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Abstract: Path planning is one of the key technical challenges in the field of autonomous driving. 
Thanks to the rapid advancement of reinforcement learning (RL) technology in the field of artificial 
intelligence, research on autonomous driving path planning based on RL is increasingly receiving 
attention. This study explores the use of reinforcement learning to implement autonomous driving 
path planning technology, analyzing the needs of multiple aspects such as environmental percep-
tion, model construction, obstacle avoidance, and path length optimization. A practical application 
scheme of reinforcement learning for path planning in different autonomous driving scenarios has 
been proposed. By comparing reinforcement learning algorithms such as DQN, A3C, PPO, etc., the 
adaptability and optimization ability of these algorithms in handling complex environments were 
explained, and the strategy of using multi-agent reinforcement learning for path planning was dis-
cussed. 
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1. Introduction  
With the rapid advancement of computers, the Internet of Things, artificial intelli-

gence algorithms, and automation technology, autonomous driving technology is also 
continuously upgrading and iterating, gradually becoming well-known to the public. For 
example, Mercedes Benz's self-driving car Bertha, Tesla, Baidu's autonomous driving car 
Apollo, and so on. Path planning technology has undergone a long period of exploration 
and is becoming mature in the field of robotics. The path planning strategy in the field of 
autonomous driving largely follows the relevant algorithms of robotics technology. How-
ever, due to the slow speed of traditional robots and the difference in operational envi-
ronments between robots and autonomous vehicles, conventional robotic path planning 
technologies cannot meet the requirements of autonomous vehicles under complex and 
rapidly changing road conditions, especially for timely avoidance of dynamic obstacles. 
Path planning technology based on reinforcement learning can continuously improve de-
cision-making algorithms and enhance the artificial intelligence level and adaptability of 
path planning through the interaction between vehicles and their surrounding environ-
ment. 

2. Characteristics of Autonomous Driving 
Autonomous driving technology relies on the vehicle's sensing devices, judgment 

programs, and control components to achieve the function of independently completing 
driving tasks without the need for driver participation. Its characteristics lie in the level 
of intelligence, system integration, and extremely high degree of automation. This tech-
nology utilizes numerous sensors (such as LiDAR, cameras, millimeter wave radar, etc.) 
to monitor the surrounding environment, as shown in Figure 1, the sensors synchronously 
capture road conditions and real-time dynamic information, enabling a comprehensive 
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understanding of the surroundings. The autonomous driving system possesses excellent 
computational and decision-making abilities. With the help of deep learning and rein-
forcement learning technology, it can make real-time and accurate judgments in complex 
environments and plan the best driving route. In addition, the system can automatically 
complete driving actions such as acceleration, braking, and steering through advanced 
control units. Autonomous driving technology also helps alleviate driver fatigue, opti-
mize traffic flow, and promote energy conservation and emission reduction [1]. 

 
Figure 1. Characteristics of Autonomous Driving. 

3. Requirements for Path Planning Based on Reinforcement Learning 
3.1. Environmental Perception and Modeling Requirements 

In the field of autonomous driving technology, environmental perception and mod-
eling are the core, providing key data support and decision-making references for path 
planning. Autonomous vehicles rely on various sensors to obtain information about the 
surrounding environment in real time. These devices are responsible for collecting data 
on road conditions, obstacles, traffic signals, and pedestrians, and constructing a continu-
ously changing and updated dynamic environmental model. The system needs to use 
these perceived data to accurately interpret the current road structure and predict traffic 
conditions and potential risks. Path planning under reinforcement learning requires the 
system to quickly optimize decision plans based on environmental perception data. Un-
like traditional path planning algorithms that rely on fixed rules and models, reinforce-
ment learning based algorithms can continuously improve strategies through interaction 
with the environment [2]. 

In terms of environment perception, the auto drive system needs to have the ability 
to build a detailed and comprehensive environment model, covering many details such 
as road layout, obstacle location, traffic light status and so on. Reinforcement learning can 
assist systems in optimizing their perception algorithms through repeated experimenta-
tion and feedback, gradually enhancing their understanding and processing skills for 
complex environments. Environmental information continues to change, such as traffic 
flow and pedestrian activity patterns showing strong dynamic characteristics. While per-
ceiving these changes, the auto drive system updates the environment model in real time, 
and strengthens learning to assist the system in making flexible path adjustments to envi-
ronmental changes through incentive mechanisms. 

3.2. Collision Risk Avoidance Strategy Requirements 
The ability to avoid collisions is a core aspect of autonomous driving route planning, 

directly determining the safety of vehicles. The autonomous driving system must 
promptly analyze potential risks in the surrounding environment and take appropriate 
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measures based on the collected data. Considering the complexity of traffic conditions, 
avoiding collisions not only means bypassing fixed obstacles, but also involves dynamic 
prediction and response to moving objects such as other vehicles, pedestrians, or animals. 
The advantage of reinforcement learning in this field lies in its ability to continuously 
learn and optimize collision avoidance strategies through interaction with the environ-
ment. The path planning algorithm of reinforcement learning can guide the system to 
gradually learn how to adjust driving strategies to avoid collisions in different traffic sce-
narios through incentive mechanisms. 

A well-trained system can implement avoidance strategies promptly upon detecting 
collision threats, such as changing the driving trajectory, slowing down the driving speed, 
or applying brakes. The advantage of reinforcement learning technology is its high ability 
to self-adjust and cope with changing and complex traffic conditions. As the training pro-
gresses, the system will be able to automatically update its collision avoidance strategies 
based on various obstacle characteristics, traffic lights, and the action patterns of other 
participants on the road. 

3.3. Path Length Optimization Requirements 
In the path design of autonomous driving, optimizing the length of the travel path is 

a key task. At the same time, it is also important to ensure driving safety and passenger 
comfort, while minimizing mileage and time consumption as much as possible. When 
planning the travel route from the starting point to the destination, the auto drive system 
should select a feasible path, and be committed to improving the driving efficiency 
through path optimization, reducing energy consumption and time costs [3]. In this pro-
cess, the reinforcement learning algorithm learns the optimal path selection strategy 
through continuous interaction with the external environment, helping the auto drive sys-
tem gradually determine the best path from the starting point to the end point based on 
the mechanism of trial and feedback under the changeable and complex road conditions. 
In specific application environments, the route of vehicle travel is constrained by many 
factors, including but not limited to traffic flow, road layout, and changes in traffic signals. 
Traditional route planning techniques are difficult to achieve real-time adjustments in the 
face of a series of complex and ever-changing factors. By utilizing reinforcement learning 
techniques and strategies, the system can gradually improve its action strategy through 
continuous interaction with the external environment, achieve optimal routes, and make 
flexible adjustments based on real-time traffic conditions. For example, when the system 
detects congestion on a certain road section, reinforcement learning algorithms can guide 
vehicles to choose an alternative, shorter path to avoid the time loss caused by congestion 
[4]. 

3.4. Requirements for Switching between Different Driving Scenarios 
The auto drive system must be able to switch smoothly in various driving scenarios. 

All kinds of driving scenarios have unique requirements for the formulation of travel 
routes and driving strategies, which requires that the auto drive system can flexibly adjust 
the strategies according to the changes in the surrounding environment. The role of rein-
forcement learning technology in switching between multiple scenarios is extremely crit-
ical. Its powerful adaptability allows the system to identify the optimal action strategy in 
each scenario through continuous learning and feedback, achieving smooth transitions 
and optimizing driving efficiency. Table 1 presentation of the switching requirements for 
different scenarios, specifically demonstrating the requirements for route planning in var-
ious scenarios. 
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Table 1. Requirements for Different Driving Scenarios. 

Scene 
type 

Main challenges 
Reinforcement learning strat-

egy requirements 
Key optimization objec-

tives 

Urban Rd 
Busy traffic, pedes-
trians, traffic signals 

Dynamic decision-making, 
real-time feedback, and multi 

strategy adjustment 

Safety, traffic efficiency, 
emergency response 

Express-
way 

Constant speed driv-
ing and overtaking 

Path smoothness, vehicle 
speed optimization, traffic 

density analysis 

High speed driving 
safety, energy-saving effi-

ciency 
Intersec-

tion 
Traffic signal lights, 

collision risk 
Traffic signal prediction and 

collision risk avoidance 
Signal light control, traf-

fic priority 
Narrow 

alleyway 
Narrow space and 
speed restrictions 

Precise control, local path 
planning 

Vehicle speed control, 
space utilization 

Observing Table 1, it can be seen that autonomous driving technology faces diverse 
challenges in various driving environments [5]. The application of reinforcement learning 
technology in such environments relies on real-time sensing, building environmental 
models, and continuous improvement of strategies, effectively overcoming these chal-
lenges and ensuring smooth transition and optimal selection of the system between dif-
ferent driving modes. Through continuous strategy adjustment and optimization, rein-
forcement learning algorithms can adapt to various environments, flexibly switch driving 
modes, and achieve high efficiency and safety in autonomous driving route planning. 

4. Reinforcement Learning Based Autonomous Driving Path Planning Technology 
4.1. Autonomous Driving Path Planning Technology Based on Deep Q-Network (DQN) 

Deep Q-Network (DQN), a combination of deep learning and reinforcement learning, 
has been widely applied in autonomous driving path planning. This technology relies on 
deep neural networks to approximate the Q-value function, helping agents make reason-
able choices in complex environments. In autonomous driving path planning, the core 
task of DQN is to learn a strategy that enables vehicles to select the optimal path in a given 
road environment, minimize travel time and path length, and ensure safety. In the practi-
cal application scenario of DQN, the task of path planning is constructed as a Markov 
decision framework. Within this framework, autonomous vehicles continuously optimize 
their actions (i.e. path selection) by interacting with the environment to maximize cumu-
lative rewards. The core strategy of DQN is to use neural networks to simulate Q-func-
tions, enabling autonomous vehicles to predict the value of taking a certain action in a 
given state. The definition of the Q-value function is: 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝐸𝐸[𝑅𝑅𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎]          (1) 
In formula (1), Q (s, a) represents the expected return obtained by taking action 𝑎𝑎 in 

state 𝑠𝑠; Rt is the total sum of future rewards; 𝑆𝑆𝑡𝑡 and 𝐴𝐴𝑡𝑡 are the states and actions at time 
𝑡𝑡. Through neural networks, DQN predicts 𝑄𝑄 values by learning an approximation func-
tion 𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃), where 𝜃𝜃 is a parameter of the network. The training objective of the net-
work is to minimize the error between the predicted 𝑄𝑄 value and the actual 𝑄𝑄 value, 
which is updated through the following objective function: 

𝐿𝐿(𝜃𝜃) = 𝐸𝐸[(𝑦𝑦 − 𝑄𝑄  ̂(𝑠𝑠, 𝑎𝑎;𝜃𝜃))2]          (2) 
In formula (2), 𝑦𝑦 = 𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑄𝑄�(𝑠𝑠′, 𝑎𝑎′; 𝜃𝜃−) for the target 𝑄𝑄 value, 𝛾𝛾 is the discount 

factor, and 𝜃𝜃− is the parameter of the target network. Through such training, DQN can 
master the skills of selecting the best route and action plan under complex traffic condi-
tions, and ensure that the auto drive system can make efficient and safe judgments during 
driving [6]. 
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3.2. Autonomous Driving Path Planning Based on A3C Algorithm 
Asynchronous Advantage Actor Critic (A3C) algorithm is a deep learning technique 

that integrates reinforcement learning, value functions, and policy gradient methods. It 
demonstrates efficient performance in handling path planning tasks in complex environ-
ments. This algorithm adopts a multi-threaded asynchronous update strategy, which en-
hances the robustness of the training process and accelerates the convergence process. In 
the field of autonomous driving, the A3C algorithm can effectively learn and develop the 
optimal driving path that adapts to various scenarios based on different traffic conditions. 
The A3C algorithm draws on two unique network models, one of which is the decision 
network, responsible for selecting direct actions. The second is the value network, which 
is responsible for estimating the value of taking a certain action in a given state. Thanks 
to this structure, A3C is able to simultaneously optimize the strategy and value function, 
achieving more stable and efficient learning performance. A3C aims to pursue the maxi-
mization of expected returns by optimizing the advantage function to reduce strategy er-
rors. In the field of path planning, the A3C algorithm can determine which driving route 
to choose through learning, achieving cumulative maximization of future rewards. The 
following is the core update formula of A3C algorithm: 

𝐿𝐿 = 𝐸𝐸[log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) 𝛿𝛿𝑡𝑡]           (3) 
In formula (3), 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) is the probability of the policy network selecting action at 

in state 𝑠𝑠𝑡𝑡. 𝛿𝛿𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡 + 1) − 𝛾𝛾(𝑠𝑠𝑡𝑡) it is an advantage function that represents the ad-
vantage of a certain action relative to its state value. 𝛾𝛾(𝑠𝑠𝑡𝑡) is the predicted value of the 
value network in state 𝑠𝑠𝑡𝑡. Gamma is a discount factor used to balance the importance of 
immediate rewards and future rewards. In the path design of autonomous driving, the 
A3C algorithm utilizes multi-threaded concurrent processing to continuously optimize 
the strategy and valuation function, and determine the optimal travel trajectory for vari-
ous driving conditions. The system relies on feedback mechanisms to optimize route 
length, while also taking into account factors such as driving safety and riding experience, 
achieving flexible and real-time route adjustments. 

4.3. Multi Agent Path Planning Based on Reinforcement Learning 
Multi-Agent Path Planning (MAPP) in the field of autonomous driving focuses on 

how to handle conflicts in path selection and optimize overall routes in multi vehicle shar-
ing scenarios. Reinforcement learning has become a powerful tool for solving such prob-
lems due to its adaptability to complex decision spaces [7]. Adopting distributed rein-
forcement learning strategies, such as multi-agent deep deterministic policy gradients, can 
promote collaboration and avoid conflicts between vehicles. In this model, each autono-
mous vehicle acts as an independent agent, adjusting its strategy based on global data and 
local perception and local perception, aims to complete the selection of the best path in a 
changing environment. In order to evaluate the performance of the strategy, simulation 
tests were conducted to compare the differences in optimization effects between reinforce-
ment learning and traditional path planning algorithms. 

The experimental data shown in Table 2 demonstrates that multi-agent path planning 
using reinforcement learning techniques outperforms traditional algorithms in terms of 
overall planning time, total path distance, and success rate. Especially in complex traffic 
conditions, the collision probability is significantly reduced, demonstrating the ad-
vantages of reinforcement learning in efficiency and stability. Thanks to the integration of 
reinforcement learning technology, auto drive system can achieve more efficient collabo-
ration and path optimization among multi-agent, which plays a key role in promoting the 
progress of intelligent transportation system. 
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Table 2. Data Analysis Table. 

Algorithm 
Total planning 
time (seconds) 

Total length of 
the path (meters) 

Collision rate 
(%) 

Success rate (%) 

A *algorithm 15.2 1050 8.4 91.6 
Dijkstra algo-

rithm 
20.4 1100 10.2 89.8 

MADDPG algo-
rithm (reinforce-
ment learning) 

12.8 980 2.3 97.8 

4.4. Path Planning Based on PPO (Near End Policy Optimization) Algorithm 
The Proximal Policy Optimization (PPO) algorithm is a state-of-the-art reinforcement 

learning method, which has been widely used in autonomous driving path planning due 
to its excellent efficiency and simple implementation process. The PPO algorithm prevents 
the problem of policy failure that may occur in traditional optimization methods by intro-
ducing a clipping mechanism to constrain policy updates, accelerates the convergence 
process, and ensures the reliability of finding the global optimal solution. In path planning 
tasks, the PPO algorithm guides vehicles to learn the optimal path in a dynamic environ-
ment by defining a reward function 𝑅𝑅𝑡𝑡. The reward function integrates factors such as 
driving efficiency, safety, and energy consumption, and is formulated as follows: 

𝑅𝑅𝑡𝑡 = 𝛼𝛼 ∙ 𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒 − 𝛽𝛽 ∙ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 − 𝛾𝛾 ∙ 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (4) 
In formula (4), Veff represents the efficiency of path planning (such as average speed 

or shortest path length). 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐  represents collision risk, calculated based on vehicle spacing 
and speed difference. 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents the energy consumption of a vehicle during oper-
ation, 𝛼𝛼, 𝛽𝛽, and γ are weight parameters used to balance the influence of different factors. 
The PPO algorithm was applied to the scenario of autonomous driving path planning 
through simulation experiments. Table 3 are the simulation experiment results. 

Table 3. Simulation Experiment. 

Indicator 
Average path 

length (meters) 
Average speed 

(m/s) 
Collision rate 

(%) 
Energy consump-

tion (kilojoule) 
DDPG algorithm 1120 9.3 5.8 92.4 
SAC algorithm 1105 9.7 4.1 89.3 
PPO algorithm 

(this study) 
1085 10.2 2.7 85.6 

From the experimental data in Table 3, it can be seen that the navigation strategy 
using PPO algorithm performs the best in multiple key indicators such as total route 
length, driving speed, and driving safety. The PPO algorithm can flexibly adjust the scale 
of policy updates according to actual situations, effectively mitigating policy fluctuations 
induced by environmental dynamics, especially in complex traffic conditions where its 
outstanding performance is more prominent. The above mathematical formulas and ex-
perimental results have confirmed the enormous application prospects of PPO algorithm 
in the field of automatic navigation, laying a solid foundation for transitioning the tech-
nology from theory to practical deployment. 

5. Conclusion 
Reinforcement learning has shown great potential and research significance in path 

planning in the field of autonomous driving. This technology enables the auto drive sys-
tem to make decisions in real time under dynamic traffic conditions, optimize the path 
selection, reduce the possibility of traffic accidents, and enhance the overall efficiency of 
driving. Despite notable advancements, challenges remain in handling highly dynamic 
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traffic scenarios and ensuring effective coordination among multiple autonomous agents. 
Future research should focus on improving the intelligence and adaptability of algorithms, 
ensuring that the system has stronger robustness in complex and changing contexts. With 
the progress of computing technology and the continuous improvement of algorithms, 
the path planning technology relying on reinforcement learning is expected to play a more 
critical role in the actual auto drive system, helping to improve the intelligent transporta-
tion system. 
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