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Abstract: With rapid technological advancements, the field of Human-Computer Interaction (HCI) 
has shifted from traditional interface mechanisms, such as keyboards, mice, and touchscreens, to 
more natural, multimodal, and intelligent interaction systems. Emerging interaction technologies, 
such as Brain-Computer Interfaces (BCIs), gesture tracking, voice interaction, eye-tracking, and hap-
tic feedback systems, are transforming how humans interact with digital systems. While these tech-
nologies are being applied across diverse fields like neurorehabilitation, immersive education, 
smart manufacturing, and extended reality, challenges such as accuracy, robustness, and adaptabil-
ity remain. Furthermore, issues related to data privacy and ethics are barriers to the widespread 
deployment of these technologies. This paper reviews the development of these technologies, ex-
plores their application trends within HCI, discusses their strengths and limitations, and addresses 
the challenges and future directions, with a particular focus on the convergence of AI, neuroscience, 
and multimodal interaction systems. 
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1. Introduction  
Over the past few decades, the field of Human-Computer Interaction (HCI) has ex-

perienced a rapid shift from conventional interface mechanisms, such as keyboards, mice, 
and touchscreens, toward more natural, multimodal, and intelligent interaction systems 
[1]. This transformation is not merely about improving usability; it reflects a fundamental 
change in how humans expect to communicate with digital systems in increasingly com-
plex and dynamic environments. Today's users seek seamless, intuitive, and context-
aware interactions that respond to their physical behavior, emotional states, and even 
cognitive intentions. 

Emerging interaction technologies are at the heart of this transformation. Among the 
most notable are Brain-Computer Interfaces (BCIs), which interpret neural signals for di-
rect brain-to-machine communication; gesture tracking systems, which use cameras or 
sensors to detect and classify body movements in real time; voice-based interaction, pow-
ered by advanced speech recognition and natural language processing; eye-tracking tech-
nologies that follow users' gaze to infer attention and intent; and haptic feedback systems 
that simulate tactile sensations to enhance realism in virtual experiences [2]. These tech-
nologies have moved beyond laboratory settings and are being actively developed and 
deployed in diverse domains, including neurorehabilitation, immersive education, smart 
manufacturing, and extended reality (XR) entertainment. 

The appeal of these technologies lies in their potential to create more immersive, in-
clusive, and efficient interactions. For example, BCIs can restore communication abilities 
for individuals with motor impairments by enabling them to control external devices 
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through mental commands. Gesture tracking offers touchless control interfaces in hy-
giene-sensitive environments such as operating rooms [3]. Voice interfaces have become 
increasingly robust in handling real-time multilingual communication, although they still 
face challenges related to accents and contextual ambiguity, and gaze-based systems are 
improving assistive technologies for people with limited mobility. 

However, these advances also bring significant challenges. Many systems still suffer 
from limitations in accuracy, robustness, and adaptability across different user popula-
tions. For instance, EEG-based BCIs are highly sensitive to noise and require extensive 
calibration, while gesture tracking systems may fail in poor lighting or with occlusions. 
Additionally, ethical concerns such as the collection of sensitive neural or behavioral data, 
as well as the lack of standardized protocols for evaluating interaction quality, remain 
unresolved. These issues hinder the widespread deployment and long-term reliability of 
such technologies. 

This paper aims to provide a structured overview of the development and applica-
tion of emerging interaction technologies within the context of HCI. It examines the tech-
nical principles behind each major modality, traces their historical evolution, and high-
lights current application trends. Furthermore, it compares their respective strengths and 
limitations and discusses foreseeable challenges, including usability, scalability, and pri-
vacy risks. Finally, it explores future directions, with a particular emphasis on the conver-
gence of AI, neuroscience, and multimodal interaction systems. By offering a critical syn-
thesis of current progress and open problems, this study contributes to a deeper under-
standing of how new forms of interaction are shaping the future of human-machine col-
laboration. 

2. Literature Review 
2.1. Brain-Computer Interfaces (BCIs) 

Brain-Computer Interfaces (BCIs) are systems that enable direct communication be-
tween the human brain and external digital devices without the need for traditional mus-
cular input [4]. By capturing and interpreting neural activity, BCIs allow users to control 
computers, prosthetics, or other interactive systems using only their thoughts. This tech-
nology is particularly significant for individuals with severe motor disabilities, and its 
potential also extends to areas such as gaming, cognitive training, and immersive virtual 
environments. 

Most current BCI systems rely on non-invasive brain signal acquisition methods, par-
ticularly electroencephalography (EEG), which measures electrical activity on the scalp. 
Although EEG provides relatively low spatial resolution compared to invasive techniques 
like electrocorticography (ECoG) or implanted microelectrode arrays, it is widely used 
due to its safety, affordability, and portability. The neural signals are typically processed 
using machine learning algorithms to identify patterns associated with specific mental 
states or intentions, such as motor imagery (imagining hand movements), attention shifts, 
or emotional responses [5]. 

The development of BCIs has evolved from early clinical neuroscience proof-of-con-
cept studies to real-world prototypes backed by both academic and commercial efforts. 
Companies like Neuralink and Kernel are investing in high-bandwidth invasive BCIs, 
aiming to create seamless neural interfaces for both medical applications and non-clinical 
cognitive enhancement. On the other hand, platforms like OpenBCI have made non-inva-
sive systems accessible for research and hobbyist experimentation. 

Applications of BCIs are growing rapidly. In healthcare, BCIs are used for neuroreha-
bilitation after stroke, where patients use brain activity to interact with virtual limbs, stim-
ulating cortical plasticity [6]. In assistive technology, BCIs empower patients with condi-
tions such as amyotrophic lateral sclerosis (ALS) to communicate via brain-controlled typ-
ing interfaces. Beyond medicine, BCI is gaining interest in adaptive gaming, cognitive 

https://doi.org/10.71222/wd1tgr86


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 4 (2025) 3 https://doi.org/10.71222/wd1tgr86 

state monitoring (e.g., detecting fatigue or stress), and XR environments where users can 
navigate or manipulate digital objects using mental commands. 

2.2. Gesture Recognition and Tracking 
Gesture recognition enables users to interact with digital systems through body 

movements, most commonly using hand and arm gestures. These systems interpret mo-
tion data to trigger commands, manipulate virtual objects, or communicate intent without 
the need for physical controllers. This type of interaction is particularly valuable in im-
mersive environments such as augmented and virtual reality (AR/VR), and in situations 
requiring contactless control [7]. 

Two main categories of gesture tracking systems exist: vision-based and sensor-
based. Vision-based systems use cameras, often combined with deep learning models, to 
detect and classify gestures in real-time [8]. Google's Media Pipe Hands and Meta's hand-
tracking in Quest headsets are prominent examples, capable of recognizing complex fin-
ger movements with impressive accuracy. Sensor-based approaches rely on devices like 
inertial measurement units (IMUs), gloves, or wristbands to capture motion data via ac-
celerometers and gyroscopes. These systems generally offer higher precision and are less 
susceptible to lighting or occlusion issues compared to vision-based systems, although 
they require wearable hardware and may be influenced by sensor placement accuracy. 

Gesture recognition has seen growing adoption in fields such as healthcare (e.g., 
physical therapy tracking), industrial safety (e.g., hands-free command systems in haz-
ardous environments), and education (e.g., interactive virtual lab environments). How-
ever, challenges remain in terms of robustness, scalability, and cross-user generalization. 
Hand occlusions, motion blur, and ambiguous gestures can reduce system accuracy. 
Moreover, achieving low-latency performance while running real-time inference on edge 
devices is technically demanding. 

2.3. Voice Interaction and Speech Recognition 
Voice-based interaction has become a widely adopted and user-friendly form of com-

munication between humans and machines [9]. With advances in Automatic Speech 
Recognition (ASR) and Natural Language Processing (NLP), modern systems can not only 
transcribe spoken words with high accuracy but also understand user intent, respond con-
textually, and even adapt to emotional tone. 

Contemporary voice interfaces leverage large-scale deep learning models trained on 
multilingual and multi-accent datasets. Tools like OpenAI's Whisper and Google's 
Speech-to-Text API have significantly improved speech recognition accuracy even in 
noisy environments. When combined with language models such as ChatGPT, voice in-
terfaces can support dynamic, open-ended conversations that go beyond pre-pro-
grammed commands. 

Use cases for voice interaction extend across smart homes (e.g., Alexa, Google Assis-
tant), automotive control, healthcare dictation, and accessibility tools for visually im-
paired users [10]. In high-stakes environments like aviation or emergency response, voice 
commands can offer speed and efficiency that are often difficult to achieve through phys-
ical input. 

Nevertheless, voice systems are not without limitations. Recognizing speech in noisy 
environments or when dealing with diverse accents remains a challenge. Concerns over 
voice data privacy, especially with cloud-based processing, have led to increased interest 
in on-device inference. Moreover, cultural and contextual nuances in language interpre-
tation still pose barriers to global deployment. 

As edge computing and multimodal AI continue to evolve, future voice interfaces 
will likely become more emotionally aware, context-sensitive, and capable of adapting in 
real-time to individual speaking styles and needs. 

https://doi.org/10.71222/wd1tgr86


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 4 (2025) 4 https://doi.org/10.71222/wd1tgr86 

2.4. Eye Tracking and Gaze-Based Interaction 
Eye tracking is a technique that monitors the position and movement of a person's 

eyes to determine where they are looking. It enables a form of implicit interaction, where 
systems can respond to visual attention without requiring explicit commands. This tech-
nology has gained traction in usability testing, assistive technologies, AR/VR systems, and 
psychological research. 

Most eye tracking systems use infrared light and cameras to measure pupil dilation 
and gaze direction. Some rely on video-based image processing techniques, while newer 
systems integrated into AR/VR headsets offer real-time eye tracking with high accuracy 
and low latency. Tobii and Pupil Labs are among the leading developers of eye-tracking 
hardware and software platforms. 

In practical terms, gaze-based interaction enables hands-free control for users with 
motor impairments, assists in user attention analysis during web or app usability studies, 
and allows for foveated rendering in virtual environments, in which the region of the dis-
play corresponding to the user's gaze is rendered in high resolution, thereby improving 
performance and power efficiency [11]. 

Challenges in eye tracking include calibration drift, user discomfort over long dura-
tions, and reduced accuracy due to eye shape variability or eyelash occlusion. Moreover, 
interpreting gaze data to infer intent requires sophisticated contextual modeling, espe-
cially in complex, dynamic environments. 

Despite these challenges, eye tracking is regarded as a highly promising complemen-
tary input modality. As hardware becomes more miniaturized and affordable, it is likely 
to be integrated into everyday consumer devices to enable more responsive, personalized, 
and non-intrusive interactions. 

2.5. Haptic Feedback and Tactile Interfaces 
Haptic technology provides physical feedback to users through the sense of touch, 

often via vibrations, forces, or textures [12]. This modality enhances the realism of virtual 
environments and improves the user's sense of presence and engagement with digital 
content. In contrast to visual or auditory feedback, haptic interaction engages users in a 
more physically immersive way, simulating physical properties like pressure, texture, and 
resistance, simulating physical properties like pressure, texture, and resistance. 

There are several types of haptic systems: vibrotactile actuators, which use small mo-
tors to create vibrations; force feedback devices, which resist user motion to simulate 
weight or stiffness; and more advanced approaches such as mid-air haptics, using ultra-
sonic waves to simulate touch in free space. Examples include wearable haptic gloves (e.g., 
HaptX), haptic pens for design software, and feedback-enhanced controllers in gaming 
consoles. 

Haptics are particularly impactful in medical simulation and training, where they 
help replicate the tactile feel of surgical procedures. In remote robotics and telepresence, 
force feedback allows operators to "feel" distant environments. In consumer applications, 
smartphones and gaming controllers already use basic haptic cues to convey alerts and 
immersive feedback. 

However, limitations persist in the form of high cost, bulky hardware, and lack of 
standardization. Replicating the full range of human tactile perception — including soft-
ness, temperature, and moisture — remains a technical challenge. Furthermore, user com-
fort, device fatigue, and power consumption issues must be carefully addressed in design. 

3. Domain-Specific Implementation of Emerging Interaction Technologies 
The efficacy of next-generation interaction paradigms depends on their alignment 

with domain-specific operational requirements and human perceptual and physiological 
constraints. Through four representative case studies, this section delineates how cutting-
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edge systems are engineered to satisfy distinct functional imperatives, from neuromotor 
rehabilitation to precision manufacturing. 

3.1. Healthcare: Neural Restoration and Assistive Systems 
Contemporary neurorehabilitation systems leverage closed-loop biofeedback archi-

tectures to facilitate motor recovery. For instance, Brain-Computer Interface (BCI) systems 
that decode sensorimotor rhythms (SMRs), such as mu rhythms (8-12 Hz), enable stroke 
patients to engage in motor imagery tasks, promoting neural plasticity and functional im-
provement. Studies have demonstrated that such BCI interventions, combined with con-
ventional therapy, can lead to significant improvements in upper limb motor functions 
[13]. 

In the realm of assistive communication, eye-tracking technologies, such as those de-
veloped by Tobii Dynavox, utilize pupil vector mapping to enable text input for individ-
uals with conditions like amyotrophic lateral sclerosis (ALS). These systems allow users 
to select characters or words on a screen through eye movements, enabling text-based 
communication. 

Robotic rehabilitation platforms integrate inertial measurement units (IMUs) and ac-
tuators to provide adjustable resistance during therapy sessions. These systems assist in 
reducing muscle spasticity and improving motor control in patients undergoing rehabili-
tation by providing controlled resistance during movement. 

3.2. Education: Cognitive Augmentation through Multimodal Feedback 
Immersive learning systems aim to optimize pedagogy through multisensory inte-

gration. For example, virtual dissection tables equipped with gesture recognition technol-
ogy allow medical students to interact with 3D anatomical models, enhancing their un-
derstanding of complex structures [14]. Similarly, surgical simulators that incorporate 
haptic feedback provide trainees with realistic tactile sensations, improving their profi-
ciency in procedures like laparoscopic surgery. 

Experimental BCI-enabled attention monitoring systems using functional near-infra-
red spectroscopy (fNIRS) have been explored to assess cognitive load during learning ac-
tivities. These systems aim to adapt educational content in real-time based on the learner's 
mental state, although further research is needed to validate their effectiveness in meas-
uring cognitive load and improving learning outcomes. 

3.3. Industrial Automation: Safety-Critical Human-Machine Teaming 
Gesture control systems that comply with industrial safety standards, such as ISO 

10218, enable contactless operation in hazardous environments. For instance, industrial 
applications utilize Some industrial applications use capacitive sensing technologies 
based on 3D electric field tomography to recognize specific gestures, allowing workers to 
control machinery without physical contact, thereby enhancing safety and efficiency. 

Voice interfaces equipped with advanced speech recognition algorithms facilitate 
hands-free operation in environments with high noise levels. These systems allow work-
ers to input data or control equipment using voice commands, reducing the need for man-
ual interaction and minimizing physical strain. To further enhance situational awareness 
and task precision, industrial automation increasingly integrates Augmented Reality (AR) 
systems. Devices such as Microsoft HoloLens 2 incorporate depth sensing and simultane-
ous localization and mapping (SLAM) technologies to assist in quality inspections. By 
overlaying digital information onto physical components, these systems help identify de-
fects and streamline maintenance processes, ultimately improving productivity and re-
ducing human error. 
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3.4. Entertainment: Psychophysical Engagement Optimization 
Next-generation entertainment systems enhance user immersion through synchro-

nized visual, auditory, and haptic cues that align with the user's sensorimotor expecta-
tions. For example, VR headsets with high refresh rates and precise tracking capabilities 
provide users with immersive experiences. Haptic suits equipped with electrotactile 
nodes simulate various tactile sensations, enhancing the realism of virtual environments 
[15]. 

Affect-aware interfaces that monitor physiological signals, such as facial expressions 
or neural activity, enable dynamic adaptation of content based on the user's emotional 
state. This personalization enhances user engagement and creates more immersive expe-
riences. 

4. Advantages and Limitations of Emerging Interaction Technologies 
To evaluate the practical viability of emerging interaction technologies, it is essential 

to analyze their strengths and limitations in relation to core performance criteria. These 
include signal accuracy, response latency, adaptability across users, hardware cost, and 
environmental robustness. While each modality introduces unique interaction capabilities, 
none constitutes a universally optimal solution. Instead, each technology aligns with spe-
cific application contexts and imposes distinct constraints on system design and user ex-
perience. 

The following Table 1 summarizes the key advantages and limitations of five repre-
sentative interaction modalities: 

Table 1. Comparative Analysis of Interaction Modalities. 

Technology Key Advantages Principal Limitations 

Brain-Computer 
Interface 

Enables direct neural input; 
valuable in motor-impaired 

contexts 

Low signal quality; high training 
demands; low information throughput 

Gesture 
Recognition 

Natural and intuitive; supports 
contactless control 

Sensitive to occlusion and lighting; 
gesture ambiguity; device wearability 

issues 

Voice Interaction 
Hands-free and efficient; 

widely adopted in consumer 
systems 

Affected by noise and language 
variability; privacy and latency 

concerns 

Eye Tracking 
Low-effort, implicit input; 

useful for attention inference 
Requires calibration; accuracy drift; 

limited expressiveness 

Haptic Feedback 
Enhances realism and 

immersion; supports motor 
skill learning 

High hardware complexity; limited 
tactile resolution; cost and portability 

constraints 
Brain-Computer Interfaces offer a fundamentally novel input channel by directly in-

terpreting neural signals to infer user intent. This modality is especially valuable in acces-
sibility applications, where conventional input methods are not viable. By decoding neu-
ral oscillations such as sensorimotor rhythms, BCIs enable communication and control for 
individuals with severe motor impairments. However, the signal quality in non-invasive 
systems is inherently limited by low amplitude, high noise levels, and susceptibility to 
artifacts caused by muscle movement or electrical interference. The accuracy of classifica-
tion models often depends on individualized calibration and extended training periods, 
which may hinder scalability. Furthermore, BCIs tend to exhibit limited information 
throughput, constraining their usability in complex interaction tasks. 

Gesture recognition systems provide an intuitive and natural interaction modality, 
particularly suited to contexts where contactless operation is essential, such as sterile en-
vironments or industrial settings. Vision-based gesture tracking, powered by computer 
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vision and deep learning algorithms, offers the flexibility of uninstrumented interaction 
but is highly sensitive to external factors including lighting variation, background com-
plexity, and hand occlusion. Sensor-based alternatives, which rely on devices such as in-
ertial measurement units or wearable gloves, can improve robustness but introduce issues 
related to user comfort and device maintenance. Additionally, gesture ambiguity and user 
variability pose ongoing challenges for generalized system performance. 

Voice-based interfaces have become increasingly prevalent due to their hands-free, 
low-effort nature and widespread familiarity among users. These systems are effective in 
multitasking environments, mobile applications, and industrial workflows. Recent ad-
vances in speech recognition algorithms, particularly those incorporating large-scale 
transformer models, have improved recognition accuracy even under suboptimal condi-
tions. Nonetheless, performance still degrades significantly in high-noise environments 
or when handling accented, dialectal, or disfluent speech. Concerns related to data pri-
vacy and real-time responsiveness further complicate deployment, especially in sensitive 
or latency-critical applications. 

Eye-tracking technologies enable implicit interaction by capturing gaze direction and 
fixation patterns, offering insights into user attention and intention. This modality has 
proven effective in applications such as user interface adaptation, accessibility support, 
and foveated rendering in virtual environments. Since gaze behavior often reflects cogni-
tive focus, it serves as a valuable signal for adaptive systems. However, eye trackers re-
quire user-specific calibration and may suffer from accuracy drift due to lighting changes 
or user fatigue. Moreover, interpreting gaze as meaningful system commands remains a 
challenging task, potentially increasing cognitive load for users if not designed with care. 
Haptic feedback systems contribute to interaction by introducing physical sensations, 
such as vibration, pressure, or simulated texture. This modality is particularly vital in ap-
plications requiring tactile realism, such as surgical training, product prototyping, and 
immersive entertainment. By engaging the somatosensory system, haptics enhance users' 
sense of presence and embodiment in virtual environments. Despite these advantages, 
technical limitations remain considerable. Replicating fine-grained tactile properties with 
high fidelity necessitates complex actuators and advanced control systems, leading to in-
creased costs and energy consumption. Furthermore, current haptic devices are often 
bulky, which limits their portability and suitability for long-duration use. 

Haptic feedback systems contribute to interaction by introducing physical sensations 
such as vibration, pressure, or simulated texture. This modality is critical in applications 
requiring tactile realism, such as surgical training, product prototyping, and immersive 
entertainment. By engaging the somatosensory system, haptics enhances the sense of 
presence and embodiment in virtual environments. Despite these benefits, technical limi-
tations remain significant. Replicating fine-grained tactile properties with fidelity requires 
complex actuators and high-resolution control systems, which increase cost and energy 
consumption. In addition, current haptic devices often remain bulky, limiting their port-
ability and long-duration use. 

A comparative analysis of these technologies demonstrates that their strengths and 
limitations are closely linked to specific use cases and operating conditions. Brain-Com-
puter Interfaces (BCIs) are essential for high-need accessibility applications but are limited 
by signal quality and processing speed. Gesture recognition excels in enabling hands-free 
control but requires careful environmental calibration. Voice interfaces are both efficient 
and scalable, though they are susceptible to acoustic and linguistic variability. Eye-track-
ing is highly valuable for attention-aware systems but lacks the direct input expressive-
ness of other modalities. Haptic feedback contributes to realism and interaction depth, yet 
its development is hindered by hardware complexity and standardization challenges. 
In conclusion, no single modality can fully meet the demands of modern human-com-
puter interaction. The most promising approach involves multimodal interaction systems 
that integrate complementary modalities, thereby leveraging their individual strengths 
and compensating for their respective limitations. When carefully designed, such systems 
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can provide adaptive, user-centered experiences across a diverse range of application do-
mains. 

In conclusion, no single modality offers a comprehensive solution to the demands of 
modern human-computer interaction. The most promising direction lies in multimodal 
interaction systems that integrate complementary modalities, thereby combining their re-
spective strengths and compensating for individual weaknesses. Such systems, when 
carefully designed, can provide robust, adaptive, and user-centered experiences across a 
wide range of domains. 

5. Technological Convergence and Maturity Assessment 
The rapid evolution of emerging interaction technologies is occurring in tandem, 

with these modalities increasingly converging within unified human-computer interac-
tion frameworks. This convergence has led to the development of hybrid systems that 
integrate neural, visual, auditory, and tactile inputs, facilitating the creation of more adap-
tive, context-aware, and user-centered applications. However, the degree of technological 
maturity varies significantly across modalities, which in turn impacts their scalability, 
standardization, and readiness for real-world deployment. 

Currently, the most mature technologies include voice interaction systems and basic 
eye-tracking mechanisms. These modalities have already been widely integrated into 
commercial and industrial platforms due to their low hardware requirements, reliability, 
and well-established developer ecosystems. For instance, voice-based assistants are em-
bedded in smartphones, vehicles, and smart home devices, with robust natural language 
processing capabilities. Similarly, eye-tracking technology is increasingly used in assistive 
tools and XR headsets for attention monitoring and visual focus alignment. 

In current practice, the most mature technologies include voice interaction systems 
and basic eye-tracking mechanisms. These modalities have already achieved widespread 
integration in commercial and industrial platforms due to their low hardware require-
ments, relatively high reliability, and established developer ecosystems. Voice-based as-
sistants, for example, are embedded in smartphones, vehicles, and smart home devices, 
supported by robust natural language processing capabilities. Similarly, eye-tracking is 
increasingly incorporated into assistive tools and XR headsets for attention monitoring 
and visual focus alignment. 

Technologies at the growth stage include surface electromyography (sEMG)-based 
gesture recognition, affective computing, and haptic feedback systems. These approaches 
are gaining traction in both academic and commercial sectors. Their growing adoption is 
driven by advancements in machine learning algorithms, miniaturized sensors, and cross-
platform API integration. Nevertheless, these technologies face scalability challenges due 
to variability in physiological signals, limited interoperability, and the absence of stand-
ardized benchmarks. 

At the emerging stage, modalities such as bidirectional BCIs and holographic haptic 
displays remain primarily experimental. These systems promise revolutionary interaction 
paradigms by enabling closed-loop feedback between users and machines or simulating 
mid-air tactile sensations. However, they are constrained by high technical complexity, 
limited clinical or industrial validation, and unresolved regulatory issues concerning data 
privacy and user safety. 

The following Table 2 provides a comparative assessment of current interaction mo-
dalities across three dimensions: maturity stage, deployment readiness, and convergence 
potential. 
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Table 2. Maturity and Convergence Potential of Interaction Modalities. 

Technology 
Maturity 

Stage 
Deployment Readiness Convergence Potential 

Voice Interaction Mature 
High (consumer and 

industrial) 
High (e.g., voice + 

gesture) 
Eye Tracking (basic) Mature Medium to High Medium 
Gesture Recognition 

(vision/sEMG) 
Growth Medium High (e.g., XR systems) 

Haptic Feedback Growth Low to Medium 
High (with 

VR/AR/robotics) 

Affective Computing Growth Low 
High (e.g., emotion-

aware UI) 
Brain-Computer Interfaces 

(BCIs) 
Emerging Low 

Very High (AI + 
neurotech) 

Bidirectional BCIs Emerging Experimental Very High 
Holographic Haptics Emerging Experimental Medium to High 

The convergence potential of these modalities lies in their ability to complement each 
other across various aspects of human perception and control. For instance, combining 
BCIs with eye-tracking can enhance intent detection in assistive systems, while integrating 
gesture recognition with voice input improves command accuracy in smart environments. 
In immersive experiences, such as extended reality, synchronizing haptic feedback with 
real-time gaze tracking and spatial audio can significantly enhance user presence and per-
ceptual realism. 

6. Conclusion 
In conclusion, this study offers a comprehensive analysis of emerging interaction 

technologies within the field of human-computer interaction. By examining the principles, 
application domains, comparative advantages, and integration potential of five key mo-
dalities — brain-computer interfaces (BCIs), gesture recognition, voice interaction, eye 
tracking, and haptic feedback — this work provides valuable insights into the evolving 
capabilities and complexities of interactive systems. 

Each modality has unique technical advantages and inherent limitations. BCIs, par-
ticularly non-invasive electroencephalography-based systems, provide critical neural in-
put pathways for assistive technologies designed for users with severe motor impair-
ments. However, challenges such as low signal-to-noise ratios, inter-subject variability, 
and limited communication bandwidth remain. Gesture recognition systems, especially 
vision-based ones, enable intuitive, device-free interaction but are highly sensitive to en-
vironmental factors like lighting, occlusion, and background complexity. Voice interac-
tion has seen widespread commercial deployment due to its natural interface and low 
cognitive load, yet speech recognition accuracy is still affected by acoustic noise, accent 
variation, and privacy concerns. Eye-tracking technologies offer low-effort input for at-
tention estimation and adaptive interfaces, but require precise calibration and are limited 
by user fatigue and expressive control. Haptic feedback systems enhance realism and pro-
cedural training in virtual environments, but their deployment is hindered by high costs, 
actuator complexity, and the lack of standardization. 

Application analysis across four sectors — healthcare, education, industrial automa-
tion, and extended reality entertainment — demonstrates that the adoption of interaction 
technologies is context-dependent. In clinical rehabilitation and assistive communication, 
the focus is on functional restoration. In educational systems and skill acquisition, the pri-
ority shifts to cognitive enhancement and embodied learning. Industrial applications pri-
oritize operational safety, environmental adaptability, and reduced manual workload. In 
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immersive digital experiences, the focus is on perceptual realism and emotional engage-
ment. These variations highlight the importance of aligning interaction design with do-
main-specific requirements, human factors, and task constraints. 

A key takeaway from this analysis is the increasing importance of multimodal con-
vergence. Future systems are expected to integrate neural, visual, auditory, and tactile 
inputs to create robust, context-aware frameworks. This convergence will require ad-
dressing challenges such as signal synchronization, data stream fusion, and developing 
user-adaptive, regulatory-compliant architectures. 

Emerging interaction technologies represent a paradigm shift toward more natural, 
inclusive, and intelligent human-machine interaction. To realize their full potential, ongo-
ing interdisciplinary collaboration across neuroscience, machine learning, cognitive ergo-
nomics, and systems engineering is crucial. Additionally, establishing international stand-
ards and ethical frameworks will be essential to ensure the equitable, secure, and human-
centered development of these technologies. 
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