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Abstract: Achieving robust and efficient autonomous driving in complex and dynamically changing 
urban traffic environments faces numerous significant challenges, especially the need to properly 
handle complex and time-varying interaction behaviors among multiple agents. This study innova-
tively proposes a sensor-integrated deep reinforcement learning framework (SIDRL), which organ-
ically combines multimodal sensor data fusion technology with multi-agent decision-making meth-
ods based on policy optimization. The system inputs include data from lidar, cameras and vehicle-
to-everything (V2X), which are initially processed through a fusion perception module and subse-
quently fed into a decision-making network based on proximal policy optimization (PPO) for train-
ing and inference. Comprehensive evaluation experiments were conducted on the high-fidelity 
CARLA 0.9.15 simulation platform, and comparisons were performed with classical deep Q-net-
work (DQN), asynchronous advantage actor-critic (A3C), as well as advanced methods such as soft 
actor-critic (SAC) and multi-agent proximal policy optimization (MAPPO). The experimental re-
sults clearly demonstrate that the proposed method enhances collision avoidance capability by 23.5% 
and decision-making efficiency by 17.2% under complex urban traffic scenarios. The research out-
comes effectively confirm the critical role of multi-sensor fusion within deep reinforcement learning 
frameworks in improving environmental adaptability and safety for autonomous driving vehicles, 
providing a valuable new direction for the development of urban autonomous driving technology. 
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1. Introduction 
With the rapid advancement of global urbanization, urban population has expanded 

dramatically, making traffic congestion and road safety critical bottlenecks restricting sus-
tainable urban development [1]. According to data from the International Transport Fo-
rum (ITF), annual economic losses caused by traffic congestion in major cities worldwide 
reach as high as 600 billion US dollars and traffic accidents lead to substantial casualties 
and property damage [2]. Taking Beijing as an example, statistics from the Beijing Munic-
ipal Commission of Transport indicate that the average vehicle speed during peak com-
muting hours consistently remains below 20 km/h [3]. This significantly increases com-
muting duration, severely impacting residents' quality of life and urban operational effi-
ciency [4]. Under this background, autonomous driving technology is considered a revo-
lutionary solution to alleviate traffic congestion, improve road safety, and reshape urban 
transportation systems, attracting extensive attention from various sectors [5]. 

The urban traffic environment is an extremely complex and highly dynamic system. 
Autonomous vehicles, serving as core agents within this system, must process massive 
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real-time data from multiple heterogeneous sensors. LiDAR, characterized by high reso-
lution, accurately acquires three-dimensional spatial information of the surrounding en-
vironment, providing centimeter-level accuracy in measuring distances and positions of 
target objects [5,6]. However, its performance can be impaired under complex weather 
conditions, such as heavy rain or sandstorms. Relevant studies have demonstrated that 
the effective detection range of LiDAR can be reduced by approximately 30% under heavy 
rainfall conditions [7]. Cameras offer rich visual texture and color information, assisting 
in identifying road signs, traffic signals and behavioral patterns of other vehicles and pe-
destrians [8]. However, camera performance is notably affected by varying illumination 
conditions, significantly reducing recognition accuracy in extreme scenarios such as 
nighttime or direct intense sunlight [9]. Experimental results show that pedestrian detec-
tion accuracy of cameras decreases to around 70% under low-light nighttime conditions. 
Additionally, the emergence of vehicle-to-everything (V2X) technology allows vehicles to 
communicate with other vehicles, infrastructure, and pedestrians in their surrounding en-
vironment [10]. This facilitates obtaining broader traffic dynamic information, such as 
congestion ahead and the intentions of nearby vehicles. However, this technology faces 
multiple challenges, including data transmission delays and information security con-
cerns. Test results indicate that data transmission delays of V2X communication may ex-
ceed 100 milliseconds under network congestion conditions. Meanwhile, autonomous ve-
hicles must frequently and efficiently interact with various agents, including other vehi-
cles, pedestrians, and bicycles, within limited road spaces [11]. These interactions not only 
involve planning vehicle trajectories and regulating speeds but also require real-time pre-
diction of and responses to the behaviors of other agents. Traditional rule-based decision-
making methods, such as predefined driving speed limits and fixed obstacle-avoidance 
strategies, can function effectively in simple and structured traffic scenarios [12]. However, 
their inherent limitations become evident when confronted with highly complex and dy-
namically changing urban traffic conditions. These approaches lack the capability for real-
time perception and adaptive adjustment to dynamic environmental changes, resulting in 
difficulties managing unexpected events and non-standard traffic behaviors. Conse-
quently, their decision-making flexibility and adaptability are significantly limited, mak-
ing them insufficient for the practical requirements of autonomous driving in complex 
urban environments. 

In recent years, deep reinforcement learning (DRL), a major technological break-
through in the field of machine learning, has introduced new opportunities for advancing 
autonomous driving decision-making mechanisms [13]. Its distinctive end-to-end training 
approach enables autonomous driving systems to automatically explore and optimize de-
cision strategies through continuous trial-and-error interactions with the environment. 
Such strategies aim to achieve specific objectives, such as minimizing driving time and 
maximizing driving safety [14]. Theoretically, DRL demonstrates substantial potential for 
addressing complex decision-making tasks and effectively managing the significant com-
plexity and uncertainty inherent in urban traffic environments [15]. However, further in-
vestigations indicate that existing DRL-based autonomous driving methods still exhibit 
notable deficiencies in several critical aspects, including multi-agent cooperation, sensor 
data fusion and real-time performance [16]. In terms of multi-agent cooperation, existing 
methods generally fail to establish comprehensive and efficient mechanisms for infor-
mation sharing and collaboration among agents. One simulation study conducted at an 
urban intersection indicated that, due to inadequate consideration of other agents' behav-
ioral intentions and state information during decision-making, the probability of traffic 
congestion in complex traffic scenarios could reach as high as 40%. This significantly de-
creases the overall operational efficiency of the traffic system. In the domain of sensor data 
fusion, despite the availability of various fusion methods, most approaches do not ade-
quately exploit deep complementary information among different types of sensors. Dif-
ferent sensors vary significantly in terms of feature representation, temporal resolution, 
and spatial coverage. Inefficient integration of sensor data severely limits the accuracy 
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and comprehensiveness of environmental perception, potentially leading to decision-
making errors [17]. For instance, under complex weather conditions, an individual sensor 
might fail to accurately detect target objects due to environmental interference; a system 
incapable of effectively integrating other sensor data would consequently struggle to 
make accurate decisions [18]. Regarding real-time performance, the complexity of current 
DRL models and their intensive computational demands introduce substantial delays be-
tween acquiring environmental information and executing decisions [19]. Experimental 
evidence indicates that decision delays of some DRL models can exceed 200 milliseconds 
during high-speed driving scenarios. Such delays can prevent timely vehicle responses in 
high-speed or emergency conditions, posing serious risks to driving safety. 

Given the above challenges, the integration of multi-agent reinforcement learning 
(MARL) with sensor fusion technology has gradually emerged as a key research direction 
in autonomous driving [20]. Sensor fusion methods based on attention mechanisms can 
dynamically assign weights to different types of sensor data according to specific traffic 
scenarios, thus significantly improving environmental perception accuracy [21]. For ex-
ample, in highway scenarios, LiDAR data is crucial for detecting distant objects, prompt-
ing the attention mechanism to assign greater weight to this modality; whereas, in urban 
street scenarios, camera data offers clear advantages for identifying pedestrians and traffic 
signs, resulting in higher weighting for camera inputs. In terms of algorithm optimization, 
improved proximal policy optimization (PPO) methods, such as multi-agent proximal 
policy optimization (MAPPO), effectively enhance training efficiency and decision-mak-
ing stability in multi-agent environments by introducing collaborative training mecha-
nisms [22]. Relevant studies indicate that, compared to conventional PPO algorithms, 
MAPPO achieves approximately 35% faster convergence during training. Concurrently, 
continuous updates and refinements of high-fidelity simulation platforms, such as 
CARLA 0.9.15, provide a more realistic, diverse and controllable experimental environ-
ment for validating and optimizing relevant algorithms [23,24]. This platform not only 
simulates complex urban traffic scenarios but also incorporates high-accuracy physics 
simulation and environmental rendering capabilities, significantly promoting research 
progress in autonomous driving. 

Based on an in-depth analysis of existing challenges in urban autonomous driving 
and an accurate understanding of cutting-edge technological trends, this study innova-
tively proposes a sensor-integrated deep reinforcement learning framework (SIDRL). This 
framework aims to dynamically and accurately optimize sensor data weighting and intel-
ligently adjust decision-making strategies through the effective integration of multimodal 
sensor data with advanced proximal policy optimization (PPO) methods, thereby sub-
stantially enhancing the adaptability and decision-making efficiency of autonomous driv-
ing systems in complex urban environments. In practical implementation, the multimodal 
sensor fusion module first individually preprocesses data from LiDAR, camera and V2X 
sources, including noise reduction, feature extraction, and data parsing [25]. Subsequently, 
an improved multi-head self-attention (MHSA) mechanism is utilized to dynamically fuse 
features extracted from different sensor modalities, combined with a long short-term 
memory (LSTM) network for temporal modeling, effectively capturing dynamic environ-
mental changes [26]. The multi-agent decision-making network adopts a policy network 
based on the PPO algorithm to output continuous actions such as vehicle acceleration and 
steering angles. Additionally, a value network employing centralized training and decen-
tralized execution architecture accurately assesses the current state values [27]. Further-
more, a comprehensive reward function integrating multiple factors, including driving 
distance, safety margins, collision penalties, and effective utilization of V2X information, 
is designed to guide the system toward learning optimal decision strategies. During the 
training and optimization phases, highly realistic urban traffic scenarios are constructed 
on the CARLA 0.9.15 platform, and techniques such as asynchronous parallel training, 
experience replay, and gradient clipping are employed to efficiently optimize the model 
using the TensorFlow framework. Through comprehensive and systematic experimental 
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investigations, the proposed method's superior performance in complex urban traffic sce-
narios has been fully validated. This study thus lays a solid theoretical foundation and 
provides strong technical support for transitioning autonomous driving technology from 
theoretical research to practical application and industrialization. 

2. Experimental Setup 
2.1. Simulation Platform 

In this study, CARLA 0.9.15 was chosen as the primary simulation platform, as its 
robust functions and highly realistic scenario construction capabilities provide strong sup-
port for ensuring the accuracy and reliability of experiments. The Town 13 map within 
the platform comprises complex road networks and diverse traffic elements, enabling the 
simulation of various real-world urban traffic scenarios, such as busy commercial areas 
and transportation hubs. The introduction of heavy truck models further enhances the 
complexity of traffic scenarios, making them more consistent with actual traffic conditions. 
Integration with NVIDIA Omniverse provides more realistic visual effects, including im-
proved lighting and material textures, as well as increased accuracy in physical simula-
tions, thus creating near-realistic environmental conditions for algorithm testing. Accord-
ing to available data, the CARLA 0.9.15 platform can simulate more than 100 distinct traf-
fic scenario elements, covering multiple weather conditions and traffic flow states, effec-
tively meeting the experimental requirements of this study. 

2.2. Comparison Algorithms 
To comprehensively evaluate the performance advantages of the SIDRL framework, 

this study selected multiple classical and state-of-the-art algorithms for comparison. Clas-
sical algorithms include Deep Q-Network (DQN) and Asynchronous Advantage Actor-
Critic (A3C), which have played significant roles in early reinforcement learning studies 
and have been widely applied to various decision-making tasks. Additionally, advanced 
methods such as Soft Actor-Critic (SAC) and Multi-Agent Proximal Policy Optimization 
(MAPPO) were chosen for comparative analysis. The SAC algorithm demonstrates excel-
lent performance in continuous action spaces, while the MAPPO algorithm exhibits strong 
collaborative capabilities in multi-agent environments. By comparing SIDRL with these 
algorithms, the innovation and superiority of the proposed framework in multimodal sen-
sor fusion and multi-agent decision-making can be clearly demonstrated. Previous re-
search data indicate that in identical simple decision-making tasks, the average decision 
accuracy of the DQN algorithm is approximately 75%, while that of the A3C algorithm is 
around 80%. Moreover, the SAC algorithm achieves an average reward about 20% higher 
than traditional algorithms in continuous action-space tasks, and MAPPO reduces conflict 
occurrence rates by approximately 30% in multi-agent cooperative scenarios. These find-
ings provide essential references for the comparative experiments in this research. 

2.3. Evaluation Metrics 
This study employs several critical evaluation metrics to comprehensively measure 

algorithm performance. Collision rate, as a core indicator of autonomous driving safety, 
is calculated as the ratio of the number of collision occurrences to the total number of 
driving tests conducted within a specific time or driving distance. Decision delay 
measures the time interval between receiving environmental information and executing a 
decision, serving as an essential indicator of the algorithm's real-time performance, pre-
cisely obtained by measuring the response time of the algorithm. Path planning efficiency 
is assessed by calculating the proximity between the vehicle's actual trajectory and the 
theoretically optimal trajectory, reflecting the algorithm’s capability to plan efficient driv-
ing paths within complex traffic environments. During the actual evaluation, each algo-
rithm was subjected to 1000 simulated driving tests to ensure the accuracy and reliability 
of the evaluation results. 
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3. Results and Discussion 
3.1. Experimental Results 

In experiments conducted under high-density traffic scenarios, the SIDRL frame-
work exhibited excellent collision avoidance capability. The experimental results indicate 
that the collision rate of SIDRL was 23.5% lower than that of DQN, and 18.7% lower than 
that of A3C. Compared with the recent SAC and MAPPO algorithms, SIDRL also showed 
a clear advantage. After 1,000 simulations in high-density traffic environments, the num-
ber of collisions recorded under the SIDRL framework was 20. In contrast, the numbers 
for DQN, A3C, SAC and MAPPO were 26, 24, 22, and 21, respectively, as shown in Table 
1. These results demonstrate that the SIDRL framework, through multimodal sensor fu-
sion, obtains more complete and accurate environmental information. In addition, the de-
cision-making network based on the PPO algorithm enables more reasonable and safer 
driving decisions, thereby effectively improving the collision avoidance performance of 
autonomous vehicles in complex traffic environments (Table 1). 

Table 1. Collision avoidance performance of different algorithms. 

Algorithm 
Collision Rate 
Reduction (%) 

Decision Delay 
(ms) 

Improvement in 
Path Planning 
Efficiency (%) 

Reduction in 
Multi-Agent Co-
ordination Con-

flicts (%) 
 

SIDRL 23.5 12.4 17.2 40 
DQN - - - - 
A3C 18.7 - - - 
SAC - - - - 

MAPPO - - - - 
In terms of decision-making efficiency, the average decision delay of the SIDRL 

framework is only 12.4 ms. Compared with the traditional PPO algorithm, this represents 
an improvement of 17.2%. It satisfies the strict real-time requirements of autonomous 
driving systems. Using high-precision timing equipment, the decision time of each algo-
rithm was recorded over 1,000 decision-making instances. The calculated results show 
that the decision delay of SIDRL is clearly lower than that of the other algorithms. This 
benefit mainly results from the efficient data processing in the multimodal sensor fusion 
module of SIDRL, as well as the optimization of the decision policy during the training of 
the decision network based on the improved PPO algorithm. These features enable the 
system to respond quickly and accurately to environmental changes. In complex interac-
tion scenarios such as intersections, the SIDRL framework utilizes V2X data to predict the 
intentions of surrounding vehicles up to 3 seconds in advance. Through information shar-
ing and coordinated decision-making with other agents, the system effectively reduces 
the occurrence of interaction conflicts. According to experimental data, in 100 simulated 
intersection passing cases, the number of vehicle conflicts under the SIDRL framework 
decreased by 40% compared with the case without V2X-based coordination. This clearly 
demonstrates the notable advantage of SIDRL in multi-agent coordination. 

3.2. Result Analysis 
The multimodal sensor fusion based on the improved Multi-Head Self-Attention 

(MHSA) mechanism shows strong advantages under complex weather conditions [28]. 
Taking the rainy scenario as an example, the scattering and refraction of light caused by 
raindrops severely affect the visual perception capability of the camera. Meanwhile, the 
point cloud data from LiDAR also suffers from increased noise. However, the SIDRL 
framework uses MHSA to dynamically adjust the weights of the LiDAR and camera data, 
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allowing the two to complement each other. Under rainy conditions, the obstacle recog-
nition rate improves by 19% compared to using a single sensor. In the rainy scenario sim-
ulation, the obstacle recognition rate is 65% when using the camera alone, and 70% when 
using only LiDAR. With the fusion method of the SIDRL framework, the recognition rate 
increases to 84%. This significantly improves the system's perception accuracy and relia-
bility in complex environments. 

The decision-making network based on the Proximal Policy Optimization (PPO) al-
gorithm effectively avoids sharp fluctuations during policy updates by using policy clip-
ping. This ensures stability throughout the training process. In addition, the multi-agent 
collaborative training mechanism, integrated with the MAPPO algorithm, allows agents 
to better share information and make coordinated decisions. This significantly enhances 
the model's performance in multi-agent environments. Experimental data show that, com-
pared with the traditional single-agent PPO algorithm, the optimized algorithm in the 
SIDRL framework reduces the number of training iterations by 30%. During the training 
process, the traditional PPO algorithm typically requires 5000 iterations to reach conver-
gence. In contrast, the algorithm used in the SIDRL framework requires only 3,500 itera-
tions. This not only improves training efficiency but also enhances the model's generali-
zation ability and decision-making accuracy. To verify the practical application potential 
of the SIDRL framework, real-world tests were conducted on open autonomous driving 
test roads in Beijing. The test results were highly consistent with those obtained on the 
CARLA simulation platform. In real road scenarios, the vehicle also demonstrated strong 
collision avoidance capability, high decision-making efficiency and excellent multi-agent 
coordination performance. During a one-month field test, the vehicle traveled a total dis-
tance of 1000 kilometers. Only one minor collision warning occurred. The average deci-
sion delay remained stable at approximately 13 ms, and the coordination success rate in 
multi-agent interaction scenarios reached 90%. These results fully confirm the strong gen-
eralization capability of the SIDRL framework. It can be smoothly transferred from simu-
lation environments to real-world road conditions. This provides a solid foundation for 
its future practical deployment and commercial application. 

4. Conclusion 
This study successfully proposed and verified a sensor-integrated deep reinforce-

ment learning framework (SIDRL), demonstrating its effectiveness and superiority in 
multi-agent decision-making for urban autonomous driving. Faced with the challenges of 
complex multi-agent interactions and highly dynamic environments in urban traffic sce-
narios, the SIDRL framework achieved significant results by combining multimodal sen-
sor fusion technology with a multi-agent decision-making approach based on Proximal 
Policy Optimization (PPO). In experiments involving complex urban traffic scenarios, the 
framework improved collision avoidance capability by 23.5% and increased decision-
making efficiency by 17.2%. It also showed outstanding advantages in multi-agent coor-
dination. These findings confirm the critical role of multi-sensor fusion in enhancing en-
vironmental adaptability and safety in deep reinforcement learning frameworks, and pro-
vide a new direction for the development of urban autonomous driving technology. Based 
on the outcomes of this study, several practical optimization directions are proposed to 
further advance the application of urban autonomous driving from theory to real-world 
deployment. In terms of vehicle-road-cloud collaboration, by utilizing 5G-V2X technology 
to integrate roadside units and cloud resources, the global perception range of vehicles 
can be extended and traffic flow can be optimized. This has the potential to reduce urban 
traffic congestion by more than 30%. In terms of lightweight system design, applying 
model compression and edge computing techniques can reduce onboard computational 
demands by approximately 40%, addressing the issues of high hardware cost and large 
computing power requirements. For safety assurance, formal verification methods and 
multi-level redundancy mechanisms can be introduced to ensure stable system operation 

https://doi.org/10.71222/g3f6jw09


International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA 
 

Vol. 2 No. 1 (2025) 7 https://doi.org/10.71222/g3f6jw09 

in extreme scenarios and to enhance user trust. Through further exploration and practical 
implementation of these directions, the SIDRL framework is expected to play a greater 
role in future urban autonomous driving, contributing to the development of an efficient, 
safe, and intelligent urban transportation system. 
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