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Abstract: With the maritime industry undergoing digital transformation and facing growing de-
mands for automation, intelligent ships and smart energy management have become central to 
boosting operational efficiency, cutting fuel consumption, and reducing environmental impact. This 
paper first reviews the concept and system architecture of intelligent ships and surveys key techno-
logical advances in autonomous navigation, condition monitoring, and decision support. It then 
examines the architectural models of shipboard energy management systems, explores intelligent 
optimization algorithms, and outlines real-time control strategies. Drawing on representative appli-
cation cases, the study evaluates both operational performance and economic returns. Finally, it 
discusses major challenges in engineering rollout, algorithmic reliability, and large-scale deploy-
ment, and looks ahead to emerging research directions and industry trends, offering theoretical un-
derpinnings and practical guidance for the evolution of intelligent shipping and energy manage-
ment. 
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1. Introduction 
Rising fuel costs, tightening carbon-emission regulations, and the urgent need for 

smarter operations have brought traditional ship-management models to their limits. 
Rapid advances in information and communication technologies, artificial intelligence, 
and big-data analytics now make comprehensive shipboard intelligence feasible. Beyond 
enhancing safety and reliability through autonomous navigation, real-time monitoring, 
and fault diagnosis, intelligent ships leverage data-driven energy-management strategies 
and advanced control algorithms to finely tune fuel consumption and dynamically opti-
mize emissions. Although many studies have targeted individual technologies or isolated 
scenarios, critical gaps remain in end-to-end system integration, algorithmic collaboration, 
and practical deployment [1]. 

2. Intelligent Ship Technology Development 
2.1. Concept and Characteristics of Intelligent Ships 

An intelligent ship integrates sensor networks, the Internet of Things, big-data anal-
ysis, and AI throughout its design, construction, and operation to perceive its surround-
ings autonomously, plan routes intelligently, and execute closed-loop control. At its core, 
it closes the "sense-decide-act" loop by uniting sea-shore and cloud-edge-ship coordina-
tion, transforming vessels from passive executors of single commands into adaptive plat-
forms capable of operating safely and efficiently under diverse conditions [2]. 

Intelligent ships exhibit several defining features. First, multi-source perception: 
equipped with radar, sonar, satellite navigation, AIS, and sea-state sensors, they collect 
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comprehensive environmental and hull-condition data in real time. Second, autonomous 
decision-making: underpinned by digital-twin models and machine-learning algorithms, 
they autonomously plan routes, issue collision alerts, and perform obstacle avoidance in 
complex waters. Third, connected collaboration: they maintain continuous links with 
shore-based control centers and other vessels via maritime 5G or satellite networks, sup-
porting remote monitoring and coordinated fleet maneuvers. Finally, adaptive optimiza-
tion: by applying intelligent energy-management and control strategies, they dynamically 
allocate propulsion and auxiliary loads across varying speeds and operational modes, bal-
ancing fuel-saving with transit efficiency. These capabilities together deliver marked im-
provements in safety, economy, and environmental performance, laying a solid techno-
logical foundation for the green, high-efficiency transformation of shipping [3]. 

2.2. Key Technological Advances in Intelligent Ships 
In recent years, perceptual and decision-making technologies for intelligent ships 

have made significant strides. High-precision, multi-sensor fusion methods now seam-
lessly combine radar, sonar, optical cameras, and inertial measurement unit (IMU) data 
using deep-learning and Kalman-filtering techniques, greatly improving obstacle detec-
tion and environmental awareness in challenging sea states. Concurrently, autonomous 
navigation systems based on reinforcement learning and imitation learning have matured 
through simulation and sea trials, enabling ships to plan routes, avoid collisions, and ad-
just speed dynamically — advances that underpin the International Maritime Organiza-
tion's various autonomy levels. Digital-twin technology acts as a bridge between physical 
vessels and virtual models, using both historical and live data to predict performance, 
diagnose faults, and optimize maintenance strategies, thereby cutting trial-and-error costs 
and boosting operational reliability [4]. 

On the communication and collaborative-control front, the integration of maritime 
5G, NB-IoT, and low-Earth-orbit satellite links now ensures low-latency, high-reliability 
data exchange among ships, shore centers, and unmanned surface or underwater plat-
forms. Edge-computing nodes work in concert with cloud-based big-data platforms to 
support real-time monitoring, remote operation, and coordinated fleet navigation [5]. 
Meanwhile, blockchain is being piloted for secure vessel identity management, logistics 
tracking, and data ownership, providing tamper-proof verification in distributed systems. 
Cybersecurity has also risen to prominence, with multi-layer defenses and situational-
awareness platforms safeguarding control systems and communication channels against 
attacks and interference. Together, these integrated innovations are propelling intelligent 
ships from isolated experiments to large-scale demonstration operations, cementing their 
role in the future of green, automated maritime transport [6]. 

3. Smart Energy Management Technology Foundations 
3.1. Shipboard Energy Management System Architecture and Model 

A shipboard Energy Management System (EMS) is built on a robust, layered frame-
work designed to collect, process, and act upon a diverse array of operational data in real 
time. At its foundation, the perception layer draws from an extensive suite of multimodal 
sensors strategically positioned throughout the vessel. These sensors include main-engine 
tachometers, generator power meters, lithium-ion battery voltage and current monitors, 
hull-mounted accelerometers, fuel-flow meters, ambient temperature and humidity 
gauges, and meteorological instruments [7]. By sampling at high frequency and tagging 
each reading with precise GPS coordinates and timestamps, the perception layer captures 
both the ship's internal power flows and external environmental conditions such as wind 
speed, wave height, and sea currents. Data collected onboard are then funneled into the 
communication layer, which integrates local Ethernet, CAN bus networks, and resilient 
long-range links via maritime 5G or satellite systems. An intelligent network manager 
continuously evaluates link quality and automatically routes critical control commands 
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over the most reliable path, while less urgent telemetry may be queued or batched to con-
serve bandwidth. Edge-computing nodes stationed on the ship perform initial data aggre-
gation, filtering, and compression before synchronizing with a shore-based cloud plat-
form. Sitting atop this information pipeline, the management layer embeds a suite of pre-
dictive and prescriptive models. Load-forecasting algorithms use historical voyage pro-
files and real-time sensor inputs to anticipate short-term energy demands [8]. Physical 
fuel-consumption and emission models, calibrated against empirical engine tests, esti-
mate both instantaneous and cumulative pollutant output. Energy-storage state-estima-
tion routines determine battery state-of-charge and health metrics. All these models are 
linked to a digital-twin simulation environment, where virtual replicas of the vessel's 
power and propulsion systems run thousands of "what-if" scenarios. Within this simu-
lated context, advanced optimization engines — such as Model Predictive Control (MPC) 
solvers and reinforcement-learning agents — continuously refine power-distribution 
strategies to minimize fuel burn, balance generator load, and respect emission regulations 
under changing sea conditions. Finally, the execution layer translates these optimized set-
points into action: Programmable Logic Controllers (PLCs), Distributed Control Systems 
(DCS), or smart switchgear seamlessly dispatch commands to the main engine's throttle 
controls, auxiliary generator governors, battery-storage inverters, and other auxiliary ma-
chinery. Feedback loops monitor actual versus commanded performance, triggering au-
tomatic recalibration or operator alerts when deviations occur. By combining these four 
layers, the EMS delivers a fully closed-loop solution that not only optimizes energy use 
on a single vessel but also aggregates anonymized performance metrics across an entire 
fleet. Cloud-edge collaboration enables shore-based analysts to benchmark individual 
ships, identify best practices, and implement lifecycle management strategies — ensuring 
consistent efficiency gains, reliable emission reductions, and scalable deployment across 
modern maritime operations [9]. 

3.2. Intelligent Optimization Algorithms and Control Strategies 
Within the EMS management layer, intelligent optimization algorithms perform real-

time analysis of multisource data and generate operational decisions. Common methods 
include Model Predictive Control (MPC), reinforcement learning (RL), and metaheuristic 
algorithms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). 
MPC formulates a rolling-horizon optimization problem based on vessel dynamics and 
energy-consumption physics, balancing propulsion efficiency, emissions limits, and stor-
age constraints to derive optimal power-allocation schedules. Reinforcement learning 
agents interact with a digital-twin environment, leveraging value-function or policy-gra-
dient methods to autonomously learn the best operating policies under varying sea states, 
with online adaptability. Metaheuristics, with their global-search capability, are well 
suited for fleet-level route planning and long-voyage speed-profile optimization [10]. 

On the control side, a hierarchical closed-loop architecture is typically used. An up-
per-level supervisor module accepts the optimization algorithm's power-allocation and 
charge/discharge plans as setpoints. The lower-level actuator control units then precisely 
track those targets using PID, fuzzy logic, or adaptive control schemes. Coordination be-
tween supervisor and actuators may combine event-triggered updates with periodic re-
freshes, allowing rapid responses to abnormal conditions while smoothing power transi-
tions to avoid sudden thrust fluctuations that could stress the hull or machinery. Moreo-
ver, as edge-computing and cloud platforms converge, distributed control strategies are 
emerging: different vessels or generator sets can co-optimize in a "fleet-shore" multi-tier 
arrangement, further amplifying overall energy-saving and emission-reduction gains. 
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4. Design and Implementation of the Intelligent Ship Energy Management System 
4.1. Overall System Design and Functional Modules 

To deliver both high efficiency and scalable deployment, the Intelligent Ship Energy 
Management System (EMS) adopts a three-tier "cloud-edge-ship" architecture. At the bot-
tom tier, onboard edge nodes capture real-time data from multiple sources — main-en-
gine telemetry, generator outputs, energy-storage status, hull sensors, and environmental 
monitors. These nodes perform initial preprocessing steps, such as outlier detection, 
timestamp alignment, and data compression, ensuring uninterrupted, high-quality inputs 
even in intermittent network conditions. The middle tier is a shore-based cloud platform 
responsible for long-term historical data storage and heavy-duty offline processing. Here, 
vast datasets accumulated across multiple voyages feed machine-learning training pipe-
lines and recalibration routines for the system's predictive models. The cloud also enables 
cross-fleet benchmarking: energy-efficiency scores for individual vessels can be compared 
to peer ships, uncovering best practices and highlighting opportunities for performance 
improvement fleet-wide. Linking ship and shore is a resilient communication layer built 
on maritime-grade 5G, satellite backhaul, and each vessel's internal LAN. A dynamic net-
work manager continuously assesses link quality — switching between high-bandwidth 
LTE/5G when available and LEO-satellite or CAN bus as backups — to guarantee timely 
delivery of commands and telemetry. This multi-path approach prevents single-point fail-
ure and maintains system availability even in remote ocean regions. To manage complex-
ity and support continuous innovation, the EMS is implemented as a microservices eco-
system. Each function — data ingestion, communications, optimization, simulation, and 
visualization — runs in its own container, orchestrated by Kubernetes. Services communi-
cate over a lightweight service bus using gRPC, ensuring loose coupling and enabling 
independent scaling: for instance, additional optimization engines can be spun up during 
peak forecasting periods without disrupting data-collection modules. 

Key functional modules include: Data Acquisition & Preprocessing: Consolidates 
raw sensor streams — engine RPM, fuel-flow meters, battery voltage, weather stations — 
then applies denoising algorithms, fills gaps via interpolation, and normalizes values to a 
common scale. This layer also tags each record with metadata (GPS coordinates, UTC 
timestamp, data quality scores) before publishing to the service bus. Communication 
Management: Monitors network latency and throughput metrics in real time, dynamically 
selecting the optimal transport channel. It implements intelligent buffering and prioriti-
zation logic so that critical control commands are never delayed by less urgent telemetry. 
Optimization & Decision-Making: Houses the core intelligence — load-forecasting mod-
ules, Model Predictive Control (MPC) solvers, and reinforcement-learning policies. These 
algorithms are pre-trained and continuously refined in a digital-twin simulation environ-
ment. At runtime, they ingest live data and output fine-grained power distribution plans 
for the main engine, generators, and battery banks. Simulation & Monitoring: Runs par-
allel digital-twin simulations of the ship's propulsion and electrical systems, projecting 
short-term trends in fuel consumption, emission levels, and battery state-of-charge. The 
module raises alerts when predicted performance deviates from thresholds, enabling pro-
active intervention. Visualization & Reporting: Delivers interactive dashboards accessible 
on bridge-control displays and shore-based command centers. Users can explore real-time 
energy flows, inspect historical trends, generate custom reports, and drill down on anom-
alies or maintenance events. Collectively, these modules form a closed-loop, self-sensing, 
self-decision, and self-optimization framework. By seamlessly integrating data collection, 
intelligent control, and actionable insights, the EMS empowers vessels to operate more 
economically, sustainably, and safely. 
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4.2. Implementation Methods and Validation Scheme 
The EMS is implemented on the three-layer cloud-edge-ship architecture using con-

tainerized microservices. Onboard edge nodes run Docker-packaged services for data ac-
quisition, preprocessing, and local optimization, managed by Kubernetes Edge Runtime 
to ensure high availability and rolling upgrades. The shore-based cloud platform resides 
in a hybrid-cloud Kubernetes cluster, overseeing big-data storage, offline modeling, and 
fleet-wide benchmarking. Services communicate via gRPC and a messaging bus, while 
edge-cloud synchronization uses MQTT over maritime 5G or satellite links. Algorithm 
modules — MPC and reinforcement learning — are developed as plug-and-play compo-
nents. During training, they undergo large-scale parameter sweeps and policy optimiza-
tion within the digital-twin simulator. In operation, the chosen model is deployed to the 
edge, where it combines live ship-state and weather data to generate propulsion and stor-
age commands. A CI/CD pipeline governs the entire lifecycle — from code commits and 
unit tests to container builds and automated deployments — ensuring rapid, secure soft-
ware updates across all layers. Validation consists of simulation and sea trials. In simula-
tion, the digital twin models varied sea states, wave patterns, and loading scenarios. Hard-
ware-in-the-loop (HIL) and software-in-the-loop (SIL) tests compare fuel consumption, 
emissions, and command-response latency under different speeds and conditions, evalu-
ating algorithm stability and robustness. Monte Carlo analyses gauge tolerance to meas-
urement noise and network jitter. For sea trials, a representative route is selected, during 
which fuel-flow, emission-concentration, and storage charge-discharge data are collected 
in real time and compared against traditional constant-speed operations to quantify en-
ergy savings and emission reductions. Statistical methods assess differences in fuel use, 
emissions, and key performance indicators between experimental and control groups. 
Combined with crew feedback and system logs, this process yields a comprehensive val-
idation report and actionable recommendations for hardware, software, and algorithm 
refinements. 

5. Application Cases and Performance Evaluation 
5.1. Typical Intelligent Ship Energy Management Application 

Take a 6000-TEU container vessel as an example. On its regular trade routes, fuel 
accounts for over 70 % of operating costs, making it a prime candidate for emission reduc-
tion and cost savings. By installing a multimodal sensor network across the deck and en-
gine room, the ship continuously collects data on main-engine speed, propeller thrust, 
generator load, hull attitude, and weather and sea conditions. All of this information is 
streamed to the onboard edge-computing platform. Using an established digital-twin sim-
ulation model, the project team first ran full-voyage simulations to verify that a combined 
Model Predictive Control (MPC) and Reinforcement Learning (RL) energy-scheduling 
strategy is both feasible and robust under varying sea states. During the pilot deployment 
— on a transoceanic voyage from Shanghai to Rotterdam — the smart EMS dynamically 
adjusted main-engine power in response to the voyage plan and real-time wave forecasts. 
When encountering head seas or following seas, the system automatically switched the 
energy-storage device between charging and discharging modes to smooth out propul-
sion power fluctuations. Compared to traditional fixed-speed sailing on the same voyage, 
fuel consumption dropped by an average of 8.3 %, CO₂ emissions fell by about 10.1 %, 
and total transit time increased by less than 0.5 %. Equipment temperatures and vibration 
levels also declined, extending maintenance intervals for the main engine. This case 
clearly demonstrates that a cloud-edge-ship collaborative architecture, combined with 
multisource data fusion, can deliver substantial fuel savings and emission reductions 
without compromising safety or transit efficiency. 
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5.2. System Operational Performance and Economic Benefit Evaluation 
Drawing on data collected during the cross-ocean voyage, we performed a compre-

hensive quantitative evaluation of both the EMS's operational performance and its eco-
nomic impact. Four primary performance indicators were tracked. First, daily fuel con-
sumption per TEU-day (L/day·TEU) was measured to capture the system's efficiency in 
terms of fuel burned relative to cargo capacity and time at sea. Second, CO₂ emission in-
tensity (g-CO₂/TEU·km) reflected how much carbon dioxide was released for each con-
tainer moved per kilometer. Third, we recorded end-to-end command-to-actuation la-
tency (s), ensuring the system could respond swiftly to changing conditions. Finally, sys-
tem stability was monitored by logging packet-loss rates and fault-trigger events, high-
lighting the reliability of data communication and control loops in an operational envi-
ronment. Results showed a marked improvement across all metrics. Under the traditional 
fixed-speed mode, the vessel consumed an average of 480 tons of fuel per day. After EMS 
deployment, this figure dropped to 440 tons — a reduction of 8.3 %. Correspondingly, 
CO₂ intensity decreased from 670 g-CO₂/TEU·km to 602 g-CO₂/TEU·km, achieving a 10.1 % 
emissions cut. The EMS's command-to-actuation latency never exceeded 0.8 s throughout 
the voyage, thereby satisfying stringent real-time scheduling requirements and ensuring 
that power-allocation adjustments occurred without perceptible lag. Equally important, 
packet loss for critical device data remained below 0.01 %, and recorded fault triggers 
declined by 35 %, demonstrating a significant enhancement in communication reliability 
and overall system robustness. Economically, these operational gains translated into sub-
stantial cost savings. At an average marine fuel price of USD 600 per ton, the vessel saved 
roughly USD 24,000 daily by burning 40 fewer tons of fuel. Over a typical 300-day annual 
sailing calendar, this equates to approximately USD 7.2 million in fuel-cost savings. More-
over, by smoothing propulsion loads and reducing mechanical stress on both the main 
engine and auxiliary systems, the EMS cut emergency maintenance incidents by 20 %, 
yielding additional savings of around USD 150,000 per year. When compared against cap-
ital and operating expenditures, the business case proves compelling. The initial deploy-
ment investment totaled USD 350,000, with annual operations and maintenance costs of 
USD 50,000. Under these assumptions, the break-even point occurs in roughly 1.5 years, 
and the project achieves an internal rate of return (IRR) of approximately 38 %. Sensitivity 
analyses further show that even with a 10 % fluctuation in fuel price or a 15 % variation 
in maintenance-cost savings, the IRR remains above 30 %, underscoring the solution's fi-
nancial resilience. Beyond hard savings, qualitative benefits include extended engine 
maintenance intervals, reduced crew workload in monitoring energy systems, and im-
proved compliance with increasingly strict environmental regulations. Taken together, 
the EMS delivers a powerful combination of enhanced operational efficiency, meaningful 
emissions reductions, and rapid return on investment — providing shipping operators 
with a robust, scalable pathway toward greener, more sustainable maritime operations. 

6. Key Challenges and Future Outlook 
6.1. Technical and Engineering Implementation Challenges 

Despite promising lab results and small-scale pilots, ensuring sensor-network relia-
bility and data integrity in harsh maritime conditions remains difficult. Multimodal sen-
sors operating in high humidity, salt spray, and heavy vibration are prone to drift or fail-
ure. Disparate sampling rates and clock skews among devices complicate timestamp 
alignment, undermining load forecasts and optimization accuracy. Moreover, digital-twin 
models must be meticulously calibrated; if sea states change dramatically or the ship op-
erates outside trained conditions, MPC or RL strategies can become suboptimal — or even 
unsafe — failing to meet both efficiency and safety targets. Maritime communication un-
certainty poses another major challenge to the cloud-edge-ship design. Although 5G, sat-
ellite, and CAN bus links complement each other, bandwidth fluctuations and high la-
tency are still common. Guaranteeing that edge nodes seamlessly take over control when 

https://doi.org/10.71222/wrgd4245


International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA 
 

Vol. 2 No. 2 (2025) 15 https://doi.org/10.71222/wrgd4245 

links degrade or drop entirely is critical to system availability. Vendor-specific differences 
in interface protocols, data formats, and security credentials further complicate integra-
tion and upgrades. On the engineering side, maintenance teams must master sensor cali-
bration, electrical troubleshooting, and algorithm tuning — skills that are often siloed. 
Long-term, high-intensity shipboard operation places additional reliability demands on 
both hardware and software, driving up O&M costs and training burdens. Addressing 
these technical and implementation hurdles — through unified standards, interdiscipli-
nary collaboration, and continuous validation — will be essential to industrialize and 
scale smart ship energy-management solutions. 

6.2. Research Hotspots and Industrialization Directions 
At the research frontier, the deep fusion of digital-twin technology with explainable 

AI is gaining traction. By tightly coupling physical vessel models with real-time opera-
tional data, researchers aim to achieve more accurate performance forecasts and early 
fault detection. To mitigate the "black box" concerns around MPC and RL, explainable 
algorithms are being explored to ensure robustness and auditability under extreme con-
ditions. Federated learning and other distributed-learning approaches are also under in-
vestigation to enable cross-ship model sharing while preserving data privacy, boosting 
fleet-level energy management and diagnostics. On the communications side, emerging 
6G space-ground-sea integrated networks and self-organizing, self-healing topologies 
promise greater bandwidth, lower latency, and higher reliability — key enablers for real-
time decision-making in a cloud-edge-ship ecosystem. In energy systems, hybrid storage 
solutions that combine hydrogen fuel cells with advanced battery chemistries and super-
capacitors, alongside offshore wind and solar microgrids, are shaping up as new direc-
tions for emission reduction and efficiency gains. From an industrial perspective, stand-
ardization and ecosystem development are vital to accelerate adoption. The IMO, classi-
fication societies, and industry alliances are issuing unified performance metrics and 
safety guidelines for intelligent ships and EMS technologies. Open-source microservice 
frameworks, standardized APIs, and common data schemas will help different vendors 
integrate seamlessly and reduce upgrade costs. Meanwhile, deeper partnerships between 
shipowners and technology providers are giving rise to "Energy Management as a Ser-
vice" models — leasing hardware and paying based on actual energy savings — to lower 
upfront investment barriers. Going forward, transparent sharing of performance data 
from demonstration routes will refine commercial evaluation frameworks, attract invest-
ment, and garner policy support, paving the way for large-scale deployment of intelligent 
ships and smart energy management in the global maritime industry. 

7. Conclusions and Recommendations 
This study demonstrates that intelligent ships equipped with advanced energy-man-

agement systems deliver substantial improvements in safety, economy, and environmen-
tal performance. We outlined the defining features of intelligent vessels — multi-source 
sensing, autonomous decision-making, networked collaboration, and adaptive optimiza-
tion — then reviewed key advances in sensor fusion, MPC, and RL within a cloud-edge-
ship architecture. Both simulations and sea trials confirmed fuel savings of over 8 %, CO₂ 
reductions of around 10 %, and an investment payback period of approximately 1.5 years, 
validating the approach's feasibility and strong economic returns. 

Based on these findings, we recommend: Enhance Reliability: Standardize interfaces 
and data protocols for sensors and communication links. Incorporate fault-tolerant de-
signs and localized redundancy to maintain availability under harsh conditions. Advance 
Explainable AI: Deepen research on digital-twin-AI integration and develop explainable 
algorithms with online calibration capabilities to bolster decision-making robustness in 
extreme scenarios. Promote EMS as a Service: Pilot Energy Management as a Service mod-
els — leasing hardware and paying by savings — to reduce vessel owners' upfront costs 
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and foster a sustainable industry ecosystem. Supportive Regulation: Encourage regulators 
and industry bodies to accelerate the development of unified standards covering safety 
performance, cybersecurity, and operational compliance, creating an enabling environ-
ment for the maritime sector's green, intelligent transformation. 
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