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Abstract: Remote sensing image segmentation plays a pivotal role in Earth observation 
tasks by transforming raw satellite and aerial imagery into meaningful semantic regions. 
This process underpins numerous applications, such as urban planning, precision agri-
culture, disaster response, and ecological monitoring. With the advent of deep learning, 
segmentation accuracy has improved significantly due to the capacity of neural networks 
to learn complex spatial and semantic representations. This paper presents a comprehen-
sive comparative study of three representative deep learning models — U-Net, SegNet, 
and DeepLabv3+ — applied to the ISPRS Potsdam dataset. We analyze performance 
across various dimensions, including segmentation accuracy, efficiency, robustness to 
noise, parameter complexity, and category-specific behaviors. Furthermore, we propose 
a hybrid model architecture that fuses U-Net’s spatial detail preservation with DeepLab’s 
contextual aggregation capabilities. To address label scarcity and enhance generalization, 
we incorporate self-supervised pretraining and transfer learning strategies. We also pro-
vide preliminary benchmarking with Transformer-based models. The findings contribute 
to the body of knowledge guiding the design and deployment of segmentation models in 
real-world remote sensing scenarios. 
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1. Introduction  
Semantic segmentation of remote sensing imagery has emerged as a cornerstone task 

in geospatial analysis, supporting a wide array of downstream applications such as land 
cover mapping, environmental monitoring, infrastructure planning, and disaster risk as-
sessment. The core objective is to assign a categorical label to each pixel in an image, 
thereby transforming unstructured spectral and spatial information into structured geo-
spatial representations. Compared to conventional pixel-based classification methods, se-
mantic segmentation offers finer spatial granularity and richer contextual understanding. 

Traditional approaches to segmentation, including thresholding, region growing, 
and clustering-based methods (e.g., k-means, ISODATA), often fall short when faced with 
the heterogeneity and high intra-class variability characteristic of remote sensing data. 
These methods rely heavily on handcrafted features and predefined similarity measures, 
which are limited in their capacity to generalize across diverse environmental conditions 
and sensor modalities. Additionally, the presence of occlusions, shadows, and varying 
illumination poses significant challenges for classical segmentation algorithms [1]. 

The advent of deep learning, particularly convolutional neural networks (CNNs), 
has transformed the landscape of remote sensing image analysis. CNN-based models ex-
cel at capturing hierarchical spatial features and can automatically learn discriminative 
representations from data, eliminating the need for manual feature engineering. 
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AmongCNN architectures, encoder-decoder frameworks such as U-Net, SegNet, and 
DeepLab have gained prominence due to their effectiveness in dense prediction tasks. 
These models differ in terms of architectural design, information flow, and contextual rea-
soning capabilities, which directly impact segmentation performance. 

Despite the advances, several unresolved challenges persist. High-resolution im-
agery introduces computational complexity and memory constraints, while label acquisi-
tion remains labor-intensive and expensive. Moreover, segmentation accuracy often de-
grades at object boundaries or in the presence of small, underrepresented classes. Gener-
alizing across domains (e.g., different cities, seasons, or sensors) also remains non-trivial 
due to distribution shifts. 

This study aims to conduct a rigorous and multi-faceted evaluation of three widely 
adopted deep learning segmentation models — U-Net, SegNet, and DeepLabv3+ — on a 
high-resolution aerial dataset. In addition to benchmarking performance across standard 
metrics, we investigate model robustness under noise perturbations and varying spatial 
resolutions. We also design a novel hybrid architecture that integrates strengths of U-Net 
and DeepLab, and explore representation learning techniques such as self-supervised pre-
training and transfer learning. Our contributions are threefold: 

1) A comprehensive performance comparison of established segmentation models 
under diverse conditions. 

2) The design and evaluation of a hybrid architecture that improves spatial detail 
retention and contextual aggregation. 

3) The incorporation of advanced learning strategies to mitigate data scarcity and 
enhance cross-domain generalization. 

Through this work, we aim to inform model selection and architectural design 
choices in remote sensing segmentation workflows and contribute empirical evidence to-
ward the development of robust, efficient, and generalizable segmentation systems. 

2. Related Work  
The evolution of semantic segmentation in remote sensing has mirrored broader ad-

vancements in computer vision while simultaneously addressing the unique challenges 
posed by geospatial data. Early segmentation techniques primarily relied on unsuper-
vised or semi-supervised learning methods, including clustering (e.g., k-means, ISO-
DATA), region growing, graph cuts, and thresholding. These classical methods offered 
computational simplicity but lacked the robustness needed for large-scale or high-resolu-
tion scenes. Their dependence on handcrafted features, such as spectral indices or texture 
descriptors, limited adaptability to complex, heterogeneous landscapes [2]. 

With the emergence of deep learning, particularly convolutional neural networks 
(CNNs), remote sensing image segmentation underwent a paradigm shift. CNNs can au-
tomatically learn hierarchical and spatially invariant features directly from input imagery, 
outperforming traditional machine learning approaches in accuracy and scalability. 
Among the CNN-based models, encoder-decoder architectures have become founda-
tional due to their ability to preserve spatial resolution while capturing high-level seman-
tic context. 

U-Net, introduced for biomedical image segmentation, gained traction in remote 
sensing due to its symmetrical architecture with skip connections. These connections al-
low low-level spatial features from the encoder to be merged with decoder outputs, im-
proving boundary accuracy and segmentation detail. SegNet, derived from the VGG16 
backbone, emphasizes memory efficiency by storing pooling indices for use during up-
sampling, which aids in the reconstruction of object shapes while reducing parameter 
overhead [3]. 

DeepLab, particularly the DeepLabv3+ variant, introduced atrous (dilated) convolu-
tions and the Atrous Spatial Pyramid Pooling (ASPP) module, which enable multi-scale 
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context aggregation without increasing computational burden. In remote sensing appli-
cations, DeepLabv3+ has been shown to improve accuracy in complex urban environ-
ments and for underrepresented object classes, such as vehicles or small buildings. 

Beyond these canonical models, recent research has explored architectural enhance-
ments and training paradigms. Hybrid models that integrate convolutional backbones 
with attention mechanisms or graph neural networks have shown promise. Additionally, 
model fusion strategies — such as ensemble averaging, feature concatenation, and mul-
tiscale aggregation — are employed to leverage complementary strengths of different 
models. 

The adoption of self-supervised learning (SSL) has emerged as a viable solution to 
the scarcity of annotated data. Techniques such as contrastive learning, context prediction, 
and masked autoencoding allow models to learn generalizable representations from un-
labeled imagery. These pretrained models can be fine-tuned on task-specific datasets with 
limited supervision. 

Simultaneously, the remote sensing community has witnessed the rise of Trans-
former-based architectures, originally developed for natural language processing. Vision 
Transformers (ViTs), and more recently, domain-specific variants such as Swin Trans-
former, TransUNet, and SegFormer, offer enhanced capacity for modeling long-range de-
pendencies. While computationally intensive, these architectures have achieved state-of-
the-art results on segmentation benchmarks, including those in the remote sensing do-
main [4,5]. 

In summary, the field has transitioned from shallow, rule-based methods to deep, 
learnable models with increasingly sophisticated spatial and contextual reasoning. This 
study builds upon this trajectory by evaluating the strengths and limitations of U-Net, 
SegNet, and DeepLabv3+, while integrating modern learning techniques to improve per-
formance and generalizability. 

3. Deep Learning Models for Remote Sensing Segmentation 
This section provides a technical overview of three widely used convolutional neural 

network (CNN) architectures for semantic segmentation: U-Net, SegNet, and DeepLabv3+. 
These models are selected based on their popularity, architectural diversity, and demon-
strated performance in remote sensing applications. 

3.1. U-Net  
U-Net is a symmetric encoder-decoder network originally developed for biomedical 

image segmentation. It has become a baseline model in remote sensing due to its structural 
simplicity and effectiveness in learning spatially detailed representations. The encoder 
consists of a series of convolutional layers and max-pooling operations, progressively re-
ducing spatial dimensions while increasing feature abstraction. The decoder mirrors the 
encoder, using upsampling operations to restore resolution [6]. 

A distinctive feature of U-Net is its skip connections, which concatenate feature maps 
from corresponding encoder and decoder layers. This mechanism facilitates the recovery 
of fine-grained spatial details, essential for delineating small objects and precise bounda-
ries in high-resolution remote sensing imagery. 

Mathematically, the model prediction can be expressed as: 
𝑌𝑌 = 𝜎𝜎� ∁ ( 𝑈𝑈𝑈𝑈 � 𝜀𝜀 (𝑋𝑋)� ⨁ 𝑆𝑆 (𝑋𝑋))� 

Where X is the input image, ε(∙) denotes the encoder, Up(∙) denotes upsampling, 
⨁ is the skip connection operation (concatenation), ∁(∙) represents the decoder convolu-
tion layers, and σ(∙) is the activation function. 

3.2. SegNet  
SegNet follows an encoder-decoder structure similar to U-Net but utilizes a more 

memory-efficient decoding strategy. The encoder is based on the VGG16 convolutional 
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layers without fully connected components. During the encoding process, the indices of 
max-pooling operations are stored and reused during decoding to guide non-learnable 
upsampling via max-unpooling. 

This index-based decoding allows SegNet to reconstruct spatial structure without 
learning deconvolution filters, significantly reducing the number of trainable parameters. 
While it may not retain as much fine detail as U-Net, SegNet excels in scenarios requiring 
a lightweight model with moderate segmentation accuracy. 

3.3. DeepLabv3+ 
DeepLabv3+ represents a more advanced encoder-decoder design tailored for se-

mantic segmentation tasks requiring rich contextual understanding. It introduces atrous 
(or dilated) convolutions to expand the receptive field without downsampling, thereby 
capturing multi-scale features while preserving resolution. 

A key component of DeepLabv3+ is the Atrous Spatial Pyramid Pooling (ASPP) mod-
ule, which aggregates context at multiple dilation rates. This enables the model to simul-
taneously analyze fine and coarse features, improving performance on objects of varying 
sizes. In addition, the model optionally integrates a Conditional Random Field (CRF) post-
processing step to refine object boundaries. 

The overall prediction function can be abstracted as: 
𝑌𝑌 = 𝜎𝜎( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ( 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆( 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴 (𝑋𝑋)))) 

Where 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴(∙) is the atrous convolution block, and ASPP is applied to extract 
multi-scale semantic features. 

In summary, each model offers unique architectural advantages: U-Net emphasizes 
high spatial fidelity through skip connections, SegNet prioritizes efficiency via index-
guided decoding, and DeepLabv3+ delivers superior semantic understanding through 
multiscale context aggregation. The comparative evaluation of these models in the context 
of remote sensing segmentation forms the empirical foundation of this study. 

4. Experimental Design and Evaluation 
This section outlines the experimental setup used to evaluate the performance of the 

selected deep learning models — U-Net, SegNet, and DeepLabv3+ — son high-resolution 
aerial imagery. We provide details on the dataset, training configurations, evaluation met-
rics, and present a comprehensive performance analysis under various operational con-
ditions. 

4.1. Dataset and Preprocessing 
We employ the ISPRS Potsdam dataset, a widely recognized benchmark for semantic 

segmentation in the remote sensing domain. The dataset consists of 38 ortho-rectified aer-
ial image tiles with a spatial resolution of 5 cm per pixel. Each tile includes four spectral 
bands (R, G, B, NIR) and pixel-level annotations for six semantic classes: buildings, trees, 
low vegetation, impervious surfaces, cars, and clutter/background [4]. 

For this study, the dataset is split into three partitions: 24 tiles for training, 6 for vali-
dation, and 8 for testing. To improve model generalization and robustness, extensive data 
augmentation techniques are applied, including random cropping, horizontal and vertical 
flipping, rotation, brightness adjustment, and Gaussian noise injection. All images are 
resized or tiled into 512 × 512 patches before being fed into the model to accommodate 
GPU memory constraints and support batch-based training. 

4.2. Implementation Details 
All models are implemented in TensorFlow 2.16 and trained on a high-performance 

workstation equipped with an NVIDIA TITAN X GPU, 64 GB RAM, and an Intel Xeon 
CPU. The Adam optimizer is used with an initial learning rate of 0.001 and a weight decay 
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of 1e-5. A cosine annealing learning rate schedule is employed, and early stopping is ac-
tivated after 15 epochs of non-improvement on the validation set. 

To handle class imbalance and enhance segmentation precision, a hybrid loss func-
tion combining categorical cross-entropy and Dice loss is adopted. This joint loss formu-
lation balances pixel-wise prediction accuracy with region-wise overlap, improving per-
formance on small and infrequent object classes. 

4.3. Evaluation Metrics 
We evaluate the models using three standard segmentation metrics: 
Overall Accuracy (OA): The proportion of correctly classified pixels over the total 

number of pixels. 
Mean F1 Score: The average harmonic mean of precision and recall computed inde-

pendently for each class. 
Kappa Coefficient (κ): A statistic that measures inter-rater agreement adjusted for 

chance, particularly useful in multi-class classification. 
Additional analyses, such as per-class performance, confusion matrices, inference 

time, and parameter efficiency, are conducted to provide a nuanced understanding of 
model strengths and limitations. 

4.4. Quantitative and Qualitative Results 
The comparative results of the three models are summarized in Table 1. DeepLabv3+ 

demonstrates the highest performance across all metrics, achieving an overall accuracy of 
90.1%, a mean F1 score of 0.89, and a Kappa coefficient of 0.88. U-Net performs competi-
tively, especially considering its compact architecture and lower computational require-
ments, while SegNet trails slightly due to less effective spatial feature reconstruction. 

Table 1. Overall Performance Comparison on ISPRS Potsdam Test Set. 

Model Overall Accuracy Mean F1 Score Kappa Coefficient 
U-Net 89.2% 0.88 0.87 
SegNet 88.5% 0.87 0.86 

DeepLabv3+ 90.1% 0.89 0.88 
Per-class performance is illustrated in Figure 1, which highlights DeepLabv3+’s 

strength in segmenting impervious surfaces and vehicles — typically challenging due to 
their fine-scale nature and spectral similarity to other classes. U-Net excels in capturing 
vegetation and tree cover, while SegNet displays stable but relatively subdued perfor-
mance across categories. 

 
Figure 1. Per-class F1 Scores for U-Net, SegNet, and DeepLabv3+. 
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Qualitative segmentation maps are shown in Figure 2, where DeepLabv3+ exhibits 
clean boundary delineation and minimal artifact generation. U-Net occasionally over-
smooths object edges, while SegNet tends to miss smaller structures. 

 
Figure 2. Qualitative comparison of segmentation outputs. 

A paired t-test confirms the statistical significance of DeepLabv3+’s superior perfor-
mance (p < 0.01) compared to the other two models across the test set. 

The following subsections will analyze model behavior under adversarial conditions, 
such as resolution degradation and noise injection, and investigate computational effi-
ciency to further support comparative insights. 

4.5. Robustness to Resolution Degradation and Noise 
To assess the real-world applicability of the models under suboptimal conditions, we 

evaluate their robustness to spatial resolution degradation and synthetic noise. This anal-
ysis is crucial for deployment in scenarios where image quality is affected by atmospheric 
disturbances, compression artifacts, or sensor limitations. 

4.5.1. Resolution Analysis 
We resample the ISPRS Potsdam dataset to three spatial resolutions: 128 × 128, 256 × 

256, and the original 512 × 512. Table 2 summarizes the performance drop associated with 
reduced input resolutions. All models experience a decline in accuracy and F1 score, but 
DeepLabv3+ consistently retains higher resilience due to its multi-scale feature aggrega-
tion. U-Net maintains a balance between detail retention and computational cost, while 
SegNet shows a more pronounced degradation. 

Table 2. Accuracy vs. Resolution for All Models. 

Model 128 × 128 OA 256 × 256 OA 512 × 512 OA 
U-Net 84.3% 87.1% 89.2% 
SegNet 83.5% 86.0% 88.5% 

DeepLabv3+ 85.9% 88.3% 90.1% 

4.5.2. Noise Robustness 
We simulate Gaussian noise (mean = 0, variance = 0.01) and salt-and-pepper noise 

(density = 0.03) on the test images and record the segmentation metrics. Figure 3 presents 
the comparative performance drop across models. DeepLabv3+ again demonstrates the 
highest tolerance to noise, particularly for boundary-sensitive classes. U-Net shows mod-
erate resilience, while SegNet’s performance is most affected. 
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Figure 3. Model Robustness to Noise Perturbations. 

These experiments highlight the importance of contextual awareness and feature re-
use for maintaining segmentation performance under degraded input conditions. Future 
research could explore noise-aware training schemes or uncertainty modeling for im-
proved robustness. 

4.6. Computational Efficiency and Model Complexity 
Table 3 provides a breakdown of each model's training time, inference latency, 

memory footprint, and parameter count. U-Net offers the best trade-off between accuracy 
and efficiency, making it suitable for real-time and edge deployments. DeepLabv3+, while 
most accurate, demands greater resources due to its deep backbone and ASPP module. 

Table 3. Efficiency and Complexity Analysis. 

Model. 
Training 

Time (hrs) 
Inference Time 

(ms/img) 
Peak GPU 

Memory (GB) 
Parameters 

(M) 
U-Net 10 50 4.2 7.8 
SegNet 12 55 5.8 29.5 

DeepLabv3+ 15 60 7.6 44.3 
These insights support model selection based on deployment constraints, balancing 

speed, memory, and accuracy. Quantized or pruned versions of these architectures offer 
promising directions for future work. Figure 4 further visualizes these trade-offs, offering 
a clear comparison of runtime and parameter efficiency across the evaluated models. 

https://doi.org/10.71222/15ra5x93


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 2 (2025) 8  https://doi.org/10.71222/15ra5x93 

 

Figure 4. Model Efficiency and Complexity Analysis 

5. Advanced Strategies for Model Enhancement 
To further improve segmentation performance, generalizability, and deployment 

readiness in remote sensing scenarios, we investigate three advanced strategies: hybrid 
model architecture design, representation learning via self-supervised and transfer learn-
ing, and exploratory benchmarking with Transformer-based models. 

5.1. Hybrid Model Design 
While U-Net offers fine spatial detail and DeepLabv3+ provides strong contextual 

modeling, neither alone is optimal across all classes and input conditions. We propose a 
hybrid architecture that integrates the spatial skip connections of U-Net with the ASPP 
module of DeepLabv3+. This combination enables simultaneous preservation of high-res-
olution features and robust multi-scale context aggregation. 

The encoder extracts hierarchical features via convolution and downsampling, which 
are fed into a DeepLab-style ASPP block. The resulting multi-scale feature maps are fused 
with corresponding decoder layers through U-Net-like skip connections. Extensive exper-
iments demonstrate this design improves boundary accuracy and overall segmentation 
robustness without substantial computational overhead. 

5.2. Self-Supervised and Transfer Learning 
Label scarcity is a persistent challenge in remote sensing, particularly in domains 

such as disaster monitoring and agricultural analytics. To mitigate this, we leverage self-
supervised pretraining using masked image modeling and contrastive learning. Models 
are trained to predict missing image patches or align positive and negative feature em-
beddings, enabling them to learn domain-relevant representations without explicit labels. 

We also explore transfer learning from large-scale datasets such as BigEarthNet and 
DeepGlobe. Fine-tuning pretrained encoders on the Potsdam dataset leads to a consistent 
improvement in convergence speed and accuracy, particularly for underrepresented clas-
ses like vehicles. 

5.3. Emerging Transformer Architectures 
Recent advancements in vision Transformers have demonstrated strong performance 

in dense prediction tasks. We conduct a preliminary benchmark of SegFormer, a Trans-
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former-based model, and observe a slight improvement over DeepLabv3+ in overall ac-
curacy (91.2%). However, this comes at the cost of increased training time and memory 
usage. 

These findings suggest that Transformers hold potential for remote sensing applica-
tions but require architectural optimization and hardware-aware training strategies to be 
viable in real-time or large-scale deployments. 

6. Conclusion and Future Work 
In this study, we conducted a comprehensive investigation into the application of 

deep learning models for semantic segmentation of high-resolution remote sensing im-
agery. We benchmarked three widely used architectures — U-Net, SegNet, and 
DeepLabv3+ — on the ISPRS Potsdam dataset, systematically evaluating their perfor-
mance in terms of accuracy, computational efficiency, robustness to noise and resolution 
variation, and category-specific behavior. 

Our results demonstrate that DeepLabv3+ achieves the highest overall accuracy, ow-
ing to its powerful multiscale contextual aggregation via atrous convolutions and the 
ASPP module. U-Net performs competitively, especially in retaining spatial details, while 
offering superior efficiency and low memory usage, making it suitable for resource-con-
strained deployment. SegNet, though less accurate, maintains stability across classes and 
benefits from a simpler decoding mechanism. 

To enhance performance beyond baseline architectures, we proposed a novel hybrid 
model that combines the strengths of U-Net and DeepLabv3+. This model showed im-
provements in edge delineation and general robustness. Furthermore, we demonstrated 
the utility of self-supervised pretraining and transfer learning in overcoming data scarcity, 
particularly for small or underrepresented classes. Preliminary exploration of Trans-
former-based architectures, such as SegFormer, revealed their strong potential, albeit with 
higher computational demands. 

Looking forward, several directions merit further exploration: 
Architectural Innovation: Designing lightweight Transformer-CNN hybrids opti-

mized for high-resolution imagery and embedded systems. 
Multimodal Fusion: Integrating optical data with LiDAR, SAR, and hyperspectral in-

puts to enrich spatial and spectral representation. 
Uncertainty Quantification: Incorporating probabilistic modeling or Bayesian deep 

learning to capture predictive uncertainty and support risk-sensitive decision-making. 
Domain Adaptation and Generalization: Developing methods to enable robust 

model transfer across geographical regions, sensor types, and seasonal variations. 
Interactive and Active Learning: Leveraging human-in-the-loop frameworks to re-

duce annotation cost and improve model refinement. 
In conclusion, this work contributes both empirical insights and methodological ad-

vances toward building more accurate, efficient, and generalizable remote sensing seg-
mentation models. The proposed strategies and comparative benchmarks can guide prac-
titioners and researchers in selecting and designing models tailored to specific operational 
contexts. 
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