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Abstract: The efficiency and accuracy of high-frequency trading strategies are increasingly empha-
sized in modern financial markets, especially in China's stock index futures market. Bayesian theory 
and probabilistic neural network algorithms have become important tools for constructing high-
frequency trading models because of their powerful predictive ability and adaptivity. By studying 
the minimum error rate and minimum risk Bayesian decision in Bayesian theory, as well as the 
structure and training methods of probabilistic neural networks, this thesis aims to develop a pair 
trading strategy for stock index futures based on high-frequency data. The division of dataset and 
the classification method of classically unbalanced dataset are the key steps of the research, through 
which the performance of the model is optimized and the effectiveness of the strategy is verified 
through back-testing experiments. This study not only improves the accuracy and stability of the 
high-frequency trading strategy, but also provides a new idea and method for quantitative trading 
in China's financial market. 
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1. Introduction 
The rapid development of China's stock index futures market has made high-fre-

quency trading strategies the focus of investors' attention. Bayesian theory and probabil-
istic neural network algorithms have gradually become important methods for construct-
ing high-frequency trading models by virtue of their superior performance in dealing with 
complex data and uncertainty problems. Bayes theorem updates the prior knowledge of 
the model through conditional probability, and minimum error rate Bayesian discrimina-
tion improves the predictive accuracy of the model by maximizing the probability of cor-
rect classification. And the minimum risk Bayesian decision not only pursues correct clas-
sification, but also considers the risk cost of different decisions. Probabilistic neural net-
work, as a kind of nonlinear classifier, can effectively deal with complex pattern recogni-
tion problems. Combining these theories and algorithms, this thesis constructs a pair trad-
ing strategy for stock index futures based on high-frequency data, aiming to improve the 
performance of the strategy through the optimization of the dataset and the comparison 
of the models, and to provide a reference for practical applications. 

2. A Study of Bayesian Theory and Probabilistic Neural Network Algorithms 
2.1. Bayes' Theorem 

Bayes' Theorem is a fundamental principle in probability theory used to update prior 
probabilities as new evidence emerges. This principle is particularly important in high-
frequency trading in the financial markets, as it helps traders adjust their strategies based 
on real-time data to better cope with market uncertainty. The Bayesian algorithm, on the 
other hand, is a statistical method based on Bayes' theorem that is widely used in forecast-
ing and decision making in financial markets. The algorithm updates the parameters of 
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the model by combining prior knowledge and new evidence to maintain high forecasting 
accuracy in a changing market environment [1]. In high-frequency trading, the Bayesian 
algorithm is able to efficiently process a large amount of real-time data and capture short-
term fluctuations and trends in the market by dynamically adjusting the model parame-
ters. Its principle is shown in Figure 1: 

 
Figure 1. Bayesian algorithm. 

Bayes' theorem is formally expressed as in equation (1): 
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Where P(A|B) denotes the posterior probability of event A occurring under the con-
dition of event B occurring, P(B|A) is the likelihood probability of event B occurring under 
the condition of event A occurring, P(A) is the prior probability of event A and P(B) is the 
marginal probability of event B. Through Bayes' theorem, the parameters of the trading 
model can be dynamically adjusted in the process of constant changes in market data, thus 
improving the accuracy of prediction. 

The core of Bayes' theorem lies in the calculation of conditional probability. In high-
frequency trading, conditional probabilities can be used to assess the impact of specific 
market signals on stock price movements. For example, assuming that event A indicates 
that the price of a stock will rise, and event B indicates that a technical indicator sends a 
buy signal, then P(A|B) can represent the probability that the stock price will rise in the 
event that the technical indicator sends a buy signal [2]. The calculation of this probability 
is based on historical data, and the predictive ability of the model can be gradually im-
proved by continuously updating the prior probability and likelihood probability. 

Bayesian decision theory further extends the application of Bayes' theorem. Mini-
mum error rate Bayesian discrimination is an important concept in classification problems 
in financial markets. Minimum error rate Bayesian discrimination selects the optimal de-
cision by maximizing the probability of correct classification. Specifically, for two catego-
ries C1 and C2, assuming x is an observed data point, the decision rule for the minimum 
error rate Bayesian discrimination is as in Equation (2): 

2,other;1C),|2()|1( chooseCwisechoosexCPxCPIF >    (2) 
This rule is particularly important in high-frequency trading because it helps traders 

make more accurate decisions in highly volatile and rapidly changing market environ-
ments. By comparing the posterior probabilities of different classes under a given ob-
served data point, the Minimum Error Rate Bayesian Discriminant effectively reduces the 
risk of misclassification and thus improves the robustness of trading strategies [3]. 

Minimum risk Bayesian decision-making not only considers the correctness of clas-
sification, but also the risk cost of decision-making. In the financial market, different trad-
ing decisions may bring different benefits and risks. Minimum risk Bayesian decision 
making measures the risk of a decision by introducing a loss function L, which is usually 
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defined as the loss incurred in case of misclassification. The decision rule for minimum 
risk Bayesian decision making is shown in Equation (3): 
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Where g(x) denotes the category selected under the observed data point x, L(k|i) is 
the loss of discriminating the category as k when the actual category is i, and P(i|x) is the 
posterior probability of category i under the observed data point x. By minimizing the risk, 
the Minimum Risk Bayesian Decision balances the return and risk, resulting in better per-
formance in real trading. 

2.2. Probabilistic Neural Network 
Probabilistic neural network (PNN) is a neural network model based on Bayesian 

theory, which is widely used in classification and regression tasks, as shown in Figure 2. 
Different from traditional neural networks, PNN smoothes the input data by Gaussian 
kernel function, thus showing high accuracy and stability in classification tasks.The struc-
ture of PNN consists of an input layer, a pattern layer, a summation layer, and an output 
layer, where each node in the pattern layer corresponds to a training sample, and the 
probability of each category can be obtained by calculating the similarity between the in-
put data and the training samples. This structure enables the PNN to effectively deal with 
noise and outliers in high-frequency data and improve the robustness of the model [4]. 

 
Figure 2. Probabilistic Neural Network (PNN). 

The application of PNN is particularly significant in high-frequency trading in finan-
cial markets. High-frequency trading data is characterized by short time intervals and 
high volatility, which puts high demands on the model's real-time performance and accu-
racy.PNN, by using Gaussian kernel function, is able to quickly capture the changes of the 
market signals, while maintaining the smoothness of the model and avoiding over-fitting. 
In addition, PNN excels in handling multi-featured inputs and is able to combine multiple 
market indicators and historical data to provide a more integrated and comprehensive 
classification result. This approach is not only effective in the stock market, but also widely 
used in the foreign exchange market, futures market and other financial fields [5]. 
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2.2.1. Parzen Window Method 
The Parzen window method, a non-parametric probability density estimation tech-

nique, is extensively employed in probabilistic neural networks (PNNs) to address intri-
cate input data distributions. This approach estimates the probability density of input data 
by defining a smooth kernel function around sample points. The essence of the Parzen 
window method lies in the judicious selection of the kernel function and bandwidth, 
which directly influences the accuracy and robustness of the probability density estima-
tion. In practical applications, the Gaussian kernel function is predominantly favored due 
to its smoothness and computational simplicity, enabling effective handling of volumi-
nous data in high-frequency trading. 

In the realm of high-frequency trading within financial markets, the Parzen window 
method facilitates the rapid detection of market signal variations by probabilistic neural 
networks, concurrently mitigating the impact of data noise on the model. High-frequency 
trading data is characterized by short time intervals and significant volatility, imposing 
stringent demands on the model's real-time performance and accuracy. By constructing a 
Gaussian kernel function around each training sample, the Parzen window method maps 
input data points to the probability density distribution of sample points, enabling PNNs 
to make precise classification decisions swiftly. This methodology is not only applicable 
to stock markets but also holds significant potential in foreign exchange, futures, and 
other financial domains [6]. 

The Parzen window method excels particularly in handling multi-feature inputs. By 
mapping multiple features to a multi-dimensional probability density distribution, PNNs 
can synthesize various market indicators and historical data, yielding more comprehen-
sive and holistic classification outcomes. Furthermore, the non-parametric nature of the 
Parzen window method allows it to adapt to data distributions under varying market 
conditions, circumventing the overfitting issues inherent in traditional parametric meth-
ods when data distributions shift. This adaptability endows PNNs with substantial prac-
tical value and broad application prospects in the dynamic and complex financial markets. 

2.2.2. Specific Algorithms for Probabilistic Neural Networks 
Probabilistic neural network (PNN) is an efficient classification algorithm based on 

Bayesian theory.The specific algorithm consists of four steps: normalization, calculating 
the pattern distance, activating the neurons of radial basis function of the sample layer, 
and setting the number of samples.The structure of the PNN consists of an input layer, a 
pattern layer, a summation layer, and an output layer. The input layer receives the sample 
data x to be classified and normalizes it to eliminate the difference in magnitude between 
different features. The normalization formula is (4): 

σ
µ−

=
x

normX             (4) 

Where µ and σ are the mean and standard deviation of the training data, respectively. 
Each node in the pattern layer corresponds to a training sample xi, and their similarity 

is determined by calculating the pattern distance between the input samples and the train-
ing samples. The formula for calculating the pattern distance is (5): 

norminormi xxd ,−=            (5) 

Where ⋅ denotes the Euclidean distance. The result of the pattern distance calcula-

tion is used to activate the Radial Basis Function (RBF) neurons in the pattern layer.The 
RBF is usually a Gaussian kernel function with the activation formula in (6): 
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The window width parameter σ controls the degree of smoothing of the Gaussian 
kernel function and has a significant impact on model performance. 
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The summation layer summarizes the outputs of the activated RBF neurons in the 
pattern layer and calculates the total similarity of each category. Let the number of train-
ing samples for category j be nj, then the total similarity Sj of category j is (7): 

∑
=

=
jn

i
ij dK

1
)(S             (7) 

This process yields the total similarity of each category by summing the similarity of 
all training samples within that category. The output of the summation layer is the total 
similarity of each category. 

The output layer calculates the probability of each category based on the result of the 
summation layer. The probability Pj of category j is (8): 

∑
=

= C

k
k

j
j

S

S

1

P             (8) 

where C is the total number of categories. The probability calculations are normal-
ized to ensure that the sum of the probabilities of all categories is 1, which facilitates the 
final classification decision. 

3. Pattern Recognition Model Based on High Frequency Data 
3.1. Data Set Segmentation 

Dataset division is an important step in machine learning in order to train and test 
the validity of the model. In this paper, the data for stock index futures from January 5 to 
January 9, 2016 are divided in detail. Specifically, the data from January 5 to January 8 is 
divided into a training set and a testing set, where 70% of the data is used as the training 
set and the remaining 30% is used as the testing set.The data from January 9 is used ex-
clusively for the testing set in order to evaluate the performance of the model on unknown 
data [7]. This division ensures the independence of the training and testing processes, 
while also providing a set of data without any training information for the final testing of 
the model. The up / down distribution of the training set is shown in Table 1. 

Table 1. distribution of ups and downs in the training set. 

Rise and fall distribution Frequency Scale 
flat 51,590 60.16% 
rose 17,144 19.99% 
fall 17,016 19.84% 

The data volume of the training set, test set and test set are 85,750, 36,750 and 31,600 
samples, respectively. Further analyzing the up and down distribution of the training set, 
it can be found that the number of flat samples is 51,590, accounting for 60.16% of the total 
number of samples in the training set; the number of up samples is 17,144, accounting for 
19.99%; and the number of down samples is 17,016, accounting for 19.84%. This distribu-
tion feature indicates that the number of flat samples in the training set is significantly 
larger than the number of up and down samples, forming a typical category imbalance 
dataset. The category imbalance problem is a common challenge in pattern recognition, 
and if such data are used directly for training, the model may tend to predict most cate-
gories, which leads to biased classification results. 

3.2. Classification Methods for Category Imbalanced Datasets 
3.2.1. Resampling Methods 

The resampling method is a commonly used classification strategy when dealing 
with category unbalanced datasets. Random oversampling increases the number of sam-
ples from a few classes by randomly selecting and replicating them to improve the balance 
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of the dataset. Although this method is able to increase the number of samples from a few 
classes, it does not provide new information and therefore may lead to an increase in the 
training time of the classifier. Especially in the case of more noise in the dataset, random 
oversampling is prone to trigger the overfitting problem, which makes the classifier gen-
erate the same minority class rules, thus affecting the generalization ability of the model 
[8]. The principle of the resampling method is shown in Figure 3. 

 
Figure 3. Principle of the resampling method. 

To overcome these limitations, researchers have proposed several improved 
resampling methods. One of them is the Synthetic Minority Over-Sampling Technique 
(SMOTE), which works by synthesizing new samples in the feature space of the minority 
samples instead of simply copying the existing samples.The SMOTE method is able to 
provide more information to the model while keeping the dataset balanced, reducing the 
risk of overfitting. 

3.2.2. Under-Sampling Method 
The undersampling method is a strategy to increase the degree of balancing of the 

dataset by removing samples from the majority class. Unlike oversampling methods, un-
dersampling achieves balance by reducing the number of majority class samples, as 
shown in Figure 4. Random undersampling is a basic undersampling method that can 
quickly simplify the dataset by randomly removing some of the majority class samples. 
However, a major drawback of this method is that important potential classification in-
formation may be lost, thus affecting the performance and classification ability of the clas-
sifier. 
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Figure 4. Under-sampling method. 

In order to overcome the shortcomings of random undersampling, Tomek proposed 
the Tomek pairwise method in 1976. The basic principle of this method is to reduce the 
interference of majority class samples with classification boundaries by identifying and 
removing those majority class samples that are adjacent to minority class samples. The 
Tomek pairing method is able to retain the portion of the majority class samples that are 
distant from the minority class samples, thus reducing the information loss and improv-
ing the robustness of the classifier while maintaining a balanced dataset. 

The undersampling method is important in pattern recognition of high-frequency 
data, especially when the number of majority class samples in the dataset far exceeds the 
number of minority class samples [9]. 

4. High-Frequency Trading Model Construction and Backtesting Experiments 
4.1. Evaluation of High-Frequency Trading Strategy Performance 

Performance evaluation of high frequency trading strategies involves a variety of 
metrics to ensure a comprehensive and scientific assessment. Yield is the core metric for 
evaluating a trading strategy and it reflects the profitability of the strategy. The rate of 
return is calculated as the profit of the trading strategy divided by its cost, but the rate of 
return itself can vary due to the effects of different time periods. In order to fairly compare 
the returns of different trading strategies, it is usually necessary to ensure that the length 
of time over which the return is calculated is consistent. In addition, the volatility of re-
turns is an important evaluation metric that measures the degree of volatility of a strate-
gy's returns, usually expressed as the standard deviation of the returns. The lower the 
volatility, the more stable the strategy is. 

Maximum retracement is another key metric that measures the maximum loss over 
a trading time period. Maximum retracement helps traders understand how a strategy 
performs in unfavorable market conditions and assess its potential maximum risk. In ad-
dition to this, the Sharpe Ratio is one of the commonly used evaluation metrics that as-
sesses the risk-adjusted return of a strategy by considering the difference between the 
strategy's rate of return and the risk-free rate of return, as well as its volatility. A higher 
Sharpe Ratio indicates that the strategy has a higher return for the same risk taken or a 
lower risk for the same return. 
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4.2. High Frequency Trading Strategy Construction 
The high-frequency trading strategy model is constructed based on the probabilistic 

neural network model derived from the comparative analysis in Chapter IV. The specific 
steps of the strategy are as follows: 

1) Feature Construction: At each moment, nine input features are constructed from 
the generated data, including bid-ask spread, sell-side depth, buy-side depth, 
difficulty of buy price change, price fluctuation range, percentage of upward 
movements, percentage of downward movements, buy-side order volume, and 
sell-side order volume. These features are designed to capture market dynamics 
and provide critical inputs for the model. 

2) Model Inference: The input features from the previous 10 ticks (corresponding 
to 5 seconds) are used as the characteristics of a new sample and fed into the 
pre-trained probabilistic neural network. Based on the network's assessment, if 
the probability of an upward movement exceeds 0.8, it is classified as a rise; if 
the probability of a downward movement exceeds 0.8, it is classified as a fall; 
otherwise, it is classified as a sideways movement [10]. 

3) Action Based on Classification: If the classification is a rise, a long position is 
established at the next tick (corresponding to 0.5 seconds) at the bid price, and 
the position is closed by establishing a short position at the ask price after hold-
ing for 6 ticks. 

4) Action Based on Classification: If the classification is a fall, a short position is 
established at the next tick at the ask price, and the position is closed by estab-
lishing a long position at the bid price after holding for 6 ticks (corresponding to 
3 seconds). If the classification is a sideways movement, no trade is executed. 

The strategy employs a time-based stop-loss and take-profit mechanism, meaning 
that positions are automatically closed upon reaching the holding time, with no other con-
ditions triggering a close. Through these steps, the high-frequency trading strategy is ca-
pable of swiftly reacting to market fluctuations, thereby enhancing both the accuracy and 
profitability of transactions. 

4.3. High Frequency Trading Backtest Results 
In this paper, the Bayesian discriminant model and probabilistic neural network 

model are investigated using data from January 5 to January 8, 2016 In the high-frequency 
trading backtesting experiments, the data from January 5 to January 8, 2016 are used to 
train the probabilistic neural network model, and the data from January 9 is used for 
backtesting. The backtest results show that the high-frequency trading strategy based on 
the threshold-based probabilistic neural network has high profitability, but there is a large 
volatility in the returns. This may be related to the failure to set a stop-loss strategy, espe-
cially when the price falls continuously, the loss of the strategy is more significant. By 
comparing the cumulative returns with the price movements, it was found that the strat-
egy's losses were higher when the price fell continuously, thus affecting the overall stabil-
ity. In order to improve this problem, a stop-loss mechanism was added to the original 
strategy: when there is a continuous significant price decline or increase, no trading is 
done. When the loss reaches 0.2%, a stop loss is implemented at the next tick and the trade 
is withdrawn to the next trading cycle. The adjusted backtest results show that after add-
ing the stop-loss strategy, the volatility of the strategy's return is significantly reduced and 
the overall performance is more stable. Figure 5 illustrates the backtest results without 
adding the stop-loss mechanism, showing that the strategy does have a higher rate of re-
turn in a given time period, but with higher volatility. 
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Figure 5. High-frequency trading strategy backtested returns. 

Figure 6 shows the backtest results after adding the stop-loss mechanism, showing 
that the cumulative return curve of the strategy is much smoother, which significantly 
reduces the large losses due to consecutive downturns. These results show that a reason-
able stop-loss strategy can effectively improve the robustness and profitability of the high-
frequency trading strategy and make it perform more robustly in the complex and chang-
ing market environment. With these improvements, the performance of the high-fre-
quency trading model is significantly enhanced, providing a stronger basis for practical 
applications. 

 
Figure 6. High-frequency trading strategy improved return charts. 

5. Conclusion 
Through in-depth study of Bayesian theory and probabilistic neural network algo-

rithm, this thesis successfully constructs a pair trading strategy for stock index futures 
based on high-frequency data. The reasonable division of the dataset and the effective 
treatment of the category imbalance problem significantly improve the classification per-
formance of the model. Comparative experiments between the Bayesian discriminant 
model and the probabilistic neural network model further verify the superiority of the 
algorithm. The results of high-frequency trading backtesting show that the strategy per-
forms well in actual trading, which not only improves the accuracy and stability of trading, 
but also provides new ideas for quantitative trading in China's financial market. Future 
research can further optimize the model parameters and introduce more market factors to 
enhance the generalization ability and practical application of the strategy. 

https://doi.org/10.71222/kg8qje98


Journal of Computer, Signal, and System Research https://www.gbspress.com/index.php/JCSSR 
 

Vol. 2 No. 1 (2025) 10 https://doi.org/10.71222/kg8qje98 

References 
1. J. Luo, Y. C. Lin, and S. Wang, "Intraday high-frequency pairs trading strategies for energy futures: Evidence from China," Appl. 

Econ., vol. 55, no. 56, pp. 6646–6660, 2023, doi: 10.1080/00036846.2022.2161993. 
2. C. He, T. Wang, X. Liu, et al., "An innovative high-frequency statistical arbitrage in Chinese futures market," J. Innov. Knowl., 

vol. 8, no. 4, p. 100429, 2023, doi: 10.1016/j.jik.2023.100429. 
3. Y. Y. Chen, W. L. Chen and S. H. Huang, "Developing Arbitrage Strategy in High-frequency Pairs Trading with Filterbank CNN 

Algorithm," 2018 IEEE International Conference on Agents (ICA), Singapore, 2018, pp. 113-116, doi: 10.1109/AGENTS.2018.8459920. 
4. J. H. Liou, Y. T. Liu, and L. C. Cheng, "Price spread prediction in high-frequency pairs trading using deep learning architec-

tures," Int. Rev. Financ. Anal., vol. 96, p. 103793, 2024, doi: 10.1016/j.irfa.2024.103793. 
5. X. Xu and Y. Zhang, "Neural network predictions of the high-frequency CSI300 first distant futures trading volume," Financ. 

Mark. Portf. Manag., vol. 37, no. 2, pp. 191–207, 2023, doi: 10.1007/s11408-022-00421-y. 
6. R. Chen and B. Pan, "Chinese stock index futures price fluctuation analysis and prediction based on complementary ensemble 

empirical mode decomposition," Math. Probl. Eng., vol. 2016, no. 1, p. 3791504, 2016, doi: 10.1155/2016/3791504. 
7. G. Li, X. Chen, and Y. Liu, "High-frequency lead-lag relationships in the Chinese stock index futures market: Tick-by-tick dy-

namics of calendar spreads," arXiv preprint arXiv:2501.03171, 2025, doi: 10.48550/arXiv.2501.03171. 
8. Y. Zhao and D. Wan, "Institutional high-frequency trading and price discovery: Evidence from an emerging commodity futures 

market," J. Futures Mark., vol. 38, no. 2, pp. 243–270, 2018, doi: 10.1002/fut.21888. 
9. J. Hao, X. Song, F. He, et al., "Price discovery in the Chinese stock index futures market," Emerg. Mark. Finance Trade, vol. 55, no. 

13, pp. 2982–2996, 2019, doi: 10.1080/1540496X.2019.1598368. 
10. Y. Hou and S. Li, "Volatility behaviour of stock index futures in China: A bivariate GARCH approach," Stud. Econ. Finance, vol. 

32, no. 1, pp. 128–154, 2015, doi: 10.1108/SEF-10-2013-0158. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 
 

https://doi.org/10.71222/kg8qje98
https://doi.org/10.1080/00036846.2022.2161993
https://doi.org/10.1016/j.jik.2023.100429
https://doi.org/10.1109/AGENTS.2018.8459920
https://doi.org/10.1016/j.irfa.2024.103793
https://doi.org/10.1007/s11408-022-00421-y
https://doi.org/10.1155/2016/3791504
https://doi.org/10.48550/arXiv.2501.03171
https://doi.org/10.1002/fut.21888
https://doi.org/10.1080/1540496X.2019.1598368
https://doi.org/10.1108/SEF-10-2013-0158

	1. Introduction
	2. A Study of Bayesian Theory and Probabilistic Neural Network Algorithms
	2.1. Bayes' Theorem
	2.2. Probabilistic Neural Network
	2.2.1. Parzen Window Method
	2.2.2. Specific Algorithms for Probabilistic Neural Networks


	3. Pattern Recognition Model Based on High Frequency Data
	3.1. Data Set Segmentation
	3.2. Classification Methods for Category Imbalanced Datasets
	3.2.1. Resampling Methods
	3.2.2. Under-Sampling Method


	4. High-Frequency Trading Model Construction and Backtesting Experiments
	4.1. Evaluation of High-Frequency Trading Strategy Performance
	4.2. High Frequency Trading Strategy Construction
	4.3. High Frequency Trading Backtest Results

	5. Conclusion
	References

