

 International Journal of
Engineering Advances

Vol. 2 No. 2(2025) 24 https://doi.org/10.71222/sg9eef87

Article

Web Front-End Application Performance Improvement Method
Based on Component-Based Architecture
Yifan Yang 1,*

1 Viterbi school of Engineering, University of Southern California, CA, 90089, USA
* Correspondence: Yifan Yang, Viterbi school of Engineering, University of Southern California, CA, 90089,

USA

Abstract: In the context of the continuous evolution of Web front-end technology, performance op-
timization has become the core work to improve user experience and enhance product value. This
paper focuses on analyzing the performance bottlenecks encountered by current Web front-end ap-
plications, such as rendering bottlenecks, network bottlenecks, resource bottlenecks and computing
bottlenecks, and introduces optimization suggestions. By designing front-end applications with a
block architecture, you can reduce redundant rendering, optimize resource loading, split code and
lazy loading, and improve the efficiency of state management to significantly improve application
speed. At the same time, the influence of the block structure on the front-end application is analyzed,
and how to optimize the development process and performance through good structure design is
discussed.

Keywords: Web front-end; componentized architecture; performance improvement

1. Introduction
In the Internet era, Web front-end applications have long served as the primary gate-

way connecting users to online services. As Web application functions become more and
more complex, users have higher and higher requirements for Web application perfor-
mance, so improving front-end performance is the first task developers must face. The
performance bottleneck of a Web front-end application usually occurs in the aspects of
rendering, networking, resource loading, and computing. Through in-depth analysis of
these bottlenecks and reasonable optimization, the response time and user experience of
the application can be effectively improved. This paper introduces the causes of Web
front-end performance bottlenecks, and gives the corresponding performance optimiza-
tion scheme through the componentized structure [1].

2. Concept of Componentized Architecture
2.1. Definition of Componentized Architecture

Component-based architecture is currently the most mainstream application organ-
ization method in Web front-end development. The core idea is to take components as the
basic units of construction. It is applied in front-end frameworks such as React, Vue and
Angular. A Component is a UI functional module with independent encapsulation, reus-
ability and self-state management capabilities. It can carry specific interface structures,
style definitions and behavioral logic, and can be flexibly combined and called in appli-
cations according to requirements.

The componentized architecture divides the entire Web application into multiple
highly cohesive and low-coupled functional units. Components interact with information
and transfer data through interfaces, achieving the elimination of logical coupling and
repetitive coding problems between modules designed from the perspective of pages.

Received: 24 April 2025

Revised: 27 April 2025

Accepted: 21 May 2025

Published: 22 May 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

https://doi.org/10.71222/sg9eef87

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 2 No. 2(2025) 25 https://doi.org/10.71222/sg9eef87

This organizational approach not only enhances the maintainability and scalability of the
system, but also supports local rendering and progressive loading, significantly reducing
the overall rendering cost and improving the application response efficiency.

In fact, when developing applications, the advantages of component-based architec-
ture can often be realized through a complete set of auxiliary technologies. For example,
virtual DOM can be used to accelerate the rendering speed, unidirectional data flow can
be used to maintain the consistency of state changes, application composite apes can be
used to increase code reusability and functional isolation. In addition, developers can also
download components on demand through path configuration. State managers such as
Redux and Pinia are utilized to achieve state sharing and centralized management among
components, thereby further optimizing the overall performance and user experience [2].

2.2. Advantages of the Componentized Architecture
The component-based architecture in the construction of Web front-end, as a highly

structured, low-coupled and highly cohesive development paradigm, can not only sim-
plify the development process of the system, but also significantly improve the develop-
ment efficiency. It divides the entire program into multiple functional units, each imple-
menting its own user interface, behavior, and state control, and enables collaboration
through standard interfaces.

Compared with the traditional "page-centered" construction mode, the component-
based design architecture is more likely to achieve code reuse and function combination,
reduce the coupling degree of the system, and enhance the operability of the system. In
terms of performance, the component architecture supports on-demand rendering and
lazy loading mechanisms, which helps to reduce memory usage and rendering overhead
during the application startup stage. Especially for the commonly used front-end frame-
works such as React and Vue nowadays, virtual DOM, composition APIs, and lifecycle
control have all become key elements for optimizing performance. In addition, the com-
ponent pattern essentially supports the integration of construction tools and automated
testing [3]. Combined with modern build tools such as Webpack and Vite, it can effectively
enhance the build efficiency, deployment flexibility and testability of the front-end system,
laying the foundation for continuous integration. The following Table 1 summarizes the
main technical advantages and performance of component-based architecture in the Web
front end:

Table 1. The Main Technical Advantages and Performance of Component-Based Architecture in
Web Front-End.

Advantage category Specific manifestations
The impact on performance im-

provement
Module reuse and

improvement of de-
velopment efficiency

Independently encapsulated,
with a clear structure, it can be re-
used in multiple pages or projects

Reduce redundant code, lower
maintenance costs and improve

development efficiency
Decoupling and

maintainability have
been enhanced

Each component has independent
functions and communicates

through props or events

Reduce global dependencies,
simplify the debugging process,

and enhance system stability

Support for local up-
dates and rendering

optimization

Support virtual DOM difference
comparison and minimum ren-
dering unit control (such as Re-

act's diff algorithm)

Reduce invalid redrawing and
rearrangement to improve page

response speed

Fine control of status
management

Support local state isolation and
centralized processing of global

states (such as Vuex, Redux, etc.)

Avoid repetitive rendering to en-
hance interaction performance
and resource utilization effi-

ciency

https://doi.org/10.71222/sg9eef87

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 2 No. 2(2025) 26 https://doi.org/10.71222/sg9eef87

The integration of
construction and

testing processes is
convenient

It is easy to access build tools and
automated processes, and sup-
ports on-demand loading, unit

testing, etc.

Enhance the controllability of the
module, accelerate the iteration
speed, and facilitate regression

and release

Adapt to the require-
ments of large-scale
system expansion

Support modular organization,
asynchronous components, and

micro-front-end architecture

Meet the comprehensive require-
ments of structural layering and

performance optimization for
large-scale SPA projects

In conclusion, the componentized architecture not only enhances the engineering
management capabilities of the front-end system, but also effectively supports the perfor-
mance and user experience of web applications in complex environments through precise
rendering management and modular management.

3. Web Front-End Performance Bottleneck Analysis
3.1. Render Bottle Pre

Web front-end rendering bottlenecks usually refer to performance issues that occur
when browsers translate HTML, CSS, and JavaScript into visual content for users. Ren-
dering includes parsing, DOM building, style calculation, layout, drawing, and merge
steps. Each of these steps can lead to a display rendering bottleneck, resulting in slow page
loading or long response times. Common rendering bottlenecks include complex CSS se-
lectors or too many DOM elements that make style calculations and layouts expensive.
Too much use of JavaScript can cause the rendering process to be blocked, especially if
the JavaScript script to be executed when the website is launched can cause subsequent
rendering to be delayed. In addition, unnecessary Reflow and Repaint can cause poor
performance by repeatedly triggering the browser to rearrange the work. To remove the
display rendering bottleneck, developers need to reduce the number of DOM elements,
improve the selection efficiency of CSS selectors, prevent scripts that hinder rendering,
and minimize unwanted Reflow and Repaint operations [4].

3.2. Network Bottleneck
Network bottleneck means that in Web front-end applications, due to the combined

impact of Internet traffic restrictions, slow demand response, and lagging communication,
the request for front-end data becomes slow, which hinders the opening time of web pages
and customer experience. The network bottleneck is closely related to the response time
and resolution time of the resource to be queried, especially when the user's network sta-
tus is poor, the problem is more serious. Common problems such as too many HTTP re-
quests, too much request data, and incorrect buffering applications can easily lead to net-
work bottlenecks. Each HTTP request involves DNS resolution, link creation, and mes-
sage sending, which increases the page opening time. Through reasonable buffering,
merging requests, reducing data files and using CDN (Content distribution system), we
can solve the problems caused by network bottlenecks. At the same time, HTTP/2 protocol
and lazy loading can further improve network efficiency and reduce startup delay.

3.3. Resource Bottleneck
Web front-end resource bottlenecks are often caused by the excessive size or number

of external resources such as images, videos, fonts, and JavaScript files, resulting in long
page loading time, poor user experience. With the increasing dependence of network ap-
plications on various media and dynamic content, resource bottleneck has become one of
the factors affecting performance. Common problems include: too large resource files
causing content to fail to load in time, uncompressed and unoptimized images and videos,
and the wrong download order [5]. A number of measures can be taken to optimize, such
as loading images in gradient mode, compressing resources, using the appropriate image

https://doi.org/10.71222/sg9eef87

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 2 No. 2(2025) 27 https://doi.org/10.71222/sg9eef87

format (Web P), merging and separating JS/CSS files, etc. The use of SVG graphics, some
font files, delayed loading/on-demand loading method can greatly reduce the burden of
web resources and improve the performance of web pages.

3.4. Computing Bottleneck
In the front-end stage of the Web, if the JavaScript operation overhead is too large, it

may lead to the phenomenon of slow loading or stagnation of the page, which is called
the computation bottleneck. Computing bottleneck generally occurs in the need for a large
number of data processing, a large number of DOM structure changes, a large number of
animation calculations, etc. Large-scale computing operations on user devices may cause
the web thread to freeze or not respond for a long time. Common reasons are: high-fre-
quency DOM query, frequent event monitoring, heavy numerical operations and drawing
pictures. The methods that can reduce the computation bottleneck include algorithm op-
timization, Web Worker sharing time-consuming computation to background threads, re-
ducing DOM query operations, reducing repetitive operations, and using request Anima-
tion Frame to achieve better animation quality. In addition, minimizing the use of syn-
chronous JavaScript and reasonably setting the execution sequence of tasks are of great
help to prevent computing bottlenecks, and can maintain the fluency of the webpage ren-
dering process, so as to ensure the good effect of the entire front-end program.

4. Methods to Improve the Performance of Web Front-End Applications Based on the
Component-Based Architecture
4.1. Reduce Redundant Rendering

Redundant rendering is a common performance problem in front-end web applica-
tions, especially when large amounts of data change frequently or when there are too
many components in the page. Redundant rendering refers to unnecessary components
or parts of a page that are rendered again after their state has changed, consuming system
resources and reducing response efficiency. To this end, developers can minimize the
number of component updates and avoid prerendering the entire page every time the
data changes. For example, should Component Update in React allows developers to de-
termine whether to update components by detecting changes in state and properties. Pure
Component reduces rendering by means of depth comparison, while the memo function
is specifically designed for functional components to prevent duplicate rendering of com-
ponents with similar properties and states. Virtual DOM technologies, such as those in
React, reduce DOM changes by calculating changes in the user interface for comparison,
and thus reduce the cost of redrawing, which is important for some complex and fre-
quently changing pages. It is also possible to break up components so that each compo-
nent only cares about its own state changes to reduce over rendering. This will not only
greatly improve the performance of your application, but also improve the maintainabil-
ity and reusability of your code.

4.2. Resource Loading Optimization
Resource load optimization is a key part of Web front-end performance improvement.

Resource load optimization is a critical aspect of improving the overall performance of
web front-end applications. The first is to reduce the number of resource requests, merge
CSS and JS files to reduce the number of HTTP requests, to improve the page launch speed,
especially for a large number of small files. Compression techniques such as grip and
Bortle are used to effectively reduce the size of the document, thereby reducing the pres-
sure of data transfer to speed up the reading of the file. This approach is usually only used
for optimizing static data such as JavaScript and CSS. A Content Delivery Network (CDN)
hosts resources on geographically distributed servers, reducing latency by minimizing the
physical distance between users and servers, reduces the physical distance between the
customer and the server, speeds up the reading of resources, and can provide a better

https://doi.org/10.71222/sg9eef87

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 2 No. 2(2025) 28 https://doi.org/10.71222/sg9eef87

experience for users around the world. HTTP/2 protocol through the advantages of multi-
path sharing and header information compression, so that the client delay is reduced, and
increase the efficiency of parallel requests, speed up the response speed of the page. Based
on these optimization techniques, you can reduce page load time and improve the perfor-
mance of web applications (see Table 2).

Table 2. Resource Loading Optimization Methods.

Optimization
method

Specific description

Reduce the number
of resource requests

Reduce the number of HTTP requests and speed up resource load-
ing by merging CSS and JavaScript files

Use compression
techniques

The use of grip, Bortle and other compression technologies can re-
duce the size of the file and improve the speed.

Use a CDN
Using a CDN to distribute resources across multiple server nodes

reduces physical distance and speeds up loading
Use the HTTP/2

protocol
The HTTP/2 protocol supports multiplexing, header compression,

and more to reduce latency and speed up page response times
As can be seen from the above table, the methods to optimize Web front-end perfor-

mance mainly focus on reducing the number of resource requests, improving loading ef-
ficiency and reducing resource consumption. The integration of these methods can effec-
tively improve the loading speed and user experience of web applications.

4.3. Code Splitting and Lazy Loading
Code splitting and lazy loading are currently a common means of Web front-end

performance optimization, its general idea is to split the application code into a fragment
on demand, not at the beginning to load all the code of the application at once, but the
first user to enter the website will only get the skeleton part of the application, that is, the
code required on the user's visible page. The other functions will be loaded according to
the user's request, which greatly reduces the amount of code required by the browser to
load at a time, and realizes the fast startup of the application. With this solution, the user
experience can be improved by reducing the amount of code used for initial application
loading, improving the response speed and reducing the waiting time of users. On the
other hand, with the deepening of application development and the increase of complex-
ity, the code is divided into various functional units, and each module can be inde-
pendently developed, and will not affect other functional codes due to the development
of a part of the functional module, which is essential for the application with a large num-
ber of complex pages and more related functions. Lazy loading is often used in conjunc-
tion with code splitting. While code splitting divides an application into smaller chunks,
lazy loading ensures that these chunks are only loaded when required by the user. Lazy
loading is great for JavaScript modules, images, and multimedia applications such as
video. Downloading such resources can consume significant bandwidth and processing
power, potentially slowing down page initialization. In lazy loading mode, resources are
downloaded only after the user moves the cursor in a browser window to a certain area
or performs an action, rather than requesting the data in the first place. In this way, you
can reduce the initial page loading network pressure and redundant data waste. Build
tools such as webpack have powerful and customizable code splitting capabilities, and
also support dynamic loading and lazy loading modules, which can greatly improve the
efficiency of large and medium-sized projects.

https://doi.org/10.71222/sg9eef87

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 2 No. 2(2025) 29 https://doi.org/10.71222/sg9eef87

4.4. Status Management Optimization
For Web applications, good state management is one of the most effective ways to

improve performance and user experience. Good state management can avoid unneces-
sary rendering, improve response rates, and keep data flowing (Figure 1).

Figure 1. State Management Optimization.

First, local state management is key to improving performance. Because each module
handles only its own state, it reduces its dependence on global state, which increases the
module's responsiveness and enhances its reusability and maintainability. Second, reduc-
ing unwanted status updates is also an effective way to improve performance. With state
comparison optimization, update the old state only when it is inconsistent with the new
state, avoiding meaningless re-rendering. Third, optimizing the data flow to ensure that
the state changes when and only when it is needed can also greatly improve performance.
The use of batch update technology can reduce the redrawing cost caused by multiple
status updates during the status update process, and therefore improve the flow of the
program. Finally, global state management is important for states that need to be shared
among a large number of components. Global state can be easily controlled by selecting
the appropriate state management module (Redux or Vuex), but it is important to store
the required state in the entire system, because too much global state can degrade program
performance. Finally, the processing of asynchronous status updates ensures that the sta-
tus can be updated in time and no empty updates are generated during asynchronous
operations. By combining the above improvement suggestions, web application state
management becomes clearer, more powerful and more efficient, and has a good user
experience.

5. Conclusion
Web front-end performance optimization is a lot of content, involving many aspects

of improvement, such as rendering optimization, resource loading, code splitting, lazy
loading and state management. Reasonable block structure design and performance opti-
mization methods are beneficial to improve the software running speed and user satisfac-
tion. Reducing redundant rendering, optimizing resource loading, precise code splitting
and lazy loading, and efficient state management are all important ways to optimize web-
site front-end performance. With the continuous development of Web technology, front-
end applications become more and more complex, and users' requirements for front-end
quality continue to improve, so we should continue to learn and adopt new optimization
technologies, and choose reasonable optimization solutions for practical problems.

References
1. A. Siddiqui, R. Potoff, and Y. Huang, "Sustainability metrics and technical solution derivation for performance improvement of

electroplating facilities," Clean Technol. Environ. Policy, vol. 26, pp. 1825–1842, 2024, doi: 10.1007/s10098-023-02696-9.

https://doi.org/10.71222/sg9eef87
http://doi.org/10.1007/s10098-023-02696-9

International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA

Vol. 2 No. 2(2025) 30 https://doi.org/10.71222/sg9eef87

2. L. A. Gólcher-Barguil, S. P. Nadeem, J. A. Garza-Reyes, A. Samadhiya, and A. Kumar, "Measuring the financial impact of equip-
ment performance improvement: ISB and IEB metrics," Benchmarking Int. J., vol. 30, no. 7, pp. 2408–2431, 2023, doi: 10.1108/BIJ-
09-2021-0559.

3. Y. Zhao, U. De Silva, S. B. Venkatakrishnan, D. Psychogiou, G. Larkins, and A. Madanayake, "STAR Front-End Using Two
Circulators in a Differential Connection," IEEE J. Microw., vol. 4, no. 2, pp. 253–263, Apr. 2024, doi: 10.1109/JMW.2024.3372855.

4. M. Vaquero, P. Mestres, and J. Cortés, "Resource-Aware Discretization of Accelerated Optimization Flows: The Heavy-Ball
Dynamics Case," IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 2109–2124, Apr. 2023, doi: 10.1109/TAC.2022.3171307.

5. H. Saffari, M. Abbasi, and J. Gheidar-Kheljani, "The design of a sustainable-resilient forward-reverse logistics network consid-
ering resource sharing and using an accelerated Benders decomposition algorithm," Int. J. Ship. Transp. Logist., vol. 19, no. 4,
pp. 444–481, 2024, doi: 10.1504/IJSTL.2024.144020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.71222/sg9eef87
http://doi.org/10.1108/BIJ-09-2021-0559
http://doi.org/10.1108/BIJ-09-2021-0559
http://doi.org/10.1109/JMW.2024.3372855
http://doi.org/10.1109/TAC.2022.3171307
http://doi.org/10.1504/IJSTL.2024.144020

	1. Introduction
	2. Concept of Componentized Architecture
	2.1. Definition of Componentized Architecture
	2.2. Advantages of the Componentized Architecture

	3. Web Front-End Performance Bottleneck Analysis
	3.1. Render Bottle Pre
	3.2. Network Bottleneck
	3.3. Resource Bottleneck
	3.4. Computing Bottleneck

	4. Methods to Improve the Performance of Web Front-End Applications Based on the Component-Based Architecture
	4.1. Reduce Redundant Rendering
	4.2. Resource Loading Optimization
	4.3. Code Splitting and Lazy Loading
	4.4. Status Management Optimization

	5. Conclusion
	References

