

International Journal of

Engineering Advances

Vol. 3 No. 1 (2026) 8

Article

High Reliability Architecture and Compliance Design of

Enterprise Level Financial Infrastructure

Yue Qi 1,*

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA

* Correspondence: Yue Qi, School of Computer Science, Carnegie Mellon University, Pittsburgh,

Pennsylvania, 15213, USA

Abstract: Along with the rapid evolution of the modern financial industry, enterprise-level financial

infrastructure must increasingly satisfy the dual demands of high-level security and stringent

regulatory compliance within the financial sector. This article focuses on the systematic construction

of an intelligent and highly efficient infrastructure, integrated with a comprehensive legal and

regulatory compliance framework. To significantly enhance system reliability, the study utilizes AI-

driven load scheduling and predictive analytics to achieve dynamic resource allocation and

intelligent capacity management. Simultaneously, the integration of edge computing technology

improves real-time response speeds and supports a robust fault-tolerant, self-healing operational

mode, ensuring continuous service availability. In terms of compliance and risk governance, this

research designs a standardized permission control model, an automated compliance auditing and

response algorithm, and a trusted audit framework capable of full-chain tracking. Through the

strategic application of these advanced technologies, the framework achieves enhanced data

security and operational transparency, effectively building a future-oriented financial infrastructure.

This research provides both a theoretical foundation and a practical implementation roadmap for

financial institutions seeking to optimize their underlying technical architecture while maintaining

rigorous adherence to industrial standards and safety protocols.

Keywords: financial infrastructure; high reliability architecture; compliance design; edge

computing; fault self-healing

1. Introduction

In the current era of rapid financial digitalization, enterprise-level financial

infrastructure faces unprecedented dual challenges. On one hand, the soaring volume of

daily transactions requires systems with extreme throughput capabilities; on the other

hand, increasingly stringent regulatory requirements necessitate sophisticated internal

controls and risk management protocols. Under these circumstances, ensuring

information system stability and strict compliance has become the cornerstone of business

continuity and comprehensive information security. Traditional architectural frameworks

often struggle to cope with the immense pressures of high concurrency and massive traffic

fluctuations, resulting in performance bottlenecks and increased operational risks.

Consequently, there is an urgent and critical need to explore and adopt innovative

technological approaches to enhance system performance and overall responsiveness.

This paper primarily focuses on the design of a highly efficient and stable

architectural framework based on the fundamental principles of intelligent load

scheduling, decentralized edge computing, and automated fault self-recovery

mechanisms. These technical components work in synergy to optimize resource

utilization and ensure system resilience under stress. Simultaneously, addressing the

necessity of regulatory adherence, this research proposes a robust governance layer based

on rule-driven access control, automated compliance inspection algorithms, and a multi-

Received: 04 November 2025

Revised: 25 December 2025

Accepted: 09 January 2026

Published: 12 January 2026

Copyright: © 2026 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 3 No. 1 (2026) 9

dimensional trusted audit system. By integrating these advanced methodologies, this

paper provides a comprehensive infrastructure design path that effectively balances high-

performance operational goals with rigorous compliance standards. Through detailed

analysis and structural optimization, the proposed framework aims to offer a reliable

technical roadmap for the sustainable development and digital upgrading of modern

financial information systems.

2. Overview of Enterprise Financial Infrastructure

2.1. Characteristics of Financial Infrastructure

Enterprise level financial service platforms have some unique attributes that together

ensure the stability of financial services and the reliability of the system. One of their core

attributes is high availability. Because financial transactions are highly time sensitive, a

few minutes or even a few seconds of downtime can cause huge losses. Redundant design

and automated fault recovery mechanisms need to be adopted to ensure the continuous

operation of the system and avoid service interruptions. With the development and

growth of business, the continuous increase in transaction and data volumes make

efficiency and scalability another two essential factors. To ensure efficiency, the system

must be capable of handling high transaction concurrency and fulfilling real-time data

query requirements; Meanwhile the system needs to provide elastic scalability to support

the growing transaction and data volumes, ensuring smooth operation in various business

environments. Due to the involvement of sensitive data in the financial system, protecting

data security and confidentiality has become a fundamental requirement [1]. Therefore,

financial infrastructure needs to adopt strict security measures, such as data encryption,

user authentication, and authorization management, to resist external attacks and prevent

internal information leaks.

2.2. Core Components of Financial Infrastructure

The trading engine is a core component of financial infrastructure, responsible for

processing transaction requests and matching orders. Excellent processing ability and

extremely short response time are required, especially in high-frequency trading and real-

time market environments [2]. Its performance directly affects trading efficiency and

liquidity of funds. The core modules and functions of enterprise level financial

infrastructure are shown in Table 1.

Table 1. Core modules and functions of enterprise level financial infrastructure.

Module name Technology composition Description of core functions

Load scheduling

system

LSTM model, scheduling

engine, feedback mechanism

Realize real-time prediction and

resource allocation to alleviate

resource bottleneck

Edge computing

nodes

Edge container, CDN cache,

local gateway

Reduce latency and improve high-

concurrency transaction processing

capabilities

Fault tolerance and

self-healing

mechanisms

Heartbeat detection,

master/backup switching,

service grid

Fault quick detection and recovery

to ensure service continuity

Permission control

framework

RBAC policy, authentication

gateway

Assign access rights to roles to

prevent overstepping and disclosure

Compliance detection

system

Rule engine, behavior

recognition model

Detect abnormal operation behavior

and respond automatically

Audit trace system
Distributed log system,

timestamp mechanism

Record the whole life cycle of

transactions and support regulatory

audit

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 3 No. 1 (2026) 10

For data generated on a large scale in financial business, such as transaction data,

customer information, market trends, etc., data storage systems need to have the ability

to process a large amount of data while ensuring data security to avoid data theft or

leakage. Usually, distributed databases and big data platforms are used to achieve

efficient access and storage of data. The network communication system is a component

of financial infrastructure, serving as a channel for data transmission between various

systems, with high concurrency and low latency transmission capabilities, while ensuring

the security of the data transmission process and preventing data tampering and leakage.

The security defense system ensures the security of transactions and data through

encryption technology, identity authentication, and access control, and predicts potential

risks in real time to protect the system from hacker intrusion and data leakage threats.

3. High Reliability Architecture Design for Enterprise Level Financial Infrastructure

3.1. Intelligent Driven Load Scheduling Design

The design of the intelligent load scheduling system revolves around a dynamic

resource allocation mechanism, mainly consisting of four functional modules: real-time

status monitoring, predictive analysis engine, scheduling decision center, and feedback

adjustment mechanism (the intelligent load scheduling process is shown in Figure 1).

Figure 1. Intelligent Load Scheduling Flow Chart.

In the system monitoring phase, the load information of each computing node (such

as CPU utilization, task queue size, network bandwidth utilization, etc.) is taken as input

and converted into time series data, which is transmitted to the long short-term memory

neural network prediction model in the prediction phase to generate a multidimensional

time series prediction model for predicting the load in the future [3].

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 3 No. 1 (2026) 11

The predicted results will be fed into the scheduling strategy engine, which uses a

dynamic weight based allocation algorithm. The formula is as follows:

𝑅𝑡 = 𝑓(𝐿𝑡 , 𝐶𝑡 , 𝑁𝑡) (1)

Among them, Rt is the amount of resources allocated at time t, Lt is the current

load at time t, Ct is the system's computing power, and Nt is the network bandwidth.

This mathematical expression constructs a flexible allocation of computing resources

based on parameters such as system operating load, processor performance, and

communication link quality.

In order to better utilize resources and obtain higher quality services, a task classifier

has been established, which will label tasks based on their attributes and assign

corresponding priorities to them. The scheduling engine will match the current resource

status through a priority weight matrix in each scheduling cycle to achieve fine-grained

resource allocation. The feedback system can flexibly adjust certain parameters in these

feedback data, such as time window size, weight coefficients, etc., so as to quickly respond

to sudden high loads and architectural changes, react quickly, and adjust response

strategies.

3.2. Fast Response Structure Supported by Edge Computing

It can be seen from the whole system architecture of edge computing that the design

needs to distinguish the functions of the main control end and each side control end. The

main control end is responsible for the core transaction logic, the main data warehouse

and cross regional data fusion tasks, and each side control end is responsible for local

transaction processing and data caching [4].

Each edge site deploys local computing resources and lightweight database

containers, which are managed uniformly through Kubernetes or edge native platforms.

This architecture also introduces a service registry that can automatically direct user

requests to the nearest edge site based on geographic location.

In order to improve efficiency and reduce the load on the core network, we have

developed a multi-layer caching mechanism (L1-L3), which first attempts to find user data

in the L1 cache, and then automatically adjusts the TTL according to its update frequency

to ensure the timeliness of the data. The estimation algorithm for the model is given below:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑒𝑑𝑔𝑒 + 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (2)

In the design, Ttotal is the total response time, Tedge is the time it takes to process

requests at the edge node, and Tnetwork is the transmission time of data from the edge

node to the user end. By processing most of the data at the edge nodes, the total response

time is greatly reduced.

Through the design of the above modules and processes, a fast response architecture

for low latency, high concurrency, and high redundancy has been constructed in financial

infrastructure, providing technical support for transaction level tasks.

3.3. Fault Tolerant Architecture Mechanism for Fault Self-Healing

To enable the system to have fast recovery capabilities to adapt to high trading

scenarios, a closed-loop, self driving self-healing system must be established. The overall

system should have an intelligent load scheduling system to ensure state linkage and

service continuity between various nodes.

At the node deployment level, a distributed redundant configuration is adopted, and

a deployment model based on the principle of "primary backup hot" is used in each service

unit, combined with the container platform, to achieve self-management and fast restart

logic of nodes. Each node regularly reports health information and cooperates with the

Prometheus system to collect real-time data indicators of operating status.

The system adopts a multi-level fault detection mechanism, monitors the status of

key nodes, and uses a two-layer judgment mechanism: first, read ready operations are

performed at each node; then, inspections and verification operations are coducted within

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 3 No. 1 (2026) 12

each service. If multiple nodes are unable to achieve the above two operations multiple

times in a row, they will be marked as a faulty state and trigger a transition action.

The fault detection and recovery time can be described by the following formula:

𝑅𝑓𝑎𝑖𝑙 = 𝑓(𝑇𝑐ℎ𝑒𝑐𝑘 , 𝑃𝑒𝑟𝑟𝑜𝑟) (3)

Among them, Rfail is the time for fault recovery, Tcheck is the time interval for fault

detection, and Perror is the probability of fault occurrence.

The traffic access layer dynamically adjusts the routing based on the detection results,

forwards requests to nodes in good condition, and controls traffic transfer through traffic

ratio to avoid traffic overload of other nodes during the transfer process. The database

connection pool and caching middleware will synchronize the core context in advance to

achieve seamless switching.

By triggering the automatic reconstruction of the replica through the controller, if the

failure is caused by configuration, the latest container image and service template will be

loaded to start the new node; If the malfunction is caused by configuration or update, call

the version control system to perform YAML rollback.

4. Compliance Design of Enterprise Level Financial Infrastructure

4.1. Design of Rule-Based Permission Control Strategy

By using rule-based permission control strategies to achieve system operation

permission management, the application of system operation permissions follows the

steps of "role binding, rule matching, permission decision-making, operation audit",

focusing on role matching models creation, permission rule matrix configuration,

dynamic rule interpreter implementaion, and audit information integration.

In this role mapping creation, the system needs to set up some role categories, such

as system administrator, business user, risk control auditor, and regular user, and assign

appropriate permissions to different roles. Role configuration is based on the resource

dimension, where each resource (such as account, transaction, record, or log) is bound to

recognized behavior types (such as read, write, delete) to form a permission matrix.

Next, a rule-based permission judgment module will be implemented. After

obtaining the access request, the module extracts the identity information and operation

type from the request, and maps the request and access rules to each other for judgment.

Access control can be represented as follows:

𝑃𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑓(𝑅𝑢𝑠𝑒𝑟 , 𝐴𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , 𝐶𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒) (4)

Among them, Paccess is the result of access permissions, Ruser is the user's role,

Aoperation is the type of operation (such as read, write, delete), and Cresource is the security

level of resources (such as accounts, funds, transaction records). Based on the matching

results of roles, operations, and resources, the system decides whether to grant

permissions.

4.2. Automated Compliance Testing and Response Process Design

The automated compliance testing and response process should be designed around

four stages: event collection, rule comparison, risk assessment, and action execution.

In the event collection layer, a comprehensive information collection method is

introduced to monitor important resources in real-time, such as customer access history,

transaction data flow, access paths, system operation instructions, etc. It is recommended

to use a stream processing engine to connect to the data bus and convert various

operations into standardized message streams, which are transmitted to the detection

module in a timely manner.

The compliance detection module is implemented using a rule engine architecture.

The configuration rule set should be able to meet various types of compliance template

settings, including risk management measures in multiple fields such as KYC (customer

identity verification), AML (anti money laundering), and have the ability to be easily

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 3 No. 1 (2026) 13

upgraded and replaced. The system evaluates rule matching based on each event flow,

and performs corresponding logical calculations based on existing contextual parameter

information to determine whether there is a possibility of violation.

The core judgment process can be expressed by the following function:

𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑓(𝐸𝑒𝑣𝑒𝑛𝑡 , 𝑃𝑝𝑜𝑙𝑖𝑐𝑦 , 𝑇𝑡𝑖𝑚𝑒) (5)

Among them, Rresponse is the operation responded by the system, Eevent is the

event type (such as abnormal transaction, unauthorized access), Ppolicy is the relevant

compliance policy (such as KYC, AML policy), and Ttime is the response time.

At the response execution level, the system automatically triggers relevant actions

based on the policy calculation results. Actions need to be configured in advance

according to the event level, such as generating audit logs for low-level violations and

automatically freezing accounts and reporting to the risk control interface system for high-

level events such as abnormal fund flows.

4.3. Design of a Trusted Compliance Framework Supporting Audit Traceability

The design of a trusted audit traceability framework is a layered design from four

aspects: operation collection mechanism, trusted generation of logs, encrypted storage of

logs, and verification interface structure. The purpose is to collect all data during the

operation of the financial system and record the operation process to ensure its traceability.

At the operational collection mechanism layer, the system needs to introduce log

probes in each service module to automatically record important events such as user

identity changes, transaction approvals, and permission changes.

On the trusted generation layer of logs, the system needs to generate independent

hash signatures for each log in the form of a hash chain. When each log forms a log block,

calculate the hash value of the log block and concatenate it with the hash of the previous

block to form an immutable chain structure. The verification function is as follows:

𝐴log = 𝐻(𝐷𝑖) ⊕ 𝐻(𝐷𝑖−1) (6)

Among them, Alog represents the validation digest of the log blockchain, H(Di) is

the hash value of the current log data, and H(Di−1) is the hash value of the previous log

block. This mechanism ensures that any field modification will cause a full chain

exception.

At the level of encrypted storage system, it is necessary to divide the diary into

multiple copies for decentralized storage, and use symmetric encryption to ensure the

confidentiality of the diary content, and use asymmetric keys to ensure the authenticity of

the access auditor's identity. In terms of verifying the interface structure, the design

provides audit retrieval based on time windows, role behavior, and service paths, and

embeds log comparison and integrity verification tools.

5. Conclusion

The contemporary financial industry has established increasingly stringent

standards for the high reliability and regulatory compliance of information systems,

elevating the development of high-performance, highly available, and secure financial

infrastructure to a core strategic priority. This study demonstrates that by integrating

intelligent resource allocation, decentralized edge computing technology, and automated

fault self-healing mechanisms, it is possible to ensure that infrastructure maintains stable

operations and millisecond-level response times, even under extreme high-concurrency

pressure. Furthermore, to address complex compliance requirements, this research has

constructed a robust framework consisting of rule-based permission management and

automated compliance review and disposal mechanisms. The deployment of a

comprehensive compliance framework with full-chain tracking capabilities effectively

safeguards data integrity and ensures strict adherence to operational standards. Looking

forward, financial infrastructure must undergo continuous iteration and structural

upgrading to further enhance its flexibility, reliability, and governance capabilities. Such

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 3 No. 1 (2026) 14

advancements will provide a solid technical guarantee for the intelligent transformation

and digital development of the financial sector, fostering a more resilient and efficient

financial ecosystem. Through the systematic optimization of both hardware resource

management and software compliance logic, enterprises can better navigate the technical

demands of the digital era while maintaining rigorous safety protocols.

References

1. D. Leontiev, S. Chykalova, V. Asmolov, N. Volovyk, V. Petrus, and O. Gryzodub, "Analyst qualification for compliance with

normal analytical practice for pipette use," ScienceRise: Pharmaceutical Science, vol. 6, no. 52, pp. 68-79, 2024.

2. I. T. Liu, and A. D. Dixon, "What does the state do in China's state-led infrastructure financialisation?," Journal of Economic

Geography, vol. 22, no. 5, pp. 963-988, 2022. doi: 10.1093/jeg/lbac009

3. K. M. Sutcliffe, "Building cultures of high reliability: Lessons from the high reliability organization paradigm," Anesthesiology

clinics, vol. 41, no. 4, pp. 707-717, 2023.

4. N. A. Zaguir, G. H. de Magalhães, and M. de Mesquita Spinola, "Challenges and enablers for GDPR compliance: systematic

literature review and future research directions," IEEE Access, vol. 12, pp. 81608-81630, 2024. doi: 10.1109/access.2024.3406724

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

	1. Introduction
	2. Overview of Enterprise Financial Infrastructure
	2.1. Characteristics of Financial Infrastructure
	2.2. Core Components of Financial Infrastructure

	3. High Reliability Architecture Design for Enterprise Level Financial Infrastructure
	3.1. Intelligent Driven Load Scheduling Design
	3.2. Fast Response Structure Supported by Edge Computing
	3.3. Fault Tolerant Architecture Mechanism for Fault Self-Healing

	4. Compliance Design of Enterprise Level Financial Infrastructure
	4.1. Design of Rule-Based Permission Control Strategy
	4.2. Automated Compliance Testing and Response Process Design
	4.3. Design of a Trusted Compliance Framework Supporting Audit Traceability

	5. Conclusion
	References

