

 Journal of Computer, Signal, and
System Research

Vol. 2 No. 3 (2025) 1 https://doi.org/10.71222/bqj1hz96

Article

Research on Parallel Execution Techniques for Improving the
Expandability of Database Systems
Zhongqi Zhu 1,*

1 Meta, Infrastructure, Menlo Park, California, 94025, US
* Correspondence: Zhongqi Zhu, Meta, Infrastructure, Menlo Park, California, 94025, US

Abstract: In today's era of widespread big data and cloud computing technology, database systems
are under tremendous pressure to handle massive amounts of data and complex queries. When
traditional independent database systems encounter high concurrency and large-scale data opera-
tions, their performance begins to feel inadequate. Parallel execution technology has been devel-
oped as a means to improve database performance and scalability. This technology significantly
improves the system's processing capability and response speed by splitting database queries and
transaction processing tasks into multiple small tasks for parallel execution. The purpose of this
article is to analyze in depth the role of parallel execution technology in enhancing the scalability of
database systems, evaluate the current status and challenges of this technology in database applica-
tions, and propose improvement strategies for multi-core and multi node architectures. Through in-
depth research on the principles and applications of parallel execution technology, the aim is to
provide theoretical support and practical suggestions for improving the scalability of database sys-
tems.

Keywords: parallel execution; database system; scalability; multi core architecture

1. Introduction
With the explosive expansion of information volume, conventional databases have

encountered performance constraints when dealing with large datasets and high-fre-
quency concurrent requests. Parallel execution technology, as a core approach to enhance
the scalability of database systems, greatly improves the processing capacity and response
speed of the system by subdividing complex tasks into numerous small tasks for parallel
execution. How to allocate resources reasonably, maintain load balancing, and ensure
data consistency in multi-core processors and distributed computing architectures re-
mains a challenging problem to be solved. This article will delve into the application of
parallel execution technology in enhancing the scalability of database systems, analyze
the advantages and disadvantages of existing technologies, and provide targeted im-
provement suggestions, aiming to provide theoretical support and operational guidance
for optimizing database performance [1].

2. Overview of Parallel Execution Technology
2.1. Basic Concepts and Principles of Parallel Execution

Parallel execution is the process of breaking down a computing task into several sub
tasks that can be executed in parallel, and then utilizing the collaboration of multiple pro-
cessing units to complete the overall task. In database management systems, data queries
and transaction processing are often the most complex and resource consuming, which
makes parallel execution technology play a crucial role in these processes. The core idea
of parallel execution encompasses task segmentation, rational allocation of resources,
even distribution of loads, and integration of final results. Task segmentation refers to

Received: 25 March 2025

Revised: 01 April 2025

Accepted: 18 April 2025

Published: 22 April 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

https://doi.org/10.71222/bqj1hz96

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 3 (2025) 2 https://doi.org/10.71222/bqj1hz96

breaking down data queries or transactions into multiple smaller tasks that can run inde-
pendently. Resource allocation involves dispersing these subtasks to different computing
nodes or processors to achieve optimal resource utilization. The purpose of load balancing
is to prevent individual computing nodes from bearing excessive loads and ensure bal-
anced distribution of tasks among nodes. The integration of results is the consolidation of
all parallel executed subtask results to obtain the final query or transaction processing
result [2].

2.2. Application Fields of Parallel Execution Technology
Parallel execution technology has been widely applied in many computationally in-

tensive and data intensive industries, especially in the field of database management sys-
tems, playing an indispensable role. In terms of database query optimization, using par-
allel execution technology to optimize query execution plans can effectively improve the
speed of processing complex data queries. For example, splitting and executing connec-
tion operations through parallel strategies can significantly reduce the time required for
queries [3]. Parallelizing the operations of multiple transactions during transaction pro-
cessing enhances the processing capability of the database system and meets the require-
ments of high concurrency transactions. When processing massive amounts of data, dis-
tributed database systems commonly use parallel execution technology to store data dis-
tributed across numerous nodes and accelerate data processing speed through parallel
execution. In distributed database systems, the partitioned storage of data and the opera-
tion of distributed computing platforms highly rely on parallel execution technology to
achieve data exchange and task allocation between nodes, thereby optimizing the overall
performance and scalability of the database system. It can be seen that parallel execution
technology plays a key role in enhancing database performance and improving system
scalability [4].

3. Challenges and Requirements for Scalability of Database Systems
3.1. Analysis of Database Performance Bottlenecks

Faced with the rapid expansion of data scale, traditional database architectures are
facing increasing challenges in terms of performance. The first and foremost is the data
storage link, where the input and output speed of the disk has become the core factor
restricting performance [5]. The dramatic increase in data volume makes it difficult for a
single storage device to meet the requirements of high concurrency scenarios, resulting in
longer response times for queries. The execution of complex query tasks in databases, such
as association, sorting, and summarization, requires a significant amount of computing
resources, especially when dealing with massive amounts of data. The sequential execu-
tion of these operations can greatly slow down the system's response speed. The efficiency
of transaction processing has also become a major obstacle to performance. In an environ-
ment where multiple users operate simultaneously, conflicts between transactions and
competition for lock resources often lead to an increase in transaction waiting time,
thereby reducing the overall processing capacity of the system. With the continuous ex-
pansion of database scale, how to efficiently manage and allocate computing resources to
prevent system single point failures has become an urgent problem to be solved.

3.2. Key Issues in Scalability Design
When designing the scalability of a database system, it is necessary to address a series

of core challenges that play a decisive role in the system's operational efficiency and reli-
ability during scale expansion. Overcoming these challenges is the key to enabling the
system to support massive amounts of data, cope with high-intensity concurrent opera-
tions, and adapt to changing workloads. Table 1 is the core challenge that database sys-
tems must face in the pursuit of scalability.

https://doi.org/10.71222/bqj1hz96

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 3 (2025) 3 https://doi.org/10.71222/bqj1hz96

Table 1. Key Issues in Database Scalability Design.

key issue describe
Data distribution and

partitioning
How to efficiently distribute data to multiple storage nodes and avoid

data bottlenecks

load balancing How to evenly distribute workload among multiple nodes and avoid
overloading one node

Transaction management
and consistency

How to ensure data consistency and transaction isolation in high
concurrency environments

Resource scheduling and
dynamic expansion

How to dynamically adjust computing and storage resources based on
real-time load requirements

These key issues comprehensively involve multiple levels of database systems in the
field of scalability design. The distribution and partitioning of data are key to ensuring
storage and retrieval efficiency, load balancing is an important means to maintain smooth
system operation, transaction management and consistency are the guarantee of accurate
data, and resource scheduling and dynamic expansion are necessary conditions to cope
with load changes. Overcoming these challenges is fundamental to building an efficient
and flexible database system.

3.3. Impact of Parallel Execution on Database System Scalability
Parallel execution technology greatly enhances the scalability of database systems.

By breaking down complex queries or transactions into numerous subunits that can work
simultaneously, databases can achieve greater efficiency in multi-core processors and dis-
tributed computing architectures, greatly improving processing efficiency. For example,
in the data query process, traditional sequential processing may cause query latency,
while with the help of parallel technology, databases can synchronize query tasks across
multiple processing units, significantly reducing response time. Transaction processing
can also achieve efficient concurrent operations through multithreading technology, re-
ducing competition for lock resources and improving the overall processing speed of the
system [6]. Parallel technology can also optimize the allocation of computing resources
and reduce resource idle. For example, in multi-core and multi node environments, rea-
sonable task allocation and load balancing can ensure the maximum utilization of com-
puting resources. The introduction of parallel execution technology can enhance the pro-
cessing capability of database systems, shorten response time, and optimize the system's
ability to handle large amounts of data and concurrent scenarios, effectively enhancing
the scalability of database systems.

3.4. Scalable Resource and Environmental Requirements
In order to ensure good scalability of database systems, in addition to relying on cut-

ting-edge technology and ingenious design ideas, it is also necessary to rely on abundant
material resources and appropriate external conditions [7]. The strong support of hard-
ware facilities, software platforms, and system architecture constitutes the core of data-
base scalability. At the hardware level, the performance of the processor, storage space,
and network transmission rate are the direct factors determining the scalability potential
of the database system. As for the software environment, the construction of database
management systems must be compatible with distributed processing, transaction control,
and flexible resource allocation in order to effectively handle large-scale data challenges.
Table 2 lists the main resources and environmental conditions necessary to achieve data-
base scalability.

Table 2. Resource and Environment Requirements for Scalability of Database Systems.

Resources/Environment describe

computing resource
Database systems need to support multi-core processors or

distributed computing architectures to fully utilize parallel computing
to improve performance.

https://doi.org/10.71222/bqj1hz96

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 3 (2025) 4 https://doi.org/10.71222/bqj1hz96

Storage resources
An efficient distributed storage system is the foundation for

expanding database storage capabilities, capable of supporting the
storage and fast access of massive amounts of data.

network resource
A high bandwidth and low latency network environment can improve
the data transmission efficiency between database nodes and reduce

communication bottlenecks.

Database management
system support

Support distributed transactions, load balancing, dynamic scaling,
and other functions to ensure data consistency and system stability

during scaling.
The scalability of a database relies on the full coordination of various resources. The

processing power comes from computing resources, and performance is enhanced
through multi-core and distributed computing architectures. The importance of storage
resources lies in ensuring the secure storage and rapid retrieval of large-scale data. Net-
work resources play the role of guardians of data transmission efficiency, especially in
distributed architectures. The support of a database management system is fundamental
to its efficient operation, including key mechanisms such as transaction processing and
load distribution. Only by properly handling these resource and environmental chal-
lenges can the scalability of the database be truly achieved.

4. Application of Parallel Execution Technology in Improving Scalability of Database
Systems
4.1. Database Query Parallelization Technology

The parallel execution technology using database queries can refine query tasks into
numerous subtasks, achieving parallel execution, thereby improving query speed and
shortening response time. In the scenario of dealing with massive data and high concur-
rency requests, parallel query technology greatly enhances the processing capacity and
scalability of databases. This technology is mainly divided into two aspects: paralleliza-
tion of query plans and parallelization of query execution. In query plan parallelization,
complex query steps such as concatenation, sorting, and summarization are refined into
multiple subtasks and synchronized across different computing units. For example, when
performing a connection operation, the data is divided into multiple parts, distributed to
different units for processing, and finally the results are summarized to shorten the query
time. The parallelization of query execution involves breaking down a single query action
into multiple small tasks and synchronously executing them on different units, such as
distributed data reading. Data partitioning plays a crucial role in parallel queries, ensur-
ing that data is evenly distributed across multiple nodes to optimize query efficiency and
balance load [8].

4.2. Data Partitioning and Distributed Parallel Processing
The scalability optimization of database systems relies on data segmentation and

strategies for distributed parallel execution. Data segmentation technology involves dis-
persing data to numerous nodes according to specific standards, such as hashing or inter-
val segmentation, ensuring that each node only processes a portion of the data. The core
of this strategy lies in improving query speed and reducing the pressure on individual
nodes, while utilizing parallel operations to enhance data processing speed. Data segmen-
tation techniques are mainly divided into two categories: horizontal segmentation and
vertical segmentation. Horizontal segmentation divides data into rows and stores differ-
ent parts of the data at different nodes. Vertical segmentation allocates data according to
columns, mainly for scenarios where only specific columns need to be queried. Through
precise data segmentation strategies, databases can effectively allocate storage and com-
puting tasks among multiple nodes, achieving parallel processing of data.

The formula for distributed parallel processing can be expressed as:
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ �𝐷𝐷𝑖𝑖

𝑃𝑃𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 (1)

https://doi.org/10.71222/bqj1hz96

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 3 (2025) 5 https://doi.org/10.71222/bqj1hz96

Among them, 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total processing time, 𝐷𝐷𝑖𝑖 is the amount of data in each
partition, 𝑃𝑃𝑖𝑖 is the number of processing units used on each partition. The increase in
nodes enables data to be more evenly distributed and stored, thereby reducing the pres-
sure on individual nodes and improving the processing efficiency of the entire system. A
major highlight of distributed processing is its ability to increase the concurrency level of
databases by adding nodes as the scale expands, adapting to the challenges of large-scale
data and high concurrency processing. With the emergence of problems such as data syn-
chronization and communication networks in distributed systems, how to create efficient
distributed query strategies and resource allocation schemes remains a key issue in the
field of scientific research.

4.3. Coordination Mechanism between Database Transactions and Parallel Execution
In multi-threaded operation scenarios, transaction synchronization of databases is

the core link to ensure data integrity and system reliability. Although multi-threaded op-
erations can enhance the processing power of the system, concurrent operations may
cause conflicts, which requires an efficient synchronization strategy to handle. Parallel
transaction processing usually adopts two strategies, active synchronization and passive
synchronization. Active synchronization allows transactions to occur simultaneously, and
conflicts are checked during the transaction commit phase. If there are no conflicts, the
commit is completed, and if there are, rollback and retry are performed. This strategy is
suitable for use in situations where conflicts occur less frequently and can effectively im-
prove the system's concurrent processing capabilities. Passive synchronization, on the
other hand, uses a locking mechanism to ensure that transactions cannot modify the same
data during execution. Although this can reduce conflicts, it may also cause lock compe-
tition issues, which can affect performance, especially in high load situations. For distrib-
uted database systems, the two-stage commit (2PC) protocol is commonly used to main-
tain transaction consistency and indivisibility. Although it can ensure transaction con-
sistency between nodes, it also comes with a significant performance burden, especially
in cases of high network transmission latency. The parallel processing of database trans-
actions requires a balance between consistency and efficiency to ensure smooth transac-
tion processing and accurate data.

4.4. Parallel Execution Optimization under Multi-Core and Multi Node Architectures
With the continuous advancement of technology, multi-core processors and multi

node distributed systems have become widely adopted architectural patterns in database
systems. How to optimize task allocation, resource management, and ensure data syn-
chronization within such a structural system is the core of improving database parallel
processing efficiency. On a multi-core architecture, database systems refine tasks into
multiple small task units and distribute these units to different cores for parallel pro-
cessing, in order to achieve actual parallel computing. In order to maximize the perfor-
mance of multi-core processors, database systems must have efficient task allocation
mechanisms to maintain workload balance among different cores, thereby reducing re-
source idle rates and improving computational efficiency. In a multi node distributed ar-
chitecture, the reasonable distribution of data and appropriate allocation of tasks have a
decisive impact on the parallel performance of the system. By implementing efficient re-
source management strategies, reducing communication overhead and resource conten-
tion between nodes, database systems can maintain excellent performance even when ex-
panding horizontally.

The optimization under multi-core and multi node architectures can be described by
the following formula:

𝑇𝑇parallel = 𝑇𝑇serial
𝑁𝑁cores

 (2)

https://doi.org/10.71222/bqj1hz96

Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR

Vol. 2 No. 3 (2025) 6 https://doi.org/10.71222/bqj1hz96

Among them, 𝑇𝑇parallel is the total time for parallel execution, 𝑇𝑇serial is the time for se-
rial execution, and 𝑁𝑁cores is the number of processor cores.

With the increase in the number of processor cores, the theoretical parallel execution
time should be shortened. However, the actual operational efficiency is constrained by
multiple factors such as the rationality of task allocation, load balancing, and communi-
cation costs. Optimizing task allocation and resource regulation for multi-core and multi
node architectures has become the core of improving parallel efficiency. With the im-
provement of these advanced technologies, databases can more fully utilize contemporary
hardware structures, thereby achieving excellent scalability and performance to cope with
the challenges of massive data and high concurrency processing.

5. Conclusion
Parallel execution technology plays a crucial role in enhancing the scalability of da-

tabase systems. Faced with the constantly increasing data scale and concurrent access re-
quirements, conventional database architectures often encounter performance limitations,
making it difficult to efficiently handle massive datasets. By decomposing complex tasks
into several small tasks for parallel execution, this technology significantly enhances the
processing power and response speed of the database, thereby improving the scalability
of the system. Relying on multi-core processing technology and distributed system archi-
tecture, databases can fully utilize hardware performance and optimize operational effi-
ciency. With the advancement of processor technology and the maturity of parallel pro-
cessing theory, database systems are expected to rely more deeply on parallel execution
technology to address the challenges of big data processing and real-time decision-mak-
ing, thereby promoting the continuous progress of database technology.

References
1. R. D. Alessio, A. Giordano, G. Mazzuca, et al., "Tailoring load balancing of cellular automata parallel execution to the case of a

two-dimensional partitioned domain," J. Supercomput., vol. 79, no. 8, pp. 9273–9287, 2023, doi: 10.1007/s11227-023-05043-3.
2. W. Liu, L. Lin, J. Zhang, et al., "Multi-core parallel architecture design and experiment for deep learning model training," Mul-

timedia Tools Appl., vol. 81, no. 8, pp. 11587–11604, 2022, doi: 10.1007/s11042-022-12292-6.
3. O. A. M. Khashan, N. M. Khafajah, W. Alomoush, M. Alshinwan, S. S. Atawneh, and M. K. Alsmadi, "Dynamic multimedia

encryption using a parallel file system based on multi-core processors," Cryptography, vol. 7, no. 1, 2023, Art. no. 12. DOI:
10.3390/cryptography7010012, doi: 10.3390/cryptography7010012.

4. S. Dirim, O. O. Oezener, and H. Soezer, "Prioritization and parallel execution of test cases for certification testing of embedded
systems," Softw. Qual. J., vol. 31, no. 2, 2023, doi: 10.1007/s11219-022-09594-1.

5. C. Xia, J. Zhao, and H. F. X. Cui, "HOPE: a heterogeneity-oriented parallel execution engine for inference on mobiles," High
Technol. Lett., vol. 28, no. 4, pp. 363–372, 2022, doi: 10.3772/j.issn.1006-6748.2022.04.004.

6. T. Bagies, W. Le, and S. A. Jannesari, "Reducing branch divergence to speed up parallel execution of unit testing on GPUs," J.
Supercomput., vol. 79, no. 16, pp. 18340–18374, 2023, doi: 10.1007/s11227-023-05375-0.

7. S. Baheti, P. S. Anjana, S. Peri, et al., "DiPETrans: A framework for distributed parallel execution of transactions of blocks in
blockchains," Concurrency Comput. Pract. Exp., vol. 34, no. 10, 2022, doi: 10.1002/cpe.6804.

8. G. Dhanabalan, S. T. Selvi, and M. Mahdal, "Scan time reduction of PLCs by dedicated parallel-execution multiple PID control-
lers using an FPGA," Sensors, vol. 22, no. 12, 2022, doi: 10.3390/s22124584.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/bqj1hz96
https://doi.org/10.1007/s11227-023-05043-3
https://doi.org/10.1007/s11042-022-12292-6
https://doi.org/10.3390/cryptography7010012
https://doi.org/10.1007/s11219-022-09594-1
http://dx.doi.org/10.3772/j.issn.1006-6748.2022.04.004
https://doi.org/10.1007/s11227-023-05375-0
https://doi.org/10.1002/cpe.6804
https://doi.org/10.3390/s22124584

	1. Introduction
	2. Overview of Parallel Execution Technology
	2.1. Basic Concepts and Principles of Parallel Execution
	2.2. Application Fields of Parallel Execution Technology

	3. Challenges and Requirements for Scalability of Database Systems
	3.1. Analysis of Database Performance Bottlenecks
	3.2. Key Issues in Scalability Design
	3.3. Impact of Parallel Execution on Database System Scalability
	3.4. Scalable Resource and Environmental Requirements

	4. Application of Parallel Execution Technology in Improving Scalability of Database Systems
	4.1. Database Query Parallelization Technology
	4.2. Data Partitioning and Distributed Parallel Processing
	4.3. Coordination Mechanism between Database Transactions and Parallel Execution
	4.4. Parallel Execution Optimization under Multi-Core and Multi Node Architectures

	5. Conclusion
	References

