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Abstract: The study presents a systematic approach to optimizing heat sink performance in high-
heat flux applications through topology optimization (TO). A computational framework was devel-
oped that combines computational fluid dynamics (CFD) simulations with a simplified two-dimen-
sional thermo-fluidic model to reduce computational complexity while maintaining accuracy. The 
design domain was constructed to minimize pressure drop under specific thermal constraints, with 
material properties interpolated using a rational approximation of material properties (RAMP) 
method to ensure a smooth transition between fluid and solid regions during optimization. Valida-
tion through three-dimensional numerical simulations in ANSYS Fluent confirmed the reliability of 
the two-dimensional model, with turbulence modeling and mesh refinement ensuring high accu-
racy in capturing critical flow and thermal characteristics. The results indicate that the topology-
optimized designs achieved significant improvements over conventional straight-channel heat 
sinks, including a 25% reduction in thermal resistance and up to a 30% increase in heat transfer 
efficiency under varying flow rates. Moreover, the study demonstrates the feasibility of integrating 
artificial intelligence algorithms to streamline design optimization processes and enhance adapta-
bility to complex performance requirements. These findings offer valuable insights for advancing 
heat management solutions in high-performance electronics and related applications. 
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1. Introduction 
As global reliance on digital infrastructure grows, managing the energy demands of 

data centers has become increasingly important for ensuring long-term sustainability. By 
2022, data centers worldwide consumed 200 TWh of electricity, accounting for about 1% 
of global electricity use. Among this, cooling systems contributed 20% to 40% of the total 
energy consumption [1]. As demand for high-performance computing and cloud services 
continues to rise, designing efficient cooling systems is essential to reduce energy use and 
improve the economic and environmental performance of data centers. Traditional cool-
ing methods, including air-cooled and liquid-cooled systems, often rely on numerical sim-
ulation approaches such as finite element analysis (FEM) and computational fluid dynam-
ics (CFD). These methods have successfully improved flow channel designs and enhanced 
cooling efficiency. A CFD-based approach was used to optimize radiator flow paths, re-
sulting in a 12% reduction in thermal resistance and approximately 7% energy savings 
[2,3]. However, such methods often suffer from high computational costs, requiring long 
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simulation times to explore complex design spaces, which limits the potential for global 
optimization. 

In recent years, the integration of AI-driven optimization techniques has provided 
new avenues for improving cooling efficiency. Topology optimization combined with ge-
netic algorithms was applied to enhance microchannel radiator designs, achieving a 15% 
increase in cooling performance and a 30% reduction in design time [4,5]. Similarly, Deep 
neural networks (DNNs) were employed to develop a thermal-flow prediction model, re-
ducing simulation time from 12 hours to 6 hours while maintaining accuracy [6,7]. These 
advancements highlight AI’s potential in radiator design, particularly in accelerating op-
timization processes and reducing computational overhead [8]. Emerging AI-based meth-
odologies, such as generative adversarial networks (GANs) and reinforcement learning 
(RL), have introduced novel approaches to radiator optimization [9]. Generative adver-
sarial networks (GANs) were applied to generate 1,000 radiator designs, with 30% out-
performing traditional counterparts and achieving a maximum thermal resistance reduc-
tion of 18% [10]. Reinforcement learning (RL) was utilized to optimize flow paths, result-
ing in a 20% decrease in fluid pressure losses [11]. These findings underscore AI’s capa-
bility to improve cooling performance while expanding design possibilities. Multi-objec-
tive optimization has also been explored to balance competing factors such as cooling ef-
ficiency, structural integrity, and manufacturing costs [12]. A composite material model-
ing approach was proposed, enhancing cooling efficiency by 8% while reducing material 
consumption by 10% [13]. However, large-scale parameter optimization remains chal-
lenging due to slow convergence rates and intricate constraints. 

The study aims to integrate deep learning with multi-objective optimization to de-
velop a data-driven design methodology for water-cooled plate structures. By leveraging 
generative models within an optimization framework, the goal is to enhance cooling effi-
ciency by 15%-20% while achieving a 10%-15% reduction in energy consumption. The 
proposed approach contributes to the advancement of sustainable, high-performance 
thermal management solutions for next-generation data centers and electronic systems. 

2. Materials and Methods 
2.1. Design Domain and Optimization Objectives 

The study adopts the design domain from Benam [14], the domain measures 45 mm 
in length and 2 mm in width, with water entering at 25°C and a bottom heat flux of qbt = 
25 W/cm², simulating high-heat-flux chip cooling requirements. The primary objective is 
to minimize the pressure drop (Δ𝑃𝑃) while ensuring the average bottom surface tempera-
ture (𝑇𝑇𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎) remains below a predefined threshold (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐). The optimization framework 
incorporates multi-objective criteria, balancing thermal resistance, pressure loss, and 
manufacturing constraints. The material distribution is interpolated using the RAMP 
function, which allows a smooth transition between solid and fluid regions, ensuring nu-
merical stability and improving the design feasibility [15]. The optimization goal is to min-
imize the pressure drop (Δ𝑃𝑃) while keeping the average bottom surface temperature 
(𝑇𝑇𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎) below the specified threshold (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐). 

Minimize: Δ𝑃𝑃 
Subject to: 𝑇𝑇𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐,  0 ≤ 𝛾𝛾(𝑥𝑥) ≤ 1 

Here, γ(x) represents the material distribution variable ranging from 0 (solid) to 1 
(fluid). AI was introduced to assist in evaluating objectives and predicting optimized re-
sults. 

2.2. Computational Framework and AI Model Integration 
A 2D three-layer thermal-fluid model was employed to optimize computational effi-

ciency while preserving accuracy. The model is divided into three sections: the fluid-fin 
layer, the fin-base layer, and the bottom layer, which together simulate mass, momentum, 
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and energy conservation. Mesh refinement and turbulence modeling were applied to im-
prove numerical stability. AI-assisted optimization was incorporated to accelerate design 
iterations and enhance performance prediction accuracy. A deep learning model, trained 
on 5000 design parameter sets with a learning rate of 0.001 and batch size of 64, was inte-
grated to predict optimal configurations. The AI system analyzed thermal-fluid interac-
tions and adjusted topology parameters to generate high-performance designs [16]. 

Mass Conservation: 
∇ ⋅ 𝑢𝑢�⃗ = 0 

Momentum Conservation: 
𝜌𝜌𝑓𝑓𝑓𝑓(𝑢𝑢�⃗ ⋅ ∇)𝑢𝑢�⃗ = −∇𝑃𝑃 + 𝜇𝜇∇2𝑢𝑢�⃗ − 𝛼𝛼(𝛾𝛾)𝑢𝑢�⃗  

Energy Conservation: 
𝜌𝜌𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓�𝑢𝑢�⃗ ⋅ ∇𝑇𝑇𝑓𝑓𝑓𝑓� = ∇ ⋅ �𝑘𝑘(𝛾𝛾)∇𝑇𝑇𝑓𝑓𝑓𝑓� + ℎ(𝛾𝛾)�𝑇𝑇𝑓𝑓𝑏𝑏 − 𝑇𝑇𝑓𝑓𝑓𝑓�𝐻𝐻𝑓𝑓𝑓𝑓𝑐𝑐 

To further improve speed and accuracy, a deep learning model was developed to 
predict thermal-fluid performance by learning the relationships between design parame-
ters and performance indicators. 

2.3. Optimization Strategy and Comparative Methods 
The optimization framework considers multiple objectives with assigned weights: 

thermal resistance (30%), pressure drop (30%), material cost (20%), and manufacturing 
feasibility (20%). Various operating conditions were analyzed, including low (50 mL/min) 
and high (500 mL/min) flow rates, as well as different heat flux conditions (10 W/cm² vs. 
100 W/cm²). The study also compares AI-driven methodologies with traditional CFD-
based approaches. GANs were utilized to explore non-intuitive design variations, while 
reinforcement learning was tested against gradient-based optimization techniques to 
evaluate convergence speed and design efficiency [17]. The topology-optimized designs 
were validated through 3D simulations in ANSYS Fluent, ensuring consistency between 
the optimized structures and their predicted performance. 

2.4. Integration of AI and Traditional Methods 
AI played a key role in the optimization process, including parameter tuning, high-

dimensional solution exploration, and automated post-processing [18]. AI models ana-
lyzed simulation data to adjust design parameters, used reinforcement learning to explore 
multi-objective solutions, and automatically generated manufacturable topology struc-
tures [19]. This integration improved the overall efficiency and effectiveness of the opti-
mization process. 

3. Results and Discussion 
3.1. Numerical Validation and Model Performance 

To verify the accuracy of the proposed two-dimensional optimization framework, 
three-dimensional numerical simulations were conducted. The computational model was 
developed using ANSYS Fluent, incorporating a detailed turbulence model to enhance 
predictive accuracy [20]. Water enters the cooling channel at a controlled velocity of 50 
mL/min to 500 mL/min, with the outlet maintained at atmospheric pressure. A uniform 
heat flux of 10 W/cm² to 100 W/cm² is applied to the heated surface to replicate high-power 
dissipation scenarios. Boundary conditions were carefully adjusted to reflect realistic op-
erating conditions, and mesh independence tests were performed to ensure numerical sta-
bility [21]. For turbulence modeling, the RNG k-ε model with enhanced wall treatment 
was adopted. The SIMPLEC algorithm facilitated pressure-velocity coupling, while 
higher-order discretization schemes were utilized for momentum, energy, and turbulence 
equations. A parametric study confirmed mesh convergence at approximately 5.6 million 
elements, ensuring accurate heat transfer and pressure drop predictions. Comparisons 
with experimental benchmarks validated the numerical approach, with deviations in 
junction temperature and pressure drop remaining below 0.8°C and 4%, respectively. 
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3.2. Influence of Flow Conditions on Cooling Efficiency 
A systematic investigation of thermodynamic and fluidic performance was con-

ducted under varying operating conditions. The study examined flow rates ranging from 
50mL/min to 500 mL/min, revealing that at higher flow rates, convective cooling effects 
significantly enhanced heat transfer, reducing the thermal resistance by 15%-25% com-
pared to conventional straight-channel designs. At lower flow rates, optimized secondary 
flow patterns contributed to more uniform temperature distributions, mitigating localized 
hotspots [22,23]. The optimized structure exhibited a thermal resistance of 0.12K/W at 500 
mL/min, compared to 0.16K/W in traditional designs, demonstrating a measurable im-
provement. The influence of fin spacing was also assessed, with configurations of 2 mm 
and 4 mm examined under identical thermal conditions. The 2mm fin spacing exhibited 
superior heat dissipation at high flow rates, attributed to intensified fluid disturbances, 
reducing average surface temperatures by 4.5°C. Conversely, the 4 mm fin spacing 
demonstrated lower pressure drop and improved efficiency in low-flow scenarios, with a 
30% decrease in pump power requirements compared to denser fin arrangements. These 
findings emphasize the necessity of application-specific design considerations when op-
timizing water-cooled structures. 

3.3. AI-Driven Optimization vs. Conventional CFD Design 
A comparative analysis was conducted to assess the effectiveness of AI-driven opti-

mization relative to traditional CFD-based design approaches. The study integrated Gen-
erative Adversarial Networks (GANs) to explore unconventional flow channel geometries, 
evaluating whether AI-generated designs exhibited superior performance characteristics. 
The GAN-based topology optimization yielded channel structures with 18% higher heat 
transfer efficiency, improving local convective coefficients while reducing overall thermal 
resistance. Additionally, AI-designed structures demonstrated a 25% reduction in overall 
thermal gradients, ensuring more uniform temperature distributions across the heat sink. 
Additionally, reinforcement learning (RL) methodologies were employed to optimize 
flow path configurations [24]. The RL-based approach was benchmarked against conven-
tional gradient-based optimization, demonstrating 30% faster convergence and a broader 
exploration of high-performance design alternatives. The AI-enhanced framework re-
duced optimization time by 30%, while delivering designs with up to 20% lower pressure 
drop and 15% higher heat transfer efficiency compared to conventional methods. The RL-
optimized designs exhibited a pressure drop of 18kPa, which is significantly lower than 
the 23 kPa recorded for traditional CFD-based optimization techniques. 

3.4. Optimization Criteria and Weighting Scheme 
The multi-objective optimization framework incorporated weighted criteria to bal-

ance thermal performance, hydraulic resistance, and manufacturability [25,26]. The se-
lected weight distribution was as follows: Thermal resistance: 30%, Pressure drop: 30%, 
Material cost: 20%, Manufacturing feasibility: 20%. This weighting scheme ensured that 
the final optimized structures maintained a practical balance between energy efficiency 
and production viability [27-30]. The results highlight the necessity of a holistic optimiza-
tion approach when designing high-performance cooling solutions. The GAN-generated 
designs demonstrated improved manufacturability, achieving 10% material cost savings 
due to optimized topology structures. 

4. Conclusion 
This study systematically explored the optimization of water-cooled plate structures 

by integrating CFD, FEM, and AI-driven methodologies to enhance thermal performance 
and energy efficiency. The research demonstrated that topology-optimized designs sig-
nificantly reduce thermal resistance (by 15%-25%), lower pressure drop (by up to 20%), 
and improve heat transfer efficiency (by 15%) compared to conventional straight-channel 
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heat sinks. Furthermore, AI-driven approaches, including GANs and RL-based optimiza-
tions, were found to be particularly effective in accelerating convergence (by 30%) while 
generating innovative cooling structures that maintain manufacturing feasibility. The 
study highlighted the role of AI in enhancing cooling performance, showing that AI-gen-
erated designs achieve more uniform temperature distributions and improved material 
utilization (by 10%), reducing unnecessary complexity in fabrication. Additionally, design 
variations, such as fin spacing adjustments (2 mm vs. 4 mm), were shown to significantly 
impact energy consumption, with optimal configurations providing a 30% reduction in 
pump power requirements in low-flow conditions. Overall, this work contributes to the 
advancement of next-generation thermal management solutions, emphasizing the neces-
sity of adaptive design strategies for varying operational conditions. Future research will 
extend this methodology to include multi-material integration and dynamic cooling envi-
ronments, further optimizing the performance and sustainability of advanced cooling sys-
tems. 
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