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Abstract: The new framework that combines the low-altitude economy with high-speed transpor-
tation offers a practical and effective solution for modern city logistics systems. It shows strong po-
tential in boosting delivery efficiency, cutting costs, and reducing carbon emissions. This study fo-
cuses on Suzhou's logistics network, using a multi-goal optimization model and a smart scheduling 
system to assess how well the low-altitude economy works in different logistics situations. By com-
bining an ARIMA time series prediction model with a Long Short-Term Memory (LSTM) network, 
the study looks at how logistics needs change during busy times, bad weather, and emergency sit-
uations. The research uses different data sources to help drones and ground vehicles work together 
smoothly. The model includes three main measures: delivery efficiency (T), transportation costs (C), 
and carbon emissions (E), and shows the real benefits of the low-altitude economy through clear 
data analysis. The results show that in normal conditions, delivery efficiency increased to 97.9, trans-
portation costs dropped to 65.4, and carbon emissions fell to 58.2. During peak traffic and bad 
weather, delivery efficiency stayed strong at 85.5 and 80.3. The smart scheduling system managed 
resources well, keeping costs and emissions within safe limits (cost: 70.1-73.5; emissions: 61.8-67.9). 
Scheduling efficiency went up from 0.85 to 0.93, and resource use improved from 74.6% to 88.1%. 
The analysis showed a clear negative link between delivery efficiency and carbon emissions (-0.85) 
and a positive link between costs and emissions (0.78). This suggests the need to balance cost savings 
with environmental benefits. The suggested approach, combining the multi-goal optimization 
model with a smart scheduling system, not only helps Suzhou handle complex logistics challenges 
but also provides a useful model for other large cities, supporting the move towards faster, greener, 
and smarter city logistics systems. 
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1. Introduction 
The combination of the low-altitude economy with high-speed transportation has 

gained more attention in recent years. This new approach not only helps modern logistics 
systems improve but also offers fresh solutions for boosting logistics efficiency, cutting 
down costs and reaching carbon neutrality goals [1-3]. By linking drone logistics networks 
with traditional high-speed transportation systems, the low-altitude economy provides 
flexible and efficient logistics services, especially in complex urban settings [4]. However, 
many logistics systems still struggle with major challenges, including traffic jams in cities, 
slow delivery times, high costs and increasing pressure to reduce carbon emissions [5-8]. 
These issues highlight the need for a strong plan that balances logistics speed, cost savings 
and environmental benefits. 
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Most earlier studies focus on specific uses of the low-altitude economy, such as using 
drones for last-mile delivery [9-13], quick responses in emergency logistics [14], and ana-
lyzing costs and benefits in particular fields [15-17]. While these studies provide valuable 
insights, many remain limited to single-use cases and do not fully explore how the low-
altitude economy can work with high-speed transportation in more complex logistics net-
works [18]. There are still gaps in how to manage multi-location coordination, adjust re-
sources in real time and connect drones effectively with ground vehicles. Additionally, 
finding the right balance between fast delivery, low costs and reduced carbon emissions 
is still a key challenge for the low-altitude economy [19]. Many cities are now looking into 
how to make the low-altitude economy and high-speed transportation work together. The 
goal is to build "air-ground integrated" smart logistics networks that improve multi-mode 
transportation, use resources better and boost logistics performance [20-23]. Smart sched-
uling systems can help drones and ground logistics vehicles work together more smoothly. 
By using different types of data — like delivery orders, live traffic updates and weather 
forecasts — these systems can manage logistics resources better and improve scheduling 
[24]. Also, using models that look at different goals can help measure delivery speed, costs 
and carbon output, while testing how well the low-altitude economy works in different 
situations, including daily operations, busy periods and extreme weather [25]. 

This study introduces a new framework that combines the low-altitude economy 
with high-speed transportation. It aims to improve teamwork between drones and 
ground vehicles by using a smart scheduling system and a model that looks at multiple 
goals. The study focuses on three main aspects: delivery speed, costs and carbon emissions. 
A practical and data-focused method will be used to measure how effective the low-alti-
tude economy is in busy city logistics systems. The research also uses simulations to see 
how well this approach works in different logistics scenarios, giving useful data and ideas 
for building a smarter, faster and greener logistics system. Suzhou City is used as a case 
study to test how well the proposed framework works in a real urban logistics network. 
In Suzhou’s complex logistics environment, the study uses smart logistics systems and 
goal-focused models to make the logistics network more flexible and faster. It also looks 
into how the low-altitude economy can help cut costs and lower environmental impacts. 
The results of this study could provide new ideas for decision-makers, logistics companies 
and city planners, supporting the move toward more efficient and eco-friendly urban lo-
gistics systems. 

2. Materials and Methods 
2.1. Demand Analysis and Model Design 

This study examines the logistics transportation network in Suzhou, China, focusing 
on how the low-altitude economy can improve high-speed transportation. The main goal 
is to boost logistics efficiency, cut transportation costs and reduce carbon emissions by 
introducing a drone logistics system. The research uses historical data from major logistics 
companies in Suzhou (including order volumes, delivery frequency and delivery speed), 
road network data from the Suzhou Traffic Management Department, and weather data. 
The data covers the period from January 2023 to December 2023. 

For predicting demand, an ARIMA (AutoRegressive Integrated Moving Average) 
time series model is combined with a Long Short-Term Memory (LSTM) network to ana-
lyze how logistics demand changes during peak times, extreme weather and emergencies. 
During data processing, steps like cleaning data, removing outliers and standardizing in-
formation are applied to ensure the model receives consistent and reliable inputs. 

A multi-goal optimization model is created to maximize delivery speed, minimize 
transportation costs and cut carbon emissions. Key decisions in the model include setting 
drone flight paths, planning ground vehicle routes and allocating resources dynamically. 
The model considers many factors, such as drone flight limits, logistics center capacity, 
vehicle load restrictions and airspace regulations [26,27]. The model’s main formula is: 
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min𝑍𝑍 = 𝑤𝑤1𝑇𝑇 +𝑤𝑤2𝐶𝐶 + 𝑤𝑤3𝐸𝐸 
Where: 
1) 𝑇𝑇 is the logistics speed (minutes), 
2) 𝐶𝐶 is the transportation cost (CNY), 
3) 𝐸𝐸 is the carbon emissions (kgCO₂e), 
4) 𝑤𝑤1 , 𝑤𝑤2  and 𝑤𝑤3 are weight factors for different scenarios. 
Logistics Timeliness Model [28]: 

𝑇𝑇  =  �  
𝑁𝑁

𝑖𝑖=1

�
𝐷𝐷𝑖𝑖
𝑣𝑣𝑖𝑖
  +  𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙  +  𝑡𝑡𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙� 

Where: 
1) 𝐷𝐷𝑖𝑖 is the delivery distance for order i, 
2) 𝑣𝑣𝑖𝑖 is the transport speed, 
3) 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙 and 𝑡𝑡𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙 are loading and unloading times. 
Transportation Cost Model [29]: 

𝐶𝐶 = �(𝑐𝑐𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙𝑑𝑑 ⋅ 𝑑𝑑𝑖𝑖 + 𝑐𝑐𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡 ⋅ 𝐷𝐷𝑖𝑖 + 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 ⋅ 𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

Where: 
1) 𝑐𝑐𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙𝑑𝑑 , 𝑐𝑐𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡  and 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑  are unit costs for drones, trucks and labor, 
2) 𝑑𝑑𝑖𝑖 and 𝐷𝐷𝑖𝑖 are distances covered by drones and trucks, 
3) 𝑡𝑡𝑖𝑖 is the order completion time. 
Carbon Emission Model [30]: 

𝐸𝐸 = �(𝑒𝑒𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙𝑑𝑑 ⋅ 𝑑𝑑𝑖𝑖 + 𝑒𝑒𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡 ⋅ 𝐷𝐷𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

Where: 
1) 𝑒𝑒𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙𝑑𝑑 and 𝑒𝑒𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡 are carbon emission factors for drones and trucks per unit dis-

tance. 

2.2. System Construction and Optimization 
During the system setup, a low-altitude logistics network was built in Suzhou, in-

cluding drone take-off and landing spots, logistics hubs and small delivery centers. The 
study uses Geographic Information System (GIS) technology and Suzhou’s geographic 
data to plan how drone routes and ground logistics points connect. An edge computing-
based smart scheduling system is developed to analyze logistics orders, traffic conditions 
and weather data in real time, allowing for smooth coordination between drones and 
ground vehicles. The system uses multi-source data from camera feeds, vehicle GPS and 
weather reports to manage logistics resources efficiently. A mix of Genetic Algorithm (GA) 
and Ant Colony Optimization (ACO) methods is applied to find the best balance between 
speed, cost and carbon output. The AnyLogic simulation platform tests the system under 
different scenarios, including normal operations, peak traffic, and emergencies during ex-
treme weather. These tests measure how well the system adapts and performs in chal-
lenging conditions. 

2.3. Data Management and Analysis 
The smart scheduling system collects data from the low-altitude logistics network, 

including drone flights, ground vehicle movements and carbon emissions [31]. A Hadoop 
platform manages data storage, analysis and visualization. The study uses data analysis 
techniques like clustering and pattern detection to find ways to improve the logistics net-
work. 

Three key metrics are used for evaluation: delivery speed (T), transportation cost (C) 
and carbon emissions (𝐸𝐸). These metrics are measured through delivery times, cost anal-
ysis and carbon calculations. Machine learning tools, such as Random Forest and XGBoost, 
help model and predict important logistics data to support scheduling improvements. For 
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example, forecasting peak logistics demand in Suzhou allows for pre-emptive scheduling 
of drones and vehicles, improving resource use and efficiency. 

Scheduling Efficiency Model [32,33]: 

𝑆𝑆 =
1
𝑁𝑁
�

1
𝑡𝑡𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟𝑑𝑑𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

Where: 
1) 𝑆𝑆 is scheduling efficiency, 
2) 𝑡𝑡𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟𝑑𝑑𝑖𝑖  is the response time for order iii. 
Resource Utilization Model [34]: 

𝑈𝑈 =
∑ �𝑢𝑢𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙𝑑𝑑𝑖𝑖 + 𝑢𝑢𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖�
𝑁𝑁
𝑖𝑖=1

𝑁𝑁  
Where: 
1) 𝑈𝑈 is resource utilization, 
2) 𝑢𝑢𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙𝑑𝑑𝑖𝑖  and 𝑢𝑢𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖 indicate how drones and trucks are used for order i. 
Figure 1 shows the manned and unmanned coordinated/integrated operation sce-

nario. 

 
Figure 1. Manned and unmanned coordinated/integrated operation scenario. 

3. Results and Discussion 
3.1. System Performance in Different Logistics Scenarios 

The new framework, combining the low-altitude economy with high-speed transpor-
tation, improved the coordination between drones and ground vehicles in Suzhou's logis-
tics network. This study carefully examined how logistics efficiency, transportation costs 
and carbon emissions changed under different situations, including normal operations, 
busy traffic times and extreme weather (Figure 2). 

 
Figure 2. Correlation and Scenario-Based Analysis of Logistics Performance Metrics under Different 
Operational Conditions. 
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Figure 2 shows the "Scenario-Based Performance Metrics," covering logistics effi-
ciency, transportation costs and carbon emissions. During normal operations, logistics ef-
ficiency reached 97.9, transportation costs were 65.4, and carbon emissions were 58.2. In 
busy traffic, logistics efficiency dropped to 85.5. However, due to the fast and flexible 
drone deliveries, transportation costs and carbon emissions stayed relatively low at 70.1 
and 61.8. During extreme weather, logistics efficiency fell to 80.3, but the smart scheduling 
system kept transportation costs and carbon emissions at 73.5 and 67.9 by adjusting re-
sources as needed. This matches the findings of Lee [35], who pointed out that drones are 
especially useful in emergencies, offering a solid backup when regular ground transpor-
tation is affected. Other studies back up these findings. Yodsanit et al. showed that drones 
perform well in urban logistics during peak times [36]. Zhu et al. noted that drones im-
prove the stability and speed of logistics systems [37-39], especially in bad weather. The 
results of this study add to the evidence that the low-altitude economy is a good choice 
for handling tough logistics challenges in cities. 

3.2. Operational Efficiency and Resource Use 
The smart scheduling system helped analyze scheduling efficiency and resource use 

through "Operational Efficiency Metrics Under Different Scenarios" (Figure 3). In all 
tested scenarios, scheduling efficiency was above 0.80, hitting 0.98 during normal opera-
tions. Even during extreme weather, efficiency only dropped slightly to 0.85, showing 
how drones helped keep the system stable. Resource use was also strong, with 89.5% effi-
ciency during normal times. Even in heavy traffic and bad weather, resource use stayed 
above 85%, proving the scheduling system managed resources well. This strong perfor-
mance came from both the optimization model’s ability to find the best solutions and the 
scheduling system’s skill at using real-time data from logistics orders, traffic and weather. 
Lian et al. also found that in busy city environments [40], using data to guide decisions in 
smart scheduling systems can improve resource use and efficiency. Moreover, Chen et al. 
showed that edge computing can cut response times [41], which fits with this study’s in-
crease in scheduling efficiency from 0.85 to 0.93. This further confirms the value of using 
smart scheduling systems. 

 
Figure 3. Evaluation of Operational and Performance Efficiency Metrics in Various Logistics Sce-
narios. 

3.3. Data-Driven Decisions and Optimization Results 
The study showed clear benefits of using the low-altitude economy through data-

driven scheduling in different scenarios. In Suzhou, scheduling efficiency improved from 
0.85 to 0.93, and resource use increased from 74.6% to 88.1%. The smart scheduling system 
was particularly effective during busy times and extreme weather, allowing drones and 
ground vehicles to be used in the best way possible. This kept the logistics system running 
smoothly. The approach not only improved efficiency but also balanced cost control and 
environmental protection. The study also found a strong negative link (-0.85) between 
logistics efficiency and carbon emissions. This means that improving efficiency can effec-
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tively lower carbon emissions. On the other hand, the positive link (0.78) between trans-
portation costs and carbon emissions suggests that cost-saving efforts should also con-
sider the environmental impact to avoid unintended ecological damage. This finding 
agrees with earlier studies [42-46], who emphasized that including environmental factors 
in cost management helps meet sustainability goals. 

3.4. Practical Value and Recommendations 
The study results show that combining the low-altitude economy with high-speed 

transportation brings real benefits to Suzhou’s logistics system. For Policymakers: The 
priority should be to improve airspace management rules for drones, create clear low-
altitude flight standards and ensure the safe and efficient use of logistics drones [47,48]. 
For Logistics Companies: Businesses should use smart scheduling systems and prediction 
models to adjust resources early. By preparing for busy traffic and bad weather, compa-
nies can make the most of their resources, boost logistics efficiency and control costs ef-
fectively [49,50]. For Urban Planners: When building or updating logistics infrastructure, 
it is important to use performance data from different scenarios. Planning smart logistics 
hubs and drone landing spots can help connect air and ground logistics networks 
smoothly [51,52]. Overall, using the optimization model together with the smart schedul-
ing system not only helps Suzhou handle complex logistics challenges but also offers a 
useful example for other big cities [53]. This approach can make city logistics systems 
more efficient, eco-friendly and smart, supporting broader economic and green develop-
ment goals. 

4. Conclusion 
This study demonstrates that integrating the low-altitude economy with high-speed 

transportation can significantly enhance urban logistics systems, as evidenced by the prac-
tical application in Suzhou's logistics network. The proposed framework, combining a 
multi-objective optimization model with an intelligent scheduling system, effectively im-
proved logistics efficiency while reducing transportation costs and carbon emissions. The 
findings highlight the system's adaptability across different scenarios—including normal 
operations, peak traffic, and extreme weather—proving that drones can offer a flexible 
and reliable alternative when traditional ground transportation faces challenges. These 
results reinforce the practical value of smart logistics networks, showing how data-driven 
decisions and dynamic resource allocation contribute to maintaining operational stability 
and sustainability. 

Future studies could explore integrating advanced technologies such as edge com-
puting and machine learning to further enhance the precision and responsiveness of lo-
gistics systems. Additionally, applying this framework to different cities and evaluating 
its performance under various regulatory and operational conditions would provide 
broader insights into its scalability and adaptability. For policymakers, developing clear 
drone airspace management guidelines and low-altitude flight standards remains crucial. 
Logistics companies should leverage predictive analytics to optimize resource allocation 
proactively, while urban planners are encouraged to design infrastructure that supports 
seamless integration of air and ground logistics networks. This research not only advances 
the field of logistics management but also offers practical strategies to promote greener, 
more efficient and resilient urban logistics systems. 
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