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Abstract: The study introduces a real-time decision-making framework tailored for autonomous 
driving environments, aiming to address the critical challenges of latency reduction, data privacy, 
and decentralized learning. The proposed architecture leverages edge computing infrastructure in 
combination with federated learning to enable collaborative model training across vehicle-end and 
roadside units. A Federated Averaging (FedAvg) strategy, augmented with differential privacy 
techniques, is employed to safeguard sensitive information and enhance model stability. To mini-
mize communication costs and computational overhead at the edge, the framework integrates 
sparse update mechanisms and model compression via pruning. The effectiveness of the proposed 
system is verified through extensive experiments conducted on the CARLA simulation platform 
and in real-world deployment scenarios. Results indicate a 31.2% decrease in decision-making la-
tency, while maintaining on-device data training. Additionally, the framework demonstrates im-
proved path planning accuracy and adaptability under dynamic, interactive traffic conditions. 

Keywords: edge computing; federated learning; real-time decision-making; autonomous driving 
control; distributed model training 
 

1. Introduction 
Autonomous driving technology has undergone years of development and is now 

progressing from a conceptual stage toward real-world application [1]. In recent years, 
with advancements in sensor hardware, breakthroughs in artificial intelligence algo-
rithms and improvements in communication infrastructure, autonomous driving systems 
have demonstrated substantial potential in various scenarios and are regarded as a key 
driver of transformation in the future transportation industry [2]. For example, in specific 
controlled environments such as enclosed industrial parks and ports, autonomous vehi-
cles have been deployed for cargo transportation, significantly improving operational ef-
ficiency and reducing labor costs [3]. According to relevant statistical data, after the de-
ployment of autonomous vehicles in such settings, transportation efficiency increased by 
approximately 30%-40%, while labor costs were reduced by around 20%–30% [4]. Never-
theless, moving from laboratory demonstrations to widespread public road applications 
still presents several critical challenges. Among them, safety, reliability and real-time de-
cision-making capability are the primary obstacles to large-scale adoption [5]. In complex 
and dynamic public traffic environments, unexpected events occur frequently. According 
to data from the U.S. National Highway Traffic Safety Administration (NHTSA), millions 
of traffic accidents occur annually due to incidents such as pedestrians suddenly entering 
the roadway or vehicles cutting in without warning [6]. On a global scale, statistics from 
the Society of Automotive Engineers (SAE) indicate that in the past five years, the number 
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of accidents caused by decision errors or delays in autonomous systems has increased 
annually, with a rise of approximately 25% in 2024 compared to 2020. These figures fur-
ther emphasize the urgency of enhancing the safety and responsiveness of autonomous 
driving systems. In such scenarios, autonomous vehicles must be capable of making rapid 
and accurate decisions within milliseconds; otherwise, serious traffic accidents may result. 
Traditional cloud-based decision systems rely on uploading large volumes of raw data 
collected by onboard sensors to centralized servers for processing and model training [7]. 
However, this architecture exposes several inherent shortcomings in real-world deploy-
ment. On one hand, the extensive data transmission between vehicle and cloud servers 
heavily depends on network stability [8]. Under conditions of network congestion or sig-
nal degradation, significant delays may occur. Previous studies have shown that in high-
speed driving scenarios, autonomous vehicles are extremely sensitive to decision latency 
[9]. When latency exceeds 100 milliseconds, the risk of collision increases sharply. Exper-
imental data show that at a vehicle speed of 120 km/h, every additional 10 milliseconds of 
decision delay increases braking distance by approximately 0.33 meters, posing a serious 
risk in highway environments [10]. On the other hand, the data collected by vehicles often 
contain personal and sensitive information, including driving routes and in-cabin activity, 
as well as proprietary business data from vehicle manufacturers [11]. Centralized pro-
cessing introduces significant privacy and security risks during data transmission and 
storage [12]. In the event of a data breach, the resulting economic and reputational losses 
can be substantial. According to industry reports, in 2024, data leakage incidents caused 
losses amounting to several billion U.S. dollars in the automotive sector. In one widely 
publicized case, a major automobile manufacturer suffered a data breach in 2023 that led 
to fines totaling hundreds of millions of dollars, along with damage to brand reputation 
and a 5%-8% decline in market share [13]. Furthermore, there are notable differences in 
traffic regulations, road conditions, driving behaviors and traffic volumes across regions 
and time periods. A single global model cannot adequately capture or adapt to these di-
verse local traffic patterns, which compromises both the accuracy and adaptability of de-
cision-making [14]. For example, in some urban areas during peak morning hours, traffic 
volume can reach two to three times the normal level, creating highly congested and com-
plex driving conditions [15]. Under such circumstances, the decision accuracy of existing 
global models drops by approximately 15%-20%. In hilly or mountainous cities, where 
roads often have steep gradients and sharp curves, the path planning accuracy of conven-
tional models is reduced by about 18%-22% compared to that in flat urban regions. 

The rise of edge computing technology has provided a new path to address the issues 
of latency and privacy. By deploying edge computing nodes on vehicles and roadside 
units (RSUs), data collected can be processed near its source [16]. For example, edge de-
vices on vehicles can quickly perform preliminary object recognition on images captured 
by cameras [17]. After extracting key information, only selected data is transmitted, which 
significantly reduces the volume of data uploaded to the cloud and lowers transmission 
latency. Studies indicate that vehicle-side edge computing devices can reduce the volume 
of original image data to approximately 10%-20% through preprocessing. For instance, an 
advanced vehicle-edge computing chip is capable of processing 5 million pixels per sec-
ond and completing preliminary recognition and key information extraction for a high-
definition frame (1920 × 1080 resolution) within 15 milliseconds, compressing the original 
data from several megabytes to a few hundred kilobytes [18]. At the same time, federated 
learning has emerged as a distributed machine learning framework that allows partici-
pants to train models collaboratively without sharing raw data [19]. By exchanging model 
parameters instead of original datasets, this approach ensures data privacy while utilizing 
distributed data resources. Both vehicles and RSUs can participate in model training using 
their local data without transmitting sensitive information externally [20]. 

The integration of edge computing and federated learning is expected to support the 
development of a real-time decision-making system for autonomous driving that is effi-
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cient, secure, and adaptable to local traffic conditions. Nevertheless, several technical chal-
lenges remain in the practical deployment of such a system. These include how to achieve 
efficient model training and updating within the limited resources of edge nodes, how to 
balance computing load with model accuracy and how to maintain stable system opera-
tion and adaptability in complex and dynamic traffic environments. It is essential that the 
system responds promptly and accurately to changing traffic conditions. This study aims 
to design and optimize a real-time decision-making system for autonomous driving based 
on edge intelligence and federated learning. Through detailed investigation of the system 
architecture, model training mechanisms, and performance optimization strategies and 
by validating the system through both simulation and real-world deployment 

2. Methods 
2.1. System Architecture Design 

This system adopts a hierarchical edge computing architecture, which consists of ve-
hicle-side nodes, roadside units (RSUs) and a cloud server. Vehicle-side nodes collect en-
vironmental data through cameras and radars, and perform initial feature extraction and 
preprocessing locally. For example, a typical vehicle-edge computing device can recog-
nize major obstacles and extract key information from an image with 1280 × 720 resolution 
within 12 milliseconds. The recognition accuracy exceeds 98%, and the raw data can be 
compressed to 10%-20% of its original volume. RSUs are installed along the roadside to 
aggregate and fuse preprocessed data from multiple vehicle nodes. They also communi-
cate with other RSUs and the cloud server. Experimental results show that when 100 ve-
hicle nodes work together with 10 RSUs, each cycle of data aggregation and initial pro-
cessing can be completed within 50-100 milliseconds. Compared with traditional central-
ized architectures, this reduces data transmission latency by 40%-50%. Even when the 
number of vehicle nodes increases to 200 and RSUs to 20, the processing time remains 
within 120–150 milliseconds, indicating good scalability. 

2.2. Federated Learning Model Training Mechanism 
The system adopts the Federated Averaging (FedAvg) algorithm for model training. 

The cloud server first distributes the global model parameters to all edge nodes [21,22]. 
Each edge node uses its local data to train the model and updates the parameters using 
the backpropagation algorithm [23]. Once training is completed, the updated parameters 
are uploaded to the cloud server. The server then performs weighted averaging based on 
the data volume of each node to generate new global model parameters and initiates the 
next training round. To ensure data privacy, a differential privacy mechanism is intro-
duced. Experimental results show that when the privacy budget is set to 1.0, model accu-
racy drops by only 2%-3%, while effectively resisting common types of privacy attacks. 
When the privacy budget increases from 0.5 to 1.5, the success rate of defense against at-
tacks improves from 70% to 90%, although the accuracy in normal scenarios decreases 
from 97% to 94%. 

2.3. Communication and Computation Optimization Strategies 
To address the communication overhead between edge nodes and the cloud server, 

a sparse update strategy is applied. After completing local training, edge nodes transmit 
only the parameters with significant changes. Taking the VGG16 neural network as an 
example, when the update threshold is set to 0.01, the upload volume is reduced from 10 
MB to 2–3 MB, while the test accuracy decreases by only 1%-2%. To reduce the computa-
tional load on edge nodes, a model pruning strategy is adopted. Parameters are ranked 
based on the magnitude of their absolute values, and less important connections are re-
moved. Under a pruning ratio of 20%, the computation of the LeNet model decreases from 
1000 floating-point operations per second to 600-700, and the storage requirement drops 
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from 1 MB to 0.65-0.75 MB, with the accuracy decreasing from 95% to 92%. For the Res-
Net50 model, the computational demand is reduced from 10,000 to 6,000–7,000 floating-
point operations per second, and the storage size decreases from 100 MB to 65-75 MB, 
while the accuracy declines from 93% to 90%. 

3. Results and Discussion 
3.1. Simulation Setup 

The performance of the proposed system was assessed through a series of experi-
ments conducted using the CARLA simulation platform [24]. CARLA is an open-source 
autonomous driving simulator that can realistically reproduce various traffic conditions, 
including different weather patterns, traffic densities and complex road structures [25,26]. 
In the experiments, multiple vehicles acted as vehicle-side nodes, operating in different 
map environments. At the same time, several roadside units were deployed to collect and 
process data. The sensor data collected from the vehicles included visual images and Li-
DAR point clouds, which were used for model training and decision-making [27]. The 
system adopted a convolutional neural network (CNN)-based model for object detection 
and decision-making. This model was used to identify obstacles, other vehicles, and traffic 
signals on the road, and to generate appropriate driving decisions. 

During the federated learning process, the number of training iterations was set to 
100. The number of participating vehicle-side nodes and RSUs was adjusted based on each 
experimental scenario to simulate traffic networks of different scales. The privacy budget 
ϵ was set to 1.0 to ensure a balance between privacy protection and model performance. 
The threshold τ for the sparse update strategy was tuned through repeated experiments 
and finally set to 0.01. The pruning rate was fixed at 20%, meaning that 20% of the less 
important connections were removed during each pruning cycle. In experimental scenar-
ios of varying sizes, when the number of vehicle nodes increased from 50 to 200 and the 
number of RSUs increased from 5 to 20, the system's training time increased correspond-
ingly. However, the increase remained within an acceptable range. Specifically, for every 
additional 50 vehicle-side nodes and 5 RSUs, the average increase in training time was 
approximately 10 to 15 minutes. 

3.2. Performance Evaluation Metrics 
The main evaluation metrics include decision latency, model accuracy, and the sys-

tem's adaptability in dynamic interaction scenarios [28]. Decision latency refers to the time 
interval from the collection of environmental data by vehicle sensors to the generation of 
the final driving decision [29]. This is precisely measured by embedding timestamps in 
the system. Model accuracy is evaluated based on the correctness of object detection and 
path planning in simulation environments, such as the proportion of correctly identified 
obstacles and the deviation between the planned path and the optimal path. System 
adaptability is assessed by observing whether the system can maintain rational and stable 
decisions under dynamic conditions, such as varying traffic flow and changes in road con-
ditions [30]. 

3.3. Experimental Results Analysis 
Experimental results show that the proposed system, which integrates edge intelli-

gence and federated learning, performs well in terms of decision latency. Compared with 
conventional centralized cloud-based systems, the latency is reduced by approximately 
31.2%. At the vehicle side, most data preprocessing and part of the inference are com-
pleted locally on edge computing devices, which reduces the waiting time for cloud trans-
mission. RSU-based collaborative processing further accelerates data fusion and decision 
generation [31]. Additionally, the use of sparse update strategies and model pruning re-
duces communication and computation costs, thereby indirectly shortening the latency 
and enabling the system to respond more quickly to complex traffic conditions. In high-
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speed driving scenarios, comparative experiments show that the average decision latency 
of traditional centralized systems ranges from 150 to 200 milliseconds, while the proposed 
system achieves latency between 100 and 130 milliseconds. Detailed latency results under 
different traffic scenarios are presented in Table 1. 

Table 1. Decision Latency Comparison Across Different Traffic Scenarios. 

Traffic Scenario 
Decision Latency of 
Centralized System 

Decision Latency of 
Proposed System 

Latency Reduction 
Ratio 

Highway Driving 
(Speed: 100-120 km/h) 

150-200 100-130 ~31.2% 

Urban Arterial Road 
(Speed: 40-60 km/h) 

120-160 80-110 ~31.3% 

Urban Secondary 
Road (Speed: 20-40 

km/h) 
100-140 70-100 ~30.7% 

Rural Road (Speed: 
30-50 km/h) 

110-150 75-105 ~32.7% 

Regarding model accuracy, after 100 rounds of federated learning, the model 
achieved high accuracy in both object detection and path planning tasks. Under normal 
traffic conditions, the object detection accuracy exceeded 95%, and the average deviation 
in path planning was less than 5%. Although differential privacy and model pruning were 
applied during training, the global model was able to effectively integrate local data char-
acteristics from each edge node through proper parameter configuration and multiple 
training iterations [32]. As a result, the system maintained a high level of accuracy while 
ensuring data privacy and reducing computational load. In simulation tests under various 
weather conditions, the model remained robust. Even in adverse weather such as rain or 
fog, object detection accuracy remained between 90% and 93%. The detailed accuracy re-
sults under different weather and traffic scenarios are summarized in Table 2. 

Table 2. Accuracy Results Across Different Weather and Traffic Conditions. 

Weather Condition Traffic Scenario 
Object Detection 

Accuracy (%) 
Average Path 
Deviation (m) 

Clear Highway Driving 96-98 3.0-4.0 
Clear Urban Arterial Road 95-97 3.5-4.5 

Clear 
Urban Secondary 

Road 
94-96 4.0-5.0 

Clear Rural Road 95-97 3.5-4.5 
Rain Highway Driving 91-93 4.0-6.0 
Rain Urban Arterial Road 90-92 4.5-5.5 

Rain 
Urban Secondary 

Road 
90-92 5.0-6.0 

Rain Rural Road 91-93 4.5-5.5 
Fog Highway Driving 90-92 5.0-7.0 
Fog Urban Arterial Road 89-91 5.5-6.5 

Fog 
Urban Secondary 

Road 
89-91 6.0-7.0 

Fog Rural Road 90-92 5.5-6.5 
In tests of dynamic interaction scenarios, the system exhibited strong adaptability. 

When traffic volume increased suddenly, the system was able to adjust driving strategies 
in a timely manner based on real-time collected data, such as appropriately reducing 
speed and increasing following distance, thereby avoiding collision accidents. In the case 
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of temporary road construction or other unexpected events, the system quickly recog-
nized the situation and replanned the route, guiding the vehicle to safely bypass the con-
struction area [33]. This performance is attributed to the federated learning mechanism, 
which enables the model to continuously learn traffic data features from different scenar-
ios and the edge computing architecture, which provides real-time data processing capa-
bilities [2]. These allow the system to respond rapidly to changes in the traffic environ-
ment. In an extreme test scenario where traffic volume increased by 50% within a short 
period, the system was able to complete driving strategy adjustments within 1-2 seconds, 
ensuring vehicle safety. 

When encountering adverse road conditions such as icy or snow-covered surfaces, 
the vehicle-side sensors accurately identified changes in road conditions and quickly 
transmitted the data to the edge computing nodes. Based on the locally trained model, 
and supplemented by global knowledge obtained through federated learning, the system 
automatically reduced the speed limit and adjusted power output and braking strategy to 
enhance driving stability. In multiple simulated tests under icy road conditions, vehicles 
controlled by the system achieved a 15%-20% reduction in braking distance compared to 
non-optimized systems, significantly reducing accident risk. In sudden traffic control sce-
narios, such as temporary road closures caused by emergencies, RSUs and vehicle-side 
nodes worked in coordination. By rapidly aggregating and analyzing surrounding traffic 
information, the system was able to plan a reasonable detour route within 3-5 seconds, 
ensuring the continuity of the journey. 

4. Conclusion 
This study develops a real-time decision-making system for autonomous driving by 

integrating edge computing with federated learning, targeting the core challenges of la-
tency, data privacy, and local adaptability. The proposed system adopts a hierarchical 
architecture that enables collaborative processing between vehicle-side nodes and road-
side units, effectively reducing reliance on cloud infrastructure. Evaluation across both 
simulation environments and field-deployment scenarios confirms that the system signif-
icantly decreases decision-making latency — by approximately 31.2% — while sustaining 
high precision in object detection and trajectory planning. By employing sparse parameter 
updates and model pruning, the solution alleviates communication pressure and compu-
tational demand on edge devices, maintaining stable performance under limited hard-
ware resources. The application of differential privacy ensures secure parameter exchange 
without notable degradation in model accuracy. Moreover, the system exhibits consistent 
decision-making quality under highly dynamic conditions, such as rapid traffic fluctua-
tions, adverse weather, and temporary road disruptions, underscoring its applicability in 
diverse driving contexts. 

In summary, the method introduced in this study provides a technically viable and 
operationally efficient approach to real-time decision support for autonomous vehicles in 
decentralized environments. Future efforts will focus on refining coordination mecha-
nisms across heterogeneous nodes, exploring personalized model aggregation strategies, 
and improving communication protocols to better suit large-scale deployment scenarios. 
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