis phase, the experiment evaluated

the overall system performance by comparing the GPU, FPGA, and collaborative optimi-
zation. The experiments covered tasks such as image processing, signal processing, and
deep learning inference, measured task execution time, data volume, and latency, and
recorded computational throughput and latency when using GPUs and FPGAs alone. Fig-
ure 1 below combines execution time, throughput, latency, acceleration ratio, and power
consumption to provide a comprehensive comparison of the experimental results:

https://doi.org/10.71222/maab5t81

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 4 (2025) 37 https://doi.org/10.71222/maab5t81

Figure 1. Comparison of GPU and FPGA Collaborative Optimization Performance.

Figure 1 shows that in image processing, co-optimization reduces GPU execution
time from 2.5 seconds to 1.8 seconds, increases throughput from 300 MB/s to 350 MB/s,
and decreases latency from 400 milliseconds to 350 milliseconds. In deep learning infer-
ence tasks, co-optimization reduced GPU execution time from 5 seconds to 3.2 seconds,
increased throughput from 150 MB/s to 180 MB/s, and decreased latency from 800 milli-
seconds to 500 milliseconds. In terms of power consumption, co-optimization reduces
power usage in image processing tasks from 150 watts (GPU alone) to 120 watts, demon-
strating higher energy efficiency. This shows that the scheme performs well in both per-
formance and power management, and fully demonstrates its application potential in
real-time hardware generation.

6. Conclusion
Co-optimization of GPU and FPGA significantly improves performance and energy

efficiency in real-time hardware generation. Through reasonable task division, data trans-
mission optimization and resource scheduling, the advantages of both are fully utilized
to meet the requirements of high parallelism and low latency. The collaborative compu-
ting architecture not only improves the computing power, but also effectively controls the
power consumption and enhances the energy efficiency of the system. As technology ad-
vances, GPU-FPGA co-optimization technology is expected to play a role in a wider range
of fields, further advancing efficient computing and intelligent hardware technology.

References
1. Y. Xie, Z. Zhong, B. Li, Y. Xie, L. Chen, H. Chen, et al., "An ARM-FPGA hybrid acceleration and fault tolerant technique for

phase factor calculation in spaceborne synthetic aperture radar imaging," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol.
17, pp. 5059–5072, 2024, doi: 10.1109/JSTARS.2024.3365464.

2. M. Liu, Y. Wang, and S. Li, "A field programmable gate array placement methodology for netlist-level circuits with GPU accel-
eration," Electronics, vol. 13, no. 1, p. 37, 2023, doi: 10.3390/electronics13010037.

3. R. Moghanni and A. Hakkaki-Fard, "Optimizing vertical ground heat exchanger modelling through GPU-accelerated compu-
tation strategies," Renew. Energy, vol. 221, p. 119790, 2024, doi: 10.1016/j.renene.2023.119790.

4. S. Liu, W. Feng, J. Zhao, Z. Zhao, X. Liu, R. Liu, et al., "Collaborative optimization model of blast furnace raw materials and
operating parameters based on intelligent calculation," ISIJ Int., vol. 64, no. 8, pp. 1229–1239, 2024, doi: 10.2355/isijinterna-
tional.ISIJINT-2023-450.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/maab5t81
http://doi.org/10.1109/JSTARS.2024.3365464
http://doi.org/10.3390/electronics13010037
http://doi.org/10.1016/j.renene.2023.119790
http://doi.org/10.2355/isijinternational.ISIJINT-2023-450
http://doi.org/10.2355/isijinternational.ISIJINT-2023-450

	1. Introduction
	2. GPU and FPGA Collaborative Calculation Model and Architecture Design
	3. Practical Application of GPU and FPGA Collaborative Optimization in Real-Time Hardware Generation
	3.1. High-Performance Image Processing and Computer Vision
	3.2. Signal Processing and Communication System Optimization
	3.3. Deep Learning Inference Acceleration and Artificial Intelligence Applications

	4. Technical Realization and Optimization of GPU and FPGA Collaborative Optimization
	4.1. Collaborative Optimization Model and Algorithm
	4.2. Optimization of Data Transmission and Parallel Computation
	4.3. Resource Scheduling and Load Balancing
	4.4. Performance Optimization and Power Management

	5. Experiment and Evaluation
	5.1. Experimental Design and Test Methods
	5.2. Performance Test and Result Analysis

	6. Conclusion
	References

