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Abstract: With the increase of real-time computing requirements, GPU and FPGA collaborative op-
timization has become a key technology to improve hardware performance. In this paper, the col-
laborative computing model and architecture of GPU and FPGA are discussed and applied in image 
processing, signal processing, deep learning and other fields. By optimizing computing models, al-
gorithms, data transmission and parallel computing, the computing speed and resource utilization 
are significantly improved. At the same time, optimization strategies such as resource scheduling, 
load balancing, and power consumption management are also proposed. Through experimental 
verification, it shows the wide application prospect and practical effect of GPU and FPGA coopera-
tive optimization in real-time hardware generation. 
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1. Introduction  
With the development of information technology, the demand for real-time hard-

ware generation has become increasingly prominent, especially in high-performance com-
puting, deep learning, image processing and other fields. GPU and FPGA have become 
key technologies to improve hardware performance because of their parallel computing 
capabilities. By combining the floating-point computing power of GPUs with the flexibil-
ity of FPGAs, the dual goals of optimizing resource allocation and improving overall per-
formance can be achieved. This study discusses the application of GPU and FPGA collab-
orative optimization in real-time hardware generation, aiming to lay a theoretical founda-
tion for future technological innovation. 

2. GPU and FPGA Collaborative Calculation Model and Architecture Design 
The co-computing model of GPU and FPGA aims to maximize the advantages of 

both and achieve efficient utilization of computing resources. GPUs excel at highly paral-
lel tasks and have powerful floating point computing capabilities, while FPGAs offer 
unique advantages in specific applications through hardware-level parallelism and low 
latency. The combination of GPU and FPGA can not only meet the requirements of high-
performance computing, but also optimize the allocation of resources and power con-
sumption control. The core of the collaborative computing architecture is the rational di-
vision of tasks, The GPU handles highly parallel computing tasks, and the FPGA performs 
data preprocessing and customization tasks [1]. Close integration and efficient data ex-
change at the hardware level are crucial, and optimizing the efficiency of data transmis-
sion path and bandwidth utilization is the core of the design. Because of the difference 
between GPU and FPGA in data transmission bandwidth and delay, collaborative com-
puting needs to overcome this bottleneck through a high-speed bus or dedicated interface. 
In addition, dynamic resource scheduling and load balancing mechanisms can adjust 
computing tasks and reduce resource idle, thereby improving overall efficiency. Power 
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management is also critical, with FPGAs achieving low power consumption through cus-
tom hardware design, while GPUs optimize energy efficiency by adjusting frequency and 
power settings. Table 1 below summarizes the performance testing and analysis of collab-
orative optimization schemes in different task types: 

Table 1. Performance Test and Analysis of Collaborative Optimization Schemes in Different Task 
Types. 

Using 
GPU 
alone 

Using 
GPU 
alone 

Cooperative 
optimization 

scheme 
Speedup Put off 

Handling 
capacity 

Power 
performance 

Performance 
under load 
conditions 

Through
put: X, 

delay: Y 

Through
put: X, 

delay: Y 

Throughput: 
C, delay: D 

The co-
optimization of 
GPU and FPGA 

improved by 
E% 

Significantl
y decrease 

Significant 
improveme

nt 

Improved energy 
efficiency at high 

loads 

Performance 
under load 
conditions 

Through
put: M, 

delay: N 

Through
put: M, 

delay: N 

Throughput: 
R, delay: S 

Performance 
improvement 

F% 

Delay 
reduction 

Throughpu
t increase 

Optimization of 
energy efficiency 
under different 

loads 

Smooth 
operation under 

high load 
conditions 

Through
put: I, 

delay: J 

Through
put: I, 

delay: J 

Throughput: 
V, delay: W 

A significant 
increase of G% 

Significantl
y decrease 

Significant 
improveme

nt 

Power 
consumption 

control is effective 
under high load 

Excellent 
performance in 

high parallel 
computing 

As can be seen from Table 1, the GPU-FPGA collaborative optimization scheme has 
shown excellent performance improvement in various task types, especially in terms of 
reducing delay, improving throughput efficiency and reducing power consumption, and 
has reached the expected optimization goals [2]. 

3. Practical Application of GPU and FPGA Collaborative Optimization in Real-Time 
Hardware Generation 
3.1. High-Performance Image Processing and Computer Vision 

GPUs are good at processing massively parallel tasks such as image rendering, filter-
ing, and feature extraction. However, in application scenarios requiring high accuracy and 
low latency, their performance may be limited by memory bandwidth and power con-
sumption. FPGAs are responsible for tasks such as data preprocessing and edge detection 
to reduce the load on the GPU. Through rational task allocation, GPUs handle parallel 
computing tasks, and FPGAs focus on low-latency tasks requiring high real-time perfor-
mance, such as video decoding and motion tracking. The hardware acceleration of FPGAs 
effectively reduces latency and improves response speed, especially in real-time monitor-
ing and image recognition [3]. Table 2 below summarizes the comparative advantages of 
GPU and FPGA collaborative optimization in image processing and computer vision: 

Table 2. Comparison of Advantages of GPU and FPGA Collaborative Optimization in Image Pro-
cessing and Computer Vision. 

Advantage GPU FPGA 
Collaborative optimization 

effect 
Parallel 

computing 
capability 

Powerful floating-point 
arithmetic and parallel 
processing capabilities 

Task-specific 
hardware acceleration 
for customized tasks 

More efficient task 
allocation and improved 
overall processing power 

Delay and 
response 

speed 

Powerful floating-point 
arithmetic and parallel 
processing capabilities 

Low latency for real-
time tasks 

Reduce latency and 
improve real-time response 
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Power 
manageme

nt 

High parallel computing 
consumes more power 

Low power 
consumption, suitable 

for low-power 
computing tasks 

Optimize system power 
performance to reduce 

power consumption 

Application 
scenario 

Highly parallel tasks 
such as image rendering 

and feature extraction 

Data preprocessing, 
edge detection, low 
latency applications 

It is widely used in low-
latency scenarios such as 
real-time monitoring and 

image recognition 
As can be seen from Table 2, the cooperative optimization of GPU and FPGA signif-

icantly enhances the operation efficiency and energy utilization rate of image processing 
and computer vision system through reasonable task allocation and reduction of delay 
and power consumption. 

3.2. Signal Processing and Communication System Optimization 
In signal processing and communication systems, the co-optimization of GPUs and 

FPGAs can significantly improve the overall system performance. GPUs are good at han-
dling massively parallel computing tasks, such as fast Fourier transform (FFT), signal fil-
tering, and modulation and demodulation, and are suitable for scenarios with large data 
volumes and high throughput, but may face bottlenecks when low latency and real-time 
processing requirements are high. FPGA achieves low latency and high efficiency through 
hardware acceleration, and is suitable for customized tasks such as real-time signal filter-
ing, coding, decoding, and forward error correction, which can significantly reduce power 
consumption and improve response speed. In the process of collaborative optimization, 
GPUs are responsible for parallel tasks with high computational load, and FPGAs process 
delay-sensitive tasks. The way of division of labor and cooperation optimizes the signal 
processing process, thus enhancing the performance of the communication system and 
meeting the complex requirements of high efficiency, low delay, energy saving and emis-
sion reduction. At present, this optimization strategy has been widely used in many fields 
such as 5G communications, satellite communications and radar systems [4]. 

3.3. Deep Learning Inference Acceleration and Artificial Intelligence Applications 
In the application of deep learning inference and artificial intelligence, the speed and 

computing power of model inference are greatly improved. The GPU shows its powerful 
matrix and vector computing power when processing large amounts of neural network 
data, which is especially suitable for tasks such as image processing that require high data 
processing power. However, GPUs may underperform in low-latency and power-con-
strained tasks. FPGAs optimize operations such as convolution and activation function 
calculation with hardware acceleration to effectively reduce latency and significantly re-
duce power consumption. When GPU and FPGA work together, GPU undertakes highly 
parallel computing tasks, while FPGA focuses on reducing the delay of key links. This 
collaboration mechanism enhances the overall efficiency of deep learning inference and 
has been widely deployed in image analysis, autonomous driving, and other technologies 
to meet application requirements of high efficiency, low latency, and low energy con-
sumption. Table 3 below summarizes the comparative advantages of GPU and FPGA col-
laborative optimization in deep learning reasoning: 
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Table 3. Comparison of Advantages of GPU and FPGA Collaborative Optimization in Deep Learn-
ing Reasoning. 

Advantage GPU FPGA 
Collaborative 

optimization effect 

Computing 
power 

High throughput 
parallel computing, 

suitable for matrix and 
tensor operations 

Dedicated hardware 
acceleration for customized 

task optimization 

Improve computing 
efficiency and system 

performance 

Delay and 
response 

speed 

High latency for high-
throughput tasks 

Low latency for real-time 
inference and optimization 

Reduce latency and 
improve response speed 

Power 
manageme

nt 

High computing tasks 
have high power 

consumption 

Low power consumption, 
efficient energy 

management 

Reduce overall power 
consumption and 
improve energy 

efficiency 

Application 
scenario 

Image recognition, 
speech recognition, 
large-scale neural 

network reasoning 
tasks 

Customize acceleration 
tasks such as convolution 

and activation function 
calculations 

It is widely used in deep 
learning reasoning, 

automatic driving, NLP 
and other fields 

It can be seen from Table 3 that the collaborative optimization of GPUs and FPGAs 
effectively combines the advantages of both. GPUs provide high throughput parallel com-
puting, while FPGAs optimize low latency and power management, thereby improving 
the efficiency and performance of deep learning inference, which is widely used in artifi-
cial intelligence fields such as image recognition and autonomous driving. 

4. Technical Realization and Optimization of GPU and FPGA Collaborative Optimi-
zation 
4.1. Collaborative Optimization Model and Algorithm 

The core strategy of GPU and FPGA collaborative optimization is to carefully plan 
the task assignment and scheduling schemes to maximize the advantages of both. In the 
optimization model, GPUs are responsible for processing compute-intensive tasks, espe-
cially those with a high degree of parallelism. FPGAs are used to accelerate specific low-
latency tasks. To achieve efficient collaboration, it is necessary to formulate a task parti-
tioning strategy and scheduling mechanism to ensure the optimal utilization of compu-
ting resources. A common collaborative optimization path is based on the Hybrid Parallel 
Model, which divides computational tasks into parallel tasks suitable for GPU processing 
and customized tasks suitable for FPGA acceleration through task partitioning algorithms. 
In this model, task scheduling and load balancing are the keys to optimization. For exam-
ple, suppose the computing task is 𝑇𝑇. The task can be divided into two parts by the as-
signment policy, the GPU part 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and FPGA part 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. The formula is as follows: 

𝑇𝑇 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹            (1) 
In the process of task scheduling, select the appropriate scheduling algorithm pair 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. Real-time allocation and scheduling to ensure optimal computational ef-
ficiency and system response time. In addition, data transmission optimization is critical. 
Using high-speed data channels and efficient communication protocols can reduce latency 
between GPUs and FPGAs and improve overall system performance. 

4.2. Optimization of Data Transmission and Parallel Computation 
In the cooperative optimization of GPU and FPGA, data transmission and parallel 

computing optimization are the core ways to improve the efficiency of the system. Effi-
cient data transfer between GPU and FPGA can significantly reduce system latency and 
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improve overall computing efficiency. Data transmission optimization mainly involves 
two parts: data preprocessing and data transmission path optimization. Transmission la-
tency can be reduced by using high-speed buses (such as PCIe) or dedicated data channels 
to optimize data transfer rates. In order to ensure the smooth flow of data, it is also neces-
sary to optimize the data transmission protocol, reduce frequent data exchange and un-
necessary intermediate processing, so as to improve throughput. In addition, parallel 
computing optimization focuses on the co-scheduling of GPU and FPGA resources. GPUs 
are generally good at handling highly parallel tasks, while FPGAs are good for specific 
computing tasks. Through the task partitioning model, the task can be divided into par-
allel sub-tasks to achieve efficient collaboration. For example, suppose the computation 
task isT The task can be divided into two parts by the assignment policy, the GPU part 
𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and FPGA part FPGA 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. The formula is as follows: 

𝑇𝑇 = ∑ (𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 + 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹𝑖𝑖)
𝑛𝑛
𝑖𝑖=1           (2) 

Among them, 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹𝑖𝑖 represents the assignment of the 𝑖𝑖-th subtask on the 
GPU and FPGA to ensure the maximum parallelism of the two calculations. Reasonable 
resource scheduling and data flow management can ensure efficient computing, avoid 
data transmission bottlenecks, and optimize the overall system performance. 

4.3. Resource Scheduling and Load Balancing 
Resource scheduling and load balancing are the key to ensure the efficient operation 

of the system. Reasonable resource scheduling can ensure that computing tasks are effec-
tively allocated between the GPU and FPGA, avoiding overload or idle resources, and 
improving the overall system performance. Resource scheduling requires dynamic re-
source allocation based on task characteristics and hardware performance. Set a total 
number of tasks 𝑇𝑇, according to the task complexity and real-time load, the number of 
tasks assigned to GPU and FPGA are respectively 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 ，Meets: 

𝑇𝑇 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹            (3) 
The goal of load balancing is to balance the utilization of GPU and FPGA resources. 

By dynamically monitoring hardware loads, you can adjust task assignments in a timely 
manner to avoid single hardware overload. In addition, load balancing also needs to op-
timize data transmission, rationally arrange the transmission sequence and bandwidth, 
and avoid transmission delay becoming a bottleneck. 

4.4. Performance Optimization and Power Management 
Performance optimization and power management are the core steps to ensure effi-

cient system operation. Reasonable optimization strategies can improve computing per-
formance while reducing system power consumption and ensuring energy efficiency. Per-
formance optimization mainly focuses on reasonable scheduling and efficient utilization 
of computing resources. GPUs and FPGAs have different computing characteristics. GPUs 
are suitable for large-scale parallel computing, while FPGAs are suitable for low latency 
and high-performance customized tasks. By using the task partitioning model, computing 
tasks can be properly allocated to GPU and FPGA to maximize their computing capabili-
ties and improve the overall system performance. Hypothetical computing task 𝑇𝑇. The 
total amount is the amount of computation handled separately by the GPU and FPGA 
𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹. And the performance optimization goal is to maximize the comprehen-
sive calculation speed of the two. The formula is as follows: 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹
𝑇𝑇

           (4) 

Among them, 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the optimal proportion of the overall computing per-
formance, through reasonable allocation 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑇𝑇𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 can improve the overall perfor-
mance. In addition, power management reduces power consumption by dynamically ad-
justing the operating frequency of hardware, adjusting voltage and intelligent scheduling 
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strategies. The power consumption of GPUs and FPGAs is closely related to their work-
load, and using dynamic voltage frequency adjustment (DVFS) technology, the power 
consumption of the hardware can be automatically adjusted according to the real-time 
load of the task. 

5. Experiment and Evaluation 
5.1. Experimental Design and Test Methods 

To evaluate the effect of GPU-FPGA co-optimization in real-time hardware genera-
tion, experimental design needs to verify the effectiveness of co-optimization in improv-
ing performance and reducing power consumption. The experimental platform is 
equipped with a high-performance GPU (such as NVIDIA RTX 3080 or A100) and an 
FPGA accelerator card (such as Xilinx ZCU102 or Altera Arria 10), where the GPU is re-
sponsible for massively parallel computing tasks and the FPGA handles low-latency, 
high-performance custom tasks. Hardware selection takes into account computing power 
and power consumption characteristics to ensure that each benefit is maximized. The ex-
perimental tasks involved image and signal processing, deep learning inference and other 
fields, and were classified according to computational complexity, parallel processing re-
quirements and real-time requirements, in which GPU was responsible for performing 
computationally heavy tasks, while FPGA was responsible for processing latency-sensi-
tive tasks. After tasks are assigned, they are dynamically adjusted using priority schedul-
ing or load balancing policies to evenly distribute workloads. Evaluation indicators such 
as computational throughput, delay, power consumption and acceleration ratio were set 
in the experiment, the throughput was calculated to measure the amount of data pro-
cessed per unit time, the delay was evaluated to evaluate the response time, and the power 
consumption was measured by hardware monitoring tools, with particular attention to 
the energy efficiency performance under collaborative optimization. Acceleration ratio to 
calculate the degree of performance improvement of collaborative optimization, the for-
mula is: 

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝑇𝑇𝐹𝐹𝐺𝐺𝐹𝐹𝐹𝐹
𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹

           (5) 

Among them, 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺  and 𝑇𝑇𝐹𝐹𝐺𝐺𝐹𝐹𝐹𝐹  is the time spent processing tasks using GPU and 
FPGA alone. 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺+𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹 is the task execution time when the GPU and FPGA work to-
gether. Through the comparison test of multiple groups of tasks, the execution time, data 
volume and power consumption were recorded, the performance under different task 
pressures was analyzed in detail, and the consistency of the test conditions was strictly 
controlled to ensure the accuracy and comparability of the experimental results, so as to 
measure the performance and advantages of the GPU and FPGA collaborative optimiza-
tion in an all-round way. 

5.2. Performance Test and Result Analysis 
During the performance testing and result analysis phase, the experiment evaluated 

the overall system performance by comparing the GPU, FPGA, and collaborative optimi-
zation. The experiments covered tasks such as image processing, signal processing, and 
deep learning inference, measured task execution time, data volume, and latency, and 
recorded computational throughput and latency when using GPUs and FPGAs alone. Fig-
ure 1 below combines execution time, throughput, latency, acceleration ratio, and power 
consumption to provide a comprehensive comparison of the experimental results: 
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Figure 1. Comparison of GPU and FPGA Collaborative Optimization Performance. 

Figure 1 shows that in image processing, co-optimization reduces GPU execution 
time from 2.5 seconds to 1.8 seconds, increases throughput from 300 MB/s to 350 MB/s, 
and decreases latency from 400 milliseconds to 350 milliseconds. In deep learning infer-
ence tasks, co-optimization reduced GPU execution time from 5 seconds to 3.2 seconds, 
increased throughput from 150 MB/s to 180 MB/s, and decreased latency from 800 milli-
seconds to 500 milliseconds. In terms of power consumption, co-optimization reduces 
power usage in image processing tasks from 150 watts (GPU alone) to 120 watts, demon-
strating higher energy efficiency. This shows that the scheme performs well in both per-
formance and power management, and fully demonstrates its application potential in 
real-time hardware generation. 

6. Conclusion 
Co-optimization of GPU and FPGA significantly improves performance and energy 

efficiency in real-time hardware generation. Through reasonable task division, data trans-
mission optimization and resource scheduling, the advantages of both are fully utilized 
to meet the requirements of high parallelism and low latency. The collaborative compu-
ting architecture not only improves the computing power, but also effectively controls the 
power consumption and enhances the energy efficiency of the system. As technology ad-
vances, GPU-FPGA co-optimization technology is expected to play a role in a wider range 
of fields, further advancing efficient computing and intelligent hardware technology. 

References 
1. Y. Xie, Z. Zhong, B. Li, Y. Xie, L. Chen, H. Chen, et al., "An ARM-FPGA hybrid acceleration and fault tolerant technique for 

phase factor calculation in spaceborne synthetic aperture radar imaging," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 
17, pp. 5059–5072, 2024, doi: 10.1109/JSTARS.2024.3365464. 

2. M. Liu, Y. Wang, and S. Li, "A field programmable gate array placement methodology for netlist-level circuits with GPU accel-
eration," Electronics, vol. 13, no. 1, p. 37, 2023, doi: 10.3390/electronics13010037. 

3. R. Moghanni and A. Hakkaki-Fard, "Optimizing vertical ground heat exchanger modelling through GPU-accelerated compu-
tation strategies," Renew. Energy, vol. 221, p. 119790, 2024, doi: 10.1016/j.renene.2023.119790. 

4. S. Liu, W. Feng, J. Zhao, Z. Zhao, X. Liu, R. Liu, et al., "Collaborative optimization model of blast furnace raw materials and 
operating parameters based on intelligent calculation," ISIJ Int., vol. 64, no. 8, pp. 1229–1239, 2024, doi: 10.2355/isijinterna-
tional.ISIJINT-2023-450. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 
 

https://doi.org/10.71222/maab5t81
http://doi.org/10.1109/JSTARS.2024.3365464
http://doi.org/10.3390/electronics13010037
http://doi.org/10.1016/j.renene.2023.119790
http://doi.org/10.2355/isijinternational.ISIJINT-2023-450
http://doi.org/10.2355/isijinternational.ISIJINT-2023-450

	1. Introduction
	2. GPU and FPGA Collaborative Calculation Model and Architecture Design
	3. Practical Application of GPU and FPGA Collaborative Optimization in Real-Time Hardware Generation
	3.1. High-Performance Image Processing and Computer Vision
	3.2. Signal Processing and Communication System Optimization
	3.3. Deep Learning Inference Acceleration and Artificial Intelligence Applications

	4. Technical Realization and Optimization of GPU and FPGA Collaborative Optimization
	4.1. Collaborative Optimization Model and Algorithm
	4.2. Optimization of Data Transmission and Parallel Computation
	4.3. Resource Scheduling and Load Balancing
	4.4. Performance Optimization and Power Management

	5. Experiment and Evaluation
	5.1. Experimental Design and Test Methods
	5.2. Performance Test and Result Analysis

	6. Conclusion
	References

