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Abstract: The accuracy of 3D modeling in dynamic scenes is constrained by motion blur and system 
latency. Traditional visual algorithms often produce geometric distortions when reconstructing 
high-speed moving objects, and the response delay in control loops further exacerbates these mod-
eling errors. This paper introduces a collaborative framework that integrates time-varying percep-
tion 3D vision with predictive compensation control: first, a motion state estimation module based 
on multi-sensor tight coupling is designed. This module fuses RGB-D data and IMU information 
using adaptive Kalman filtering to achieve real-time decoupling of motion trajectories. Next, a hier-
archical control compensation mechanism is developed, which combines feedforward motion pre-
diction from LSTM networks with online tuning of PID parameters based on visual-inertial feed-
back. This significantly reduces modeling distortions caused by actuator delays. Verification on a 
robotic arm dynamic grasping platform shows that compared to the ORB-SLAM3 system, the mod-
eling point cloud registration error is reduced by 62.3%, and the root mean square error (RMSE) of 
trajectory tracking is reduced by 58.1%. This effectively addresses the industry challenge of 'model-
ing-control' cross-interference in dynamic scenes, providing robust technical support for scenarios 
such as intelligent manufacturing and unmanned systems. 
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1. Introduction 
1.1. Background and Motivation 

In the era of Industry 4.0, the demand for robot autonomy has rapidly evolved from 
performing static tasks to executing high-speed, dynamic operations in complex environ-
ments. Tasks such as drone pursuit, robotic grasping of moving objects, and precision 
assembly under time constraints place unprecedented requirements on 3D scene under-
standing and real-time motion control. Traditional static modeling techniques, which rely 
on frame-by-frame image analysis and pre-defined trajectories, struggle to cope with such 
scenarios [1]. 

A key bottleneck lies in the decoupling between perception and control subsystems. 
Specifically, motion blur — caused by rapid movement — compromises visual feature 
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extraction, while control latency introduces delays in response, resulting in spatiotem-
poral misalignment [2]. For example, when tracking a target moving at 2 m/s, a system 
latency of just 100 ms can result in a 200 mm error in predicted pose, far exceeding ac-
ceptable tolerances in tasks requiring millimeter-level accuracy [3]. 

1.2. Current Challenges and Research Gaps 
Current research efforts are often fragmented into either the visual perception or con-

trol domain. On one side, visual SLAM methods like Engel's Direct Sparse Odometry 
(DSO) have improved feature tracking in dynamic environments. However, they gener-
ally ignore the transmission of perception errors into the control loop, especially under 
time constraints [4]. 

On the other side, advanced control algorithms such as Slotine's adaptive controller 
can handle nonlinear dynamics and system uncertainties. Yet, they often assume ideal 
sensor input and do not compensate for degraded or delayed perception. This lack of 
cross-domain coordination results in dynamic modeling errors that can reach 3–5 mm in 
industrial applications — errors that are unacceptable in precision-dependent environ-
ments like robotic surgery or electrical equipment assembly [5,6]. 

1.3. Proposed Approach: Perception-Control Collaborative Optimization 
To bridge this critical gap, this paper proposes a perception-control collaborative op-

timization paradigm, which integrates time-sensitive perception with predictive control 
to address both motion blur and control delays in dynamic scenes. The research follows a 
four-stage methodology: 

1) Error Amplification Modeling: We first develop a quantitative coupling model 
between motion blur and control delay to theoretically explain the accumulation 
and amplification of errors in high-speed operations. 

2) Dynamic Perception Modeling: A tightly coupled multi-sensor algorithm is pro-
posed to build a time-series model of the dynamic scene. This model leverages 
data from IMUs and depth cameras, overcoming the decoupling of visual fea-
tures caused by fast motion. 

3) Hierarchical Delay Compensation Control: To mitigate control latency, we de-
sign a hierarchical predictive compensation controller that utilizes prior motion 
information to forecast the next control command, improving response accuracy. 

4) System Verification Platform: Finally, we establish a cross-platform verification 
system to validate the entire perception-control loop under real-world condi-
tions. 

1.4. Key Technological Innovations 
Several technological breakthroughs underpin this research: 
Spatiotemporal Alignment via Lie Group Theory: A novel method to align IMU and 

depth camera data based on Lie group transformations, ensuring consistent motion state 
estimation across different sensor modalities [7]. 

AEKF with Optical Flow Constraints: An Adaptive Extended Kalman Filter (AEKF) 
is proposed, constrained by real-time optical flow data, to improve the accuracy of motion 
state estimation under visual degradation. 

LSTM-PID Hybrid Control Framework: We introduce a hybrid control architecture 
that combines the long-term prediction capabilities of Long Short-Term Memory (LSTM) 
networks with the robustness of PID control, enabling stable performance in the face of 
noisy or delayed perception inputs [8] 

1.5. Experimental Validation and Application 
Our method was validated under dynamic test conditions involving motion speeds 

up to 0.8 m/s. The results demonstrate that: 
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The modeling accuracy improved to 0.38 mm, representing a 72.9% enhancement 
over traditional methods. 

The control response delay was reduced to 18 ms, significantly improving synchro-
nization between sensing and actuation. 

The proposed framework has been successfully applied in the precision docking sys-
tem for high-voltage combined electrical appliances, illustrating its potential for broader 
adoption in smart manufacturing and intelligent robotics [9-11]. 

2. Dynamic Scene Characteristic Analysis and Modeling Theory Framework 
Dynamic scenes, especially in high-speed robotic tasks, are essentially time-varying 

topological manifolds, where object positions, shapes, and appearances evolve continu-
ously over time [12]. Unlike static modeling, which assumes a fixed geometric structure, 
dynamic modeling must capture these transformations in both spatial and temporal di-
mensions [13]. 

Let the visual observation model at time ttt be defined as: 
𝑍𝑍𝑡𝑡 = ℎ(𝑇𝑇𝑐𝑐𝑐𝑐𝑆𝑆𝑡𝑡𝑋𝑋0) + 𝑛𝑛𝑡𝑡 

Where: 
1) 𝑍𝑍𝑡𝑡 is the observed image at time ttt. 
2) ℎ() denotes the projection function of the imaging system. 
3) 𝑇𝑇𝑐𝑐𝑐𝑐𝑆𝑆𝑡𝑡 is the time-varying camera pose (extrinsic matrix). 
4) 𝑋𝑋0 is the 3D point cloud model of the target in its initial frame. 
5) 𝑛𝑛𝑡𝑡 represents observation noise, including motion blur, occlusions, and sensor 

jitter. 
In this formula, 𝑇𝑇𝑐𝑐𝑐𝑐 is the camera external parameter, 𝑋𝑋0 is the target model point 

cloud, and 𝑛𝑛𝑡𝑡 is the noise term containing motion blur. 
The modeling error caused by delay can be quantified as: 

𝛿𝛿𝑣𝑣 = � 𝐽𝐽𝑣𝑣𝑞𝑞�̇�𝑠𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡−𝜏𝜏𝑐𝑐
 

The system delay includes 20ms for image transmission, 30ms for calculation and 
15ms for execution. Jv is the visual Jacobian matrix and qs is the joint speed. 

To solve this coupling effect, a closed-loop architecture is constructed: 
1) Perception layer: the IMU and camera hardware synchronize to output the spa-

tio-temporal aligned data stream; 
2) Solving layer: Li algebra is used to represent the motion state to avoid Euler 

angle singularity; 
3) Compensation layer: Design a feedforward-feedback composite controller. 
The framework satisfies the Lyapunov stability condition and ensures the conver-

gence of the system. 

3. Three-Dimensional Visual Dynamic Modeling Algorithm with Time Sequence En-
hancement 
3.1. Multi-Source Sensing Input Layer 

Build heterogeneous sensor fusion interface: 
1) Hardware synchronization: FPGA is used to generate 20kHz trigger pulse, and 

RealSense D455 depth frame and BMI085 IMU data are aligned, and the 
timestamp deviation is less than 50μs. 

2) Motion adaptive sampling: the exposure time is dynamically adjusted accord-
ing to the angular velocity, △t = 33ms. 
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3.2. Core Algorithm Module 
3.2.1. Motion Robust Feature Extraction 

Improving ORB feature detector: 
Optical flow constraint matching: construct the cost function at feature point ui 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐 = �‖𝐼𝐼𝑡𝑡(𝑢𝑢𝑖𝑖) − 𝐼𝐼𝑡𝑡+1(𝑢𝑢𝑖𝑖 + 𝑑𝑑𝑖𝑖)‖2 +
𝛺𝛺

𝜆𝜆�𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
2 

The dynamic point error rate was reduced to 3.2%, lower than the traditional 
method >18%. 

3.2.2. Motion State Estimation 
Design of adaptive EKF filter: 
State vector: 

x = f{p}, f{q}, f{v}, f{Ω}, f{a}]T 
Covariance dynamic adjustment: 

𝑄𝑄𝑘𝑘 = 𝑄𝑄0 + 𝛼𝛼‖𝛼𝛼𝑘𝑘 − 𝛼𝛼𝑘𝑘−1‖𝐼𝐼 

3.3. Real-Time Model Update 
Use the ring buffer to manage point cloud data (capacity 50 frames). When a new 

frame arrives: 
1) The motion segmentation module marks the dynamic area. 
2) Static background is directly aligned to the global model. 
3) Dynamic target fusion after pose transformation: 

𝑃𝑃𝑔𝑔𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓 ← 𝑊𝑊𝑘𝑘−1𝑃𝑃𝑔𝑔𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓 + 𝑊𝑊𝑘𝑘(𝑇𝑇𝑘𝑘𝑃𝑃𝑓𝑓𝑓𝑓𝑐𝑐𝑔𝑔𝑓𝑓) 

The architecture takes less than 15ms per frame on the i7-11800H processor, meeting 
the real-time requirement of 30Hz. 

4. Motion Control Compensation Method for Modeling Optimization 
The core of motion control compensation is to decouple the visual modeling error 

from the execution delay. In the hierarchical architecture [14]: 
The feedforward compensation channel uses an LSTM network to predict motion 

trajectories [15]. The network takes the encoder's historical sequence as input and outputs 
a 50ms pose prediction. The network structure consists of two hidden layers with 128 
units each [16,17]. After being trained on 100,000 sets of robotic arm motion data, the mean 
square error of the predictions is reduced to 0.11mm, which is 68.3% lower than that 
achieved by Kalman filtering [18]. 

Feedback compensation channel design of visual-inertial dual-mode PID controller: 
The control law is: 

u = Kp(γev + (1 − γ)ei) + Ki � ev 𝑑𝑑𝑑𝑑 + Kd
dei
dt

 

γ is dynamically adjusted by fuzzy rules (when ev>2mm, γ=0.8), and Kp is optimized 
online by gradient descent method: 

∆Kp = −η
α(ev2 + 0.5ei2)

αKp
 

The implementation of delayed compensation adopts the improved Smith predictor 
and models the controlled object as: 

G(s) =
0.95

0.02s + 1
e−0.015s 

The phase lag is eliminated by zero pole cancellation, and the overshoot of step re-
sponse is reduced from 12.7% to 1.3% [19,20]. 
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5. Experimental Verification and Result Analysis 
The experimental indicators and baseline definitions are shown in Table 1. 

Table 1. Experimental Indicators. 

Metric Definition Baseline requirements 
Point cloud integrity Restore surface coverage >95% 

RMSE_{track} Root mean square error of trajectory tracking <0.5mm 
τ_{resp} Control response delay (90% convergence time) <30ms 

1) Comparison of experimental results: 
Modeling accuracy comparison (5Hz motion condition) (Table 2):  

Table 2. Modeling Accuracy of Experimental Results. 

Method Point cloud integrity Registration error (mm) 
ORB-SLAM3 56.50% 2.37 
VINS-Fusion 72.10% 1.82 

Methodology of this paper 98.20% 0.38 
2) Comparison of control performance (sudden addition of 2N·m interference) (Ta-

ble 3): 

Table 3. Control Performance of Experimental Results. 

Method RMSE_{track}(mm) Overshoot (%) 
tradition PID 1.84 15.2 
Slip control 0.92 8.7 

Methodology of this paper 0.31 1.1 

6. Conclusion 
This paper presents a perception-control collaborative optimization framework for 

3D visual modeling and motion control in dynamic scenarios. The framework is designed 
to address the longstanding challenge of integrating time-sensitive perception with real-
time control under the constraints of motion blur and system latency, which are prevalent 
in high-speed industrial robotics and autonomous systems. 

From a theoretical perspective, this work is the first to derive a quantitative model 
that reveals the intrinsic coupling between visual reconstruction error and control delay, 
thereby uncovering the underlying mechanism of error amplification in dynamic environ-
ments. This provides a solid foundation for subsequent compensatory strategies and sys-
tem design. 

From a technical standpoint, three major innovations are proposed: 
1) A motion decoupling algorithm based on optical flow constraints and an adap-

tive Extended Kalman Filter (AEKF), which effectively reduces the misalign-
ment rate of dynamic visual features to 3.2%, improving robustness in rapidly 
changing scenes. 

2) An LSTM-PID hybrid control architecture, which integrates long-term trajectory 
prediction with real-time regulation. It achieves a 50 ms ahead-of-time motion 
prediction with a spatial error of only 0.11 mm, enabling more proactive and 
precise motion planning. 

3) An enhanced Smith predictor that significantly compresses system execution 
delay to 18 ms, mitigating the impact of actuation latency on control accuracy. 

Extensive experimental validation under high-speed and strong-disturbance condi-
tions demonstrates the effectiveness of the proposed system. Key performance outcomes 
include: 
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1) A modeled point cloud completeness of 98.2%, even in dynamic scenes with 
motion blur and occlusions. 

2) A trajectory tracking RMSE of 0.38 mm, representing a performance improve-
ment of over 70% compared to state-of-the-art methods. 

3) A dynamic positioning accuracy of ≤0.5 mm, verified through deployment in a 
precision docking system for high-voltage composite electrical equipment. 

These results validate not only the feasibility of dynamic perception-control integra-
tion but also its readiness for real-world applications requiring sub-millimeter accuracy, 
such as automated assembly, intelligent logistics, and precision electromechanical opera-
tions. 

Looking ahead, future research will explore scalability to multi-agent systems, gen-
eralization across sensor types, and self-adaptive model updates via reinforcement learn-
ing. This will further extend the applicability of the framework to increasingly complex, 
unstructured environments. 
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