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Abstract: With the continuous advancement of autonomous driving technology, the application of 
small autonomous vehicles in changing environments has gradually attracted attention. This article 
discusses the core technologies of perception and control systems for small autonomous vehicles. 
An analysis was conducted on the key issues faced by the perception system of small autonomous 
vehicles, including improving the accuracy of local and global positioning, as well as the application 
of multi-source sensor fusion technology. By integrating various sensing devices such as LiDAR and 
image sensors, the perception accuracy of the system has been enhanced. The improvement of the 
control system was also discussed, and the overall path planning method based on gridded maps 
and the improvement strategy of the motion control system were analyzed. With precise path de-
sign and efficient motion control algorithms, the driving stability and safety factor of the car are 
ensured in changing environments. Finally, the integration and testing of perception and control 
systems were discussed, and solutions for software hardware collaboration enhancement and com-
prehensive debugging and testing in complex scenarios were proposed. 
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1. Introduction 
With the rapid advancement of autonomous driving technology, the application 

scope of small autonomous vehicles is gradually expanding. It is no longer limited to tra-
ditional passenger and freight vehicles, but gradually penetrates into multiple industries 
such as urban distribution, warehousing and logistics, and agricultural operations. In such 
vehicles, the perception system is the "brain" that integrates information from various 
sensors to perceive the surrounding environment in real time, achieving accurate position 
determination and obstacle recognition. The control system is based on these perception 
data to complete path planning and dynamic adjustment, ensuring the safety of vehicle 
operation. Despite this, how to efficiently and accurately perceive and control under com-
plex and changing driving conditions remains a technical challenge that small autono-
mous vehicles need to overcome. This article aims to study the perception and control 
system of such vehicles, analyze their core technologies, and explore improvement solu-
tions to promote their widespread deployment in practical applications. 

2. Research on Perception System for Small Autonomous Driving Vehicles 
2.1. Localization and Global Localization 

Localization and global positioning are key technologies in the perception system of 
small autonomous vehicles, to ensure efficient and accurate operation in complex envi-
ronments, as shown in Figure 1. Localization refers to the establishment of the relative 
coordinates of a vehicle in a dynamic scene, while global positioning involves the fusion 
of the vehicle's local position information with the global coordinate system to obtain its 
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exact location. Localization mainly relies on accurate sensor data and map data, which are 
analyzed through specific algorithms to achieve accurate positioning of vehicles in spe-
cific environments. Common localized positioning methods include vision based posi-
tioning methods, LiDAR positioning methods, and visual inertial odometry. For such au-
tonomous vehicles, the difficulty of local positioning lies in ensuring the accuracy and 
real-time processing capability of sensor data under dynamic and complex conditions. In 
narrow city streets or areas dense with complex obstacles, the localization system of vehi-
cles must immediately refresh their coordinates and quickly handle sensor deviations and 
environmental changes [1]. 

 
Figure 1. Vehicle Perception System. 

Global positioning is based on high-precision digital maps or satellite navigation sys-
tems to calibrate the vehicle's position in a global coordinate system. Common global po-
sitioning technologies include GPS positioning, vehicle map matching technology, and 
multi fusion technology based on large-scale sensors. Global positioning technology pro-
vides a stable reference frame for vehicles, enabling them to clearly determine their own 
orientation in a wider area and effectively plan their driving path. The fusion of local po-
sitioning and global positioning is generally realized through the comprehensive pro-
cessing of sensor information. The data collected by different sensors are combined, and 
Kalman filtering and other algorithms are used to further improve the positioning accu-
racy. For example, at a certain moment, the global positioning of the vehicle is provided 
by GPS with an accuracy error of ±5 meters, while the local positioning accuracy provided 
by the LiDAR sensor is ±0.1 meters. In this case, the final positioning of the vehicle can be 
fused through the weighted average method. The specific formula is: 

𝑥𝑥fused = 𝑤𝑤gps⋅𝑥𝑥gps+𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⋅𝑥𝑥lidar
𝑤𝑤gps+𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

          (1) 

In formula (1), 𝑥𝑥fused is the fused position, 𝑥𝑥gps and 𝑥𝑥lidar are the positioning data 
provided by GPS and LiDAR, respectively, and 𝑤𝑤gps and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  are the corresponding 
weights. By using a weighted fusion strategy, the inaccuracy of positioning can be re-
duced, and the credibility and accuracy of the system can be enhanced. 

2.2. Multi Sensor Fusion Technology 
With the increasing demand for perception accuracy and real-time performance in 

small autonomous vehicles, the limitations of a single sensor are gradually becoming ap-
parent [2]. The technology of integrating multiple sensors has become the core solution 
for optimizing system performance. By fusing the information received by different sen-
sors, this technology overcomes the shortcomings and deviations of a single sensor in per-
ception, and enhances the stability and accuracy of the system. In the perception system 
of small autonomous vehicles, commonly used sensor types include laser radar, cameras, 
millimeter wave radar, and ultrasonic sensors. These sensors each have their own charac-
teristics. Lidar has high accuracy in measuring distance and outstanding environmental 
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modeling capabilities, but its performance is relatively inferior in harsh weather and com-
plex lighting environments. The camera performs well in capturing image details, espe-
cially in target recognition and classification tasks, but is sensitive to changes in light and 
climate. Millimeter wave radar can still maintain stable operation under extreme weather 
conditions, although its resolution is not as good as cameras. In order to integrate the 
advantages of different sensors and overcome the limitations of single use, the strategy of 
integrating multiple sensor technologies is particularly critical. Common sensor fusion 
technologies include methods based on extended Kalman filtering, particle filtering, and 
deep learning. Among these technologies, extended Kalman filtering has become the pre-
ferred solution for handling nonlinear system state estimation due to its wide application 
in small autonomous vehicles. For example, there are two types of sensors S1 and S2 that 
provide measurement data Z1 and Z2, respectively, with corresponding error covariance 
P1 and P2. The fused state estimate 𝑥𝑥� and covariance P can be calculated using the follow-
ing formula: 

𝑥𝑥�fused=P ⋅ �𝑃𝑃1-1 ⋅ 𝑥𝑥�1+P2-1 ⋅ 𝑥𝑥�2�  

𝑃𝑃fused = (𝑃𝑃1-1+P2-1)-1           (2)
 In formula (2), there are state estimates for sensors S1 and S2, and P1 and P2 are their 

respective error covariance matrices. By using weighted fusion methods, small autono-
mous vehicles can integrate information from various sensors to achieve higher stability 
and safety performance in changing environments. The fusion of multi-source sensor data 
can improve the accuracy of vehicle detection and enhance the robustness of the system 
in different environments. Thanks to the rapid development of deep learning, many au-
tonomous driving systems have adopted multimodal sensor fusion schemes with neural 
networks at their core, accelerating the development of autopilot technology in terms of 
intelligence and efficiency. 

3. Research on Control Systems for Small Autonomous Vehicles 
3.1. Global Path Planning Based on Grid Maps 

Global path planning plays a core role in the perception and navigation systems of 
small autonomous vehicles, with the aim of designing the optimal travel trajectory from 
the starting position to the destination for the vehicle. In the process of using gridded 
maps for path planning, the entire environment is subdivided into numerous grid cells, 
The entire environment is subdivided into numerous grid cells, each representing an in-
dependent space, where vehicles move between these cells. The implementation of global 
path planning generally adopts the A algorithm or Dijkstra algorithm. The A algorithm is 
widely recognized for its high efficiency and excellent path search ability. When applying 
grid maps, heuristic search strategies are often used to evaluate each grid cell. The A* 
algorithm selects the path with the lowest cost by comprehensively considering the real-
time cost from the starting point to the current cell and the expected cost from the current 
cell to the target cell. The core process of Algorithm A is as follows:  

1) Initialize open and closed lists, and include the starting point in the open list.  
2) Select the node with the lowest cost from the open list for expansion.  
Calculate the cost of neighboring squares according to the heuristic function, and in-

clude the adjacent squares that have not been expanded into the open list. If the target 
point is expanded in the open list, return the path; otherwise, continue expanding [3]. 

Observing the data in Table 1, it can be observed that as the complexity of the envi-
ronment increases, both the length and time of path planning show an upward trend. The 
selection of optimization algorithms is particularly crucial when dealing with path plan-
ning tasks in complex environments. 
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Table 1. Data Analysis of Grid Map Path Planning. 

Environmen-
tal complexity 

Distance from starting 
point to target point (m) 

Planned path 
length (m) 

Path planning 
time (ms) 

A * algorithm 
optimal path 

simple 50 52 120 YES 
secondary 50 55 200 YES 
complex 50 70 350 NO 

3.2. Optimization of Motion Control System 
It is crucial to optimize the motion control system of small autonomous vehicles in 

order to ensure their stability and accuracy during operation [4]. The system generally 
covers multiple subsystems such as path planning, speed adjustment, and vehicle attitude 
maintenance, and precise optimization design of these subsystems is particularly crucial. 
The optimization process aims to enhance the accuracy and response speed of the control 
system, and prevent vehicle body deviation caused by dynamic constraints or trajectory 
deviations. When building the motion control system, the model is usually established 
according to the vehicle dynamics characteristics, which involves the core parameters 
such as speed, acceleration and deceleration, steering angle, etc. For example, the motion 
of a vehicle can be described by the following dynamic equation: 

𝑥̇𝑥 =vcos(𝜃𝜃), ẏ=vsin(𝜃𝜃), 𝜃̇𝜃 = 𝑣𝑣
𝐿𝐿
𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿)         (3) 

In formula (3), X and  Y are the current position coordinates of the vehicle, θ is the 
orientation angle of the vehicle body, V is the linear velocity of the vehicle, δ is the steering 
angle, and L is the wheelbase of the vehicle. In order to improve the performance of the 
control system, it is essential to fine tune the parameters of the dynamic model, especially 
the precise setting of speed and rudder angle. Although conventional PID controllers can 
achieve smooth control in most situations, they may have drawbacks such as overshoot 
or slow response when facing changing and complex operating environments. Adopting 
adaptive control strategies or model predictive control (MPC) techniques can enhance 
control performance. The MPC algorithm dynamically adjusts path planning to reduce 
trajectory deviation and energy consumption, achieving higher precision motion control 
in variable environments. When implementing optimization strategies, comprehensive 
consideration should be given to vehicle dynamics limitations and environmental changes. 
For example, the vehicle's steering and speed can be corrected based on tire models to 
prevent control errors caused by rapid acceleration or oversteering. The specific optimi-
zation objective can be represented by the following performance function: 

𝐽𝐽 = ∫ (𝑤𝑤1(ẋ(𝑡𝑡)-𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡))2+𝑤𝑤2(𝛿𝛿(𝑡𝑡)-𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡))2)dt𝑇𝑇
0        (4) 

In formula (4), 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) and 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) represent the expected speed and steering angle, 
respectively. 𝑤𝑤1  and 𝑤𝑤2  are weighting coefficients used to balance the relative im-
portance of speed control and steering control. After thorough optimization of the above 
performance indicators, the motion control system can achieve more stable and efficient 
operation in various driving environments. The upgrade and transformation of the sys-
tem not only involve adjusting control parameters but also adopting advanced algorithms 
and real-time response mechanisms. These improvements comprehensively consider the 
vehicle's dynamic properties and surrounding environmental factors, enabling high-pre-
cision control of autonomous vehicles. 

4. List and Testing of Perception and Control Systems 
4.1. System List Architecture 

The core of perception and control in small autonomous vehicles relies on a refined 
architecture system to ensure smooth coordination between various functional units. This 
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architecture system covers multiple key parts such as sensing components, data pro-
cessing units, decision-making and command units, and execution units. The sensing 
components include laser radar, cameras, ultrasonic sensors, and GPS, which are respon-
sible for detecting the surrounding environment and the dynamics of the vehicle itself. 
These sensing components use data fusion technology to construct a real-time digital 
model of the vehicle's surrounding environment, providing information support for deci-
sion-making and control processes. The main task of the data processing unit is to perform 
preliminary processing, filtering, fusion, and in-depth analysis on the data collected by 
the sensing components. At this stage, advanced signal processing techniques such as Kal-
man filtering and particle filtering will be applied to optimize the accuracy and reliability 
of sensor data [5]. 

The real-time exchange of information between the information processing unit and 
the decision-making command unit relies on efficient data transmission channels to en-
sure the smooth operation of the system and data synchronization. The decision-making 
command unit completes route planning, obstacle identification, and the formulation of 
avoidance strategies based on the collected perception data. This unit integrates multiple 
intelligent algorithms, including deep learning, reinforcement learning, and fuzzy logic 
control, to enable fast response and accurate judgment under changing driving conditions. 
The control commands generated by this unit are then transmitted to the execution unit, 
which is composed of a motor controller and a drive mechanism, responsible for adjusting 
the speed and direction according to the instructions. The overall architecture design of 
the system needs to balance hardware resource allocation, computational efficiency, and 
real-time requirements. The modular design concept and standardized interfaces are 
adopted to ensure collaborative operation, as well as the scalability and upgradability of 
the system components. 

4.2. Collaborative Optimization of Software and Hardware 
For small autonomous vehicles, achieving efficient operation of perception and con-

trol modules requires highly coordinated optimization of software and hardware. In 
terms of hardware configuration, advanced laser radar and camera equipment are used 
in combination to achieve precise perception effects, while powerful embedded systems 
with GPU acceleration are employed to ensure adequate computational throughput. The 
optimization of hardware structure not only emphasizes the integration of high-precision 
sensing devices, but also emphasizes low energy consumption and stability to meet the 
requirements of long-term operation of automatic navigation vehicles [6]. 

At the software level, its optimization relies on efficient algorithms and powerful 
parallel processing techniques. Ensuring vehicle safety requires real-time processing of 
perception data and timely feedback from decision-making algorithms. At the algorithmic 
level, the use of deep learning networks and image recognition techniques has enhanced 
the recognition accuracy of road obstacles. Considering the limitations of hardware re-
sources, methods such as model compression and computational quantization are applied 
to reduce resource consumption and accelerate inference. In order to comprehensively 
improve the overall performance of the system, collaborative optimization of software 
and hardware is indispensable, including adjustments to communication interfaces and 
data transmission rates to ensure smooth real-time exchange of data between processing 
units and control units. For example, using fast CAN bus and Ethernet to achieve data 
transmission, further reducing latency. 

4.3. Integrated Debugging and Testing in Complex Environments 
A comprehensive testing plan covering multiple environmental factors was designed 

to thoroughly examine the system performance of small autonomous vehicles in terms of 
perception and control [7]. The testing is divided into the following stages: Collecting and 
analyzing perceptual information, conducting effectiveness testing of trajectory planning, 
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and evaluating dynamic control performance. During the experiment, the vehicle travels 
along the designated route at a predetermined speed, and the performance indicators of 
each testing stage are recorded in detail Multiple sensors were utilized to achieve syn-
chronous collection of environmental data, allowing verification of the system's percep-
tion accuracy and response speed under changing environmental conditions. For example, 
in an environment where static obstacles and dynamic interference coexist, statistical anal-
ysis is conducted on the accuracy of vehicle detection of obstacle positions Apply the A * 
algorithm for path planning, measure the path planning time and length of vehicles facing 
different environmental complexities, and confirm the effectiveness and safety of the 
planned path By monitoring the vehicle's steering, acceleration, and braking response 
speed in real-time through the control system, evaluate the responsiveness of the motion 
control system to unexpected scenarios. The relevant test data is shown in Table 2. 

Table 2. Partial Test Data. 

Scene type 
Perception 

accuracy (%) 
Path planning 

time (ms) 
Path devia-

tion (m) 
Control response 

time (ms) 
Simple straight path 98 150 0.1 120 
Dynamic intersection 95 250 0.2 180 

Narrow road complex scene 92 300 0.3 200 
Dynamic interference scenario 90 250 0.4 250 

After verification, relying on multi-sensor integration and real-time trajectory plan-
ning, vehicles can effectively identify obstacles and construct reliable driving trajectories. 
In a constantly changing and complex environment, the detection accuracy is reduced and 
the time required for trajectory planning is significantly extended. The response speed of 
the drive control unit generally meets the driving requirements, and there is still room for 
improvement in its performance when encountering strong disturbances. This experiment 
has empirically validated the operational efficiency and environmental adaptability of the 
system, and future development needs to focus on enhancing its real-time response capa-
bility and stability in changing environments. 

5. Conclusion 
This article studies the perception and control system of small autonomous vehicles. 

By optimizing the strategies of local and global positioning, integrating information from 
multiple sensors, the reliability and accuracy of the perception process are enhanced. In 
terms of control strategy, the overall path design method based on gridded maps was 
adopted, and the dynamic control algorithm was finely adjusted to ensure that the vehicle 
can navigate stably and accurately in high difficulty environments. During the system 
construction and testing phase, comprehensive debugging was carried out in a changing 
environment by integrating software and hardware resources and conducting deep opti-
mization, ensuring the system's operational efficiency and stability. Subsequent research 
will focus on improving the intelligence level of the system, exploring its potential appli-
cations in variable and extreme environments, and promoting the wider adoption of au-
tonomous driving technology in the small vehicle industry. 
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