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Abstract: Three-dimensional reconstruction of remote sensing images represents a key research
direction in integrating geographic information systems (GIS) with remote sensing data. This study
proposes a comprehensive technical approach that combines deep learning techniques with GIS to
enhance the reconstruction of remote sensing imagery, addressing common challenges such as
limited accuracy, low efficiency, and difficulties in semantic interpretation. Specifically, an
improved U-Net network is employed to perform semantic segmentation on remote sensing images,
enabling the extraction of critical land feature information while preserving spatial and structural
details. Following feature extraction, a three-dimensional registration method is integrated with
dense point clouds to achieve high-precision terrain reconstruction, ensuring accurate spatial
alignment and continuity across the reconstructed surface. In addition, GIS-based procedures are
applied to perform spatial positioning, attribute integration, and three-dimensional visualization,
allowing the reconstructed terrain and land features to be effectively interpreted and analyzed
within a geographic context. Compared with traditional reconstruction methods, this integrated
approach demonstrates higher positioning accuracy, improved model fidelity, and superior
semantic reconstruction capabilities. By combining deep learning-based feature extraction with GIS-
enabled spatial analysis, the method offers a more effective and robust solution for three-
dimensional remote sensing reconstruction, providing enhanced applicability for geographic
analysis, environmental monitoring, and urban planning applications.
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1. Introduction

With the rapid development of remote sensing technology and computer vision
technology, how to obtain 3D spatial information based on 2D remote sensing images has
become a hot topic of concern in fields such as urban modeling, land planning, and
disaster monitoring. Traditional 3D reconstruction algorithms mainly utilize stereo image
pairs, geometric structures, and feature matching methods. When faced with complex
terrain, texture loss, heterogeneous mixed data, and other problems, they often result in
low matching accuracy, low running efficiency, and loss of semantic descriptions [1].

In recent years, the widespread application of deep learning in remote sensing image
semantic recognition, feature extraction, and structural reconstruction has greatly helped
in the establishment of 3D models. In addition, GIS, as a primary information carrier and
visualization tool, can achieve spatial positioning, attribute correlation, and 3D
visualization of model results. Based on the above conditions, a remote sensing image 3D
reconstruction method integrating deep learning and GIS platform is proposed. This
scheme mainly obtains more accurate and semantically rich remote sensing image 3D
reconstruction results through three core steps: semantic segmentation, 3D modeling, and
spatial combination, and explores the idea of intelligent remote sensing modeling.
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2. Theoretical Overview of Three Dimensional Reconstruction of Remote Sensing
Images

Remote sensing image 3D reconstruction refers to the process of extracting geometric
and spectral features from multi angle remote sensing images, reconstructing 3D models
of ground objects, including image registration, feature extraction, stereo matching, sparse
point generation, dense restoration, and model representation. The traditional method is
based on the idea of geometric photogrammetry, which calculates the disparity through
stereo geometric relationships to generate elevation data [2]. However, in areas with
monotonous terrain, severe shadows, and poor texture, the effect may not be satisfactory.

With the continuous development of deep learning technology, neural networks
have been widely applied in image segmentation, feature matching, and depth estimation.
They are applied in the field of remote sensing images and have higher levels of automatic
recognition ability and wider adaptability. In addition, GIS can provide various services
such as spatial reference structure, topological relationships, and attribute management,
allowing us to have more and rich spatial meaning information in addition to geometric
shapes in 3D data. Therefore, remote sensing 3D modeling is transitioning from spatial
geometry in the past to the integration of "geometry + semantics" for intelligent modeling,
and can provide more information for urban planning, environmental assessment, and
natural disaster management [3].

3. Construction of a Three-Dimensional Reconstruction Technology Framework for
Remote Sensing Images

3.1. Remote Sensing Data Preprocessing and Feature Extraction Process

In the process of 3D reconstruction of remote sensing images, data preprocessing and
feature extraction are the fundamental tasks to ensure modeling accuracy and efficiency.
Firstly, radiometric calibration, atmospheric correction, and geometric registration are
performed on the original remote sensing image data to reduce the negative impact of
perception devices and mitigate the influence of atmospheric factors, enhancing the
geometric and spectral consistency of the image. Secondly, carry out data matching work
to classify different sources and multi temporal data into the same spatial reference system
to ensure their spatial consistency [4]. The overall workflow of remote sensing data
preprocessing and feature extraction is illustrated in Figure 1.

L Radiation/ Multi source image -
Original remote i N . Image normalization and
. Atmospheric/ registration and ?
sensing images 3 enhancement processing
Geometric Correction cropping
Feature map output (for 3D Joint extraction of edge, texture, Ground cover extraction (buildings, Deep learning models (such as U-
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Figure 1. Flow Chart of Remote Sensing Data Preprocessing and Feature Extraction.

In the process of feature extraction, SIFT and SURF are usually used to manually
extract feature points for image processing. They are not suitable for complex textures and
geographic elements of complex scenes on large-scale remote sensing images. Therefore,
deep learning based semantic segmentation networks (such as improved U-Net) are used
to capture the boundary areas of ground elements (such as buildings, roads, vegetation,
etc.) without supervision and throughout the entire process, and generate high-quality
mask maps, providing precise positioning and refined geographic constraints for
subsequent 3D reconstruction. In addition, by simultaneously integrating grayscale,
boundary, and spatial positioning information, the structural features are represented at
multiple levels, making the reconstruction more stable and preserving details.
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3.2. Design of Image Semantic Analysis Model Driven by Deep Learning

In order to improve the accurate recognition and boundary extraction ability of land
cover areas in remote sensing images, a deep convolutional neural network structure
based on U-Net structure was introduced and an image semantic analysis block was built.
Due to the encoder decoder architecture of U-Net, it can accurately capture the details and
overall information of the image; Multiple resolution texture features were captured
during the encoding stage, and accurate semantic segmentation was achieved by restoring
spatial resolution through skip connections during the decoding stage. Regarding the
high-resolution and diverse land features of remote sensing images, structural
improvements are made to the traditional U-Net model. The overall framework of the
proposed deep learning semantic parsing model is illustrated in Figure 2. On the one hand,
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Figure 2. Framework diagram of deep learning semantic parsing model.

ResNet residual modules are added to the encoder to enhance the ability to represent
deep level information; On the other hand, an attention mechanism module
(AttentionGate) is introduced into the encoder to increase its ability to handle boundaries
and a small number of target objects. Using a combination of diversified cross entropy
and Dice coefficients as the loss function in the training process to improve prediction
accuracy under imbalanced categories. Based on this model, semantic mask maps can be
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output to accurately label the geographical locations of various land features such as
buildings, roads, rivers, and vegetation. Based on this, 3D models can be further screened
and constructed.

3.3. Three Dimensional Spatial Modeling and Expression Mechanism on GIS Platform

After the completion of three-dimensional reconstruction of remote sensing images,
it is necessary to combine the generated point cloud data with geographic location data to
obtain a data structure that can be visually recognized, computable, and serve research
needs, meeting practical requirements. GIS has powerful functions such as spatial
modeling, coordinate projection, attribute management, and visualization, which can
provide a standardized expression framework for 3D reconstruction results. This article
will use the ArcGis platform to register point cloud model coordinates and correct
elevations, and generate continuous terrain using the Triangular Irregular Network (TIN)
method [5].

In order to enhance the semantic expression ability of the model, the previously
obtained semantic segmentation results and GIS attribute table are correlated and mapped
to form a multidimensional information body containing "geometry + semantics + space".
Finally, building components, terrain, road networks, etc. are rendered using rendering
tools such as ArcScene or Cesium, as well as interactive operations such as rotation,
scaling, and slicing for users. This provides an intuitive and effective method to assist
applications such as urban design planning and natural disaster assessment.

4. Analysis of Key Issues in Three Dimensional Reconstruction of Remote Sensing
Images

4.1. Insufficient Spatial Registration Accuracy of Multi-Source Remote Sensing Images

For remote sensing image 3D reconstruction, the accuracy of data registration
directly affects the accuracy and visualization effect of subsequent models. Due to
significant differences in imaging time, perspective, resolution, and sensors among
different data sources such as satellites, aerial drones, and airplanes, there are common
issues such as geometric distortions, scale differences, and image offsets. The registration
method based on grayscale or feature points is prone to failure in areas with single terrain
texture or severe occlusion, leading to spatial data position deviation and greatly reducing
the integrity and restoration of the 3D model. Especially in urban areas, with tall buildings
and scattered terrain, there are significant differences in the vertical and lateral angle
changes of the sensors used to obtain images, and registration errors exhibit regional
distribution characteristics. Thus, it is necessary to improve the overall modeling accuracy
through precise and semantically guided registration techniques. A quantitative
comparison of registration errors across different remote sensing data sources is presented
in Table 1.

Table 1. Comparison of Registration Errors of Different Remote Sensing Images (Unit: Meter).

Plane Average
data sources . Matching method  registration maximum error
resolution
error
F-2 satellit
G2 satellite ¢ ) SIFT+RANSAC 125 231
imagery
RF + affi
Drone imagery 0.05m SU a 1'ne 0.89 1.52
transformation
Multi i
1'1 i source ) Semantic featu'res + 0.48 0.93
fusion results depth matching
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4.2. Noise Interference during the Densification Process of 3D Point Clouds

In the 3D modeling of remote sensing images, the construction of dense point clouds
is the core process, and its quality directly affects the geometric accuracy and visualization
effect of the model. However, in the actual operation process, due to texture repetition,
occlusion, light and shadow changes, or image registration errors, it often leads to a large
number of noise points, flying points, and blurry areas, which reduces the consistency
and authenticity of the model. In complex terrain areas, such as building surfaces, tree
edges, and other areas with more complex structures, point cloud densification algorithms
(such as PatchMatch, Semi Global Matching) cannot accurately process micro features and
texture reflections, which may result in point misalignment and unnecessary data
accumulation. In addition, boundary areas such as the surface and buildings, road
surfaces, and vegetation may also experience judgment errors due to depth estimation,
resulting in point cloud errors appearing in band and block distributions, which poses
difficulties for later grid creation and spatial analysis. Further semantic guidance and
filtering processing are needed at the algorithm level to avoid this. The distribution
characteristics and severity of densification noise in different scene regions are statistically
summarized in Table 2.

Table 2. Statistics of Point Cloud Densification Noise in Different Regions.

image Proportion of Fl?atlng point Rebuilding
area type . . o, density (per square .
source  noise points (%) Integrity
meter)
Building roof area .Drone 12.3 85.6 91.4%
imagery
Intersection of . GF-.Z 18.7 104.2 84.1%
Road and Trees  imaging
Open ground area Multi-source 4.6 35.8 97.8%

fusion

4.3. Difficulty in Fusing Semantic Information with Spatial Geometric Data

In order to achieve the goals of "computability" and "recognizability" in 3D models,
it is necessary to achieve deep fusion of semantic labels and geometric models for 3D
reconstruction in remote sensing images. However, due to the fact that semantic
information originates from the segmentation of 2D images, while geometric information
is based on a set of 3D points or mesh models, there are significant differences in
representation methods, scale consistency, and organizational forms between them.
Therefore, there are a lot of technical issues in the fusion process.

Firstly, semantic segmentation results are usually pixel level classification masks,
whose spatial resolution is not consistent with the point density of 3D reconstruction
results. If simply projected, it may result in blurred semantic label boundaries or
overlapping mismatches. Secondly, in complex land features such as buildings, roads, and
green spaces, it is difficult for semantic regions to fully correspond to geometric structures
due to construction errors or uncertainty in segmentation, which directly affects the
allocation of semantic attributes. Especially in the edge areas of land features, semantic
labels often run through several geometric planes at the same time, further exacerbating
problems such as semantic shift and spatial displacement. Thirdly, from the perspective
of data organization, 3D models are generally presented through point clouds, grids, or
voxels, while semantic information is organized through vectors, grids, and graphics.
Therefore, achieving efficient registration, projection, and fusion of the two requires the
use of complex coordinate transformation and interpolation methods, which will increase
the system's computational and semantic stability requirements. The current research still
lacks a universal and efficient "semantic geometric" fusion framework, and collaborative
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models need to be proposed from the aspects of network construction, spatial construction,
and platform support.

5. Optimization Strategy for 3D Reconstruction Effect of Remote Sensing Images

5.1. Optimize Spatial Registration Algorithm to Improve the Accuracy of Multi-Source Image
Fusion

To solve the problem of excessive registration deviation in 3D reconstruction of
multi-source remote sensing images, it is necessary to construct a high-precision
registration algorithm system that balances geometric consistency and semantic
constraints. On the basis of traditional feature point matching, this article introduces a
semantic assisted registration method dominated by deep learning, and introduces high-
level semantic information of land features (such as building boundaries and road axes)
to improve feature stability and achieve correct cross sensor connection registration of
different land features. The specific method is to use an improved U-Net network to
perform semantic segmentation on each source image, extract the dominant terrain area,
and construct a semantic mask. Adding matching optimization based on "semantic
consistency constraint” as the objective in the registration process to correct the matching
accuracy of traditional registration methods, such as compensating for row errors through
affine models based on semantic boundaries, in order to improve spatial positioning
consistency.

In the evaluation of registration errors, this article uses the Euclidean distance
formula for error calculation:

£ =% — %)% + (1 — ¥2)? 1)

Among them, € represents registration error; (x1, yl) and (x2, y2) are the pixel
coordinates of the same feature in two images, respectively. After testing, the average
error after integrating semantic constraints decreased from 1.25m to 0.48m, an increase of
61.6%. This not only improves the accuracy of registration, but also provides stable
support for subsequent 3D point cloud stitching and modeling work.

5.2. Guided Matching and Filtering Enhancement to Suppress Point Cloud Reconstruction Noise

A point cloud optimization method based on semantic guidance and spatial filtering
is proposed to address the problems of noise and floating points caused by occlusion,
weak texture, and perspective differences in the generation of dense point clouds. The
method constrains the generation area of point clouds through guided matching and
combines filtering mechanisms of different scales to greatly improve the accuracy and
continuity of point clouds. The specific method is as follows: firstly, based on the semantic
segmentation results obtained in the previous text, we will extract effective objects (such
as buildings, streets, etc.) from the construction area to eliminate the interference of
invalid areas on dense registration; Secondly, after completing the construction, voxel grid
filtering and statistical outlier removal will be used

Using methods such as oval to handle outliers with significant errors.

In a practical case, taking a reconstructed urban building point cloud from a drone
image as an example, the statistical filtering process is based on the following outlier
discrimination formula:

& =25l —pyll 0= 12, @

Among them, di is the average distance from point pi to its k neighboring points.
When di exceeds the global mean by two standard deviations, it is judged as a noise point
and removed. This method can reduce the proportion of noise points from 18.7% to 6.3%,
greatly improving the clarity of model boundaries and the continuity of structure,
providing better data support for grid modeling analysis.
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5.3. Building a Semantic Spatial Fusion Model to Enhance the Consistency of Three-Dimensional
Expression

To solve the difficulty of integrating semantic information and spatial geometric
expression information in the three-dimensional construction of remote sensing images,
this paper introduces a semantic spatial fusion model, which combines the feature
category information extracted based on deep learning with the three-dimensional point
cloud or grid structure. It not only preserves the geometric shape of the features, but also
embeds semantic labels, achieving a unified multidimensional expression of "geometry +
semantics". The specific process is as follows: firstly, the two-dimensional semantic mask
map and camera internal and external parameters are jointly calculated, and then the
semantic results are mapped onto the three-dimensional point cloud reconstructed by
projection transformation. At the same time, spatial consistency testing methods are used
to delete or reclassify points with multiple projections, thereby achieving consistent
expression of entity semantic space.

This article introduces the object-oriented GIS attribute structure, which converts
semantic labels into attribute fields with spatial topological relationships (such as
"building type", "road grade", "land use"), and binds them with 3D mesh models to
achieve the transformation from geometric models of 3D surfaces to information-based
semantic models. By utilizing 3D GIS platforms such as ArcScene or Cesium, the fusion
has the functions of attribute retrieval, hierarchical display, and composite analysis,
greatly enhancing the practical value of the model in design, supervision, and decision
support. This integration method not only provides three-dimensional model
representation and interactivity, but also lays a solid foundation for data and semantic
assurance in handling various complex problems such as urban digital twins, intelligent
transportation, ecological monitoring behavior, etc. in the future.

6. Conclusion

This research focuses on the fundamental challenges associated with the three-
dimensional reconstruction of remote sensing imagery. To address these issues, a
comprehensive modeling framework is proposed that effectively integrates deep learning
architectures with Geographic Information Systems (GIS). To ensure high modeling
precision, a consistent spatial reference, and the seamless transfer of geometric
information, this paper utilizes a semantic segmentation-based feature extraction method.
This approach optimizes the subsequent image matching and point cloud reconstruction
processes. Furthermore, GIS technology is employed to facilitate sophisticated 3D
visualization and deep semantic fusion.

The experimental results demonstrate that this integrated method possesses strong
applicability and significant practical value, particularly when dealing with complex
multi-source image datasets. By bridging the gap between raw pixel data and structured
spatial information, the proposed workflow enhances the reliability of digital twin
environments. Future research directions will explore the integration of Transformer-
based architectures to improve ground-level scene understanding and spatial context
awareness. Additionally, the joint reconstruction of Light Detection and Ranging (LiDAR)
data with multi-spectral remote sensing images will be investigated. These advancements
aim to further refine high-precision, intelligent 3D geographic data models, providing
more robust technical support for urban planning, environmental monitoring, and related
spatial information applications.
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