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Abstract: The Vehicle Routing Problem (VRP) is crucial in logistics, transportation, and distribution. 
Traditional VRP focuses on optimizing vehicle routes between a fixed starting point and multiple 
locations to minimize travel distance or time. However, these models perform inadequately in dy-
namic environments such as campus student path planning, which involve diverse movement pat-
terns and time window constraints. This paper addresses campus student path planning as a Het-
erogeneous Fleet Vehicle Routing Problem with Time Windows (HFVRPTW) and introduces the 
Scooter-Aware Pathfinding with Time Windows (SAPTW) method. Students start from random 
points and navigate a grid-based campus to fixed destinations like dormitories and cafeterias, 
choosing either walking or using electric scooters available at specific locations. This study tackles 
key challenges including diverse movement modes, time windows for reaching destinations, auto-
matic generation of campus maps, and random generation of student starting points and destina-
tions. Additionally, ensuring AI-powered software testing, we developed the Grid-based Campus 
Map Randomized Generation (GMRG) method, a rule-based approach for creating grid maps with 
roads, obstacles, and specific buildings. This method provides a realistic and controlled environ-
ment for route planning tests and simulations, ensuring the robustness and reliability of the pro-
posed solution in real-world applications. Our approach highlights the potential of integrating arti-
ficial intelligence with software testing to optimize complex routing problems with time constraints. 
Simulation results demonstrate that SAPTW significantly enhances student arrival efficiency, re-
ducing average arrival time by approximately 3% to 44% compared to traditional methods. 

Keywords: campus path planning; dynamic environments; time windows; Vehicle Routing Prob-
lem 
 

1. Introduction 
Vehicle Routing Problem (VRP) aim at obtaining the lowest cost, time or distance. 

For this purpose, many VRP variants and solution methods have been developed, such 
as Vehicle Routing Problem with Time Window (VRPTW) and Heterogeneous Fleet Ve-
hicle Routing Problem (HFVRP) [1-4]. Adaptive large-neighborhood search and artificial 
intelligence have significantly improved VRP solutions [5,6]. There is also growing inter-
est in combining VRP with self-driving cars and real-time data analytics [7,8]. Small-scale 
problems for VRP can be solved using branch-and-bound algorithms, dynamic program-
ming algorithms, and integer linear programming algorithms, Large-scale problems can 
be optimized using genetic algorithms, simulated annealing, tabu search, and ant colony 
optimization, and AI can help optimize routes [9-17]. Migration learning and adaptive 
algorithms enable knowledge transfer between VRP scenarios and real-time model tuning 
[18-20]. 
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Despite significant advances in AI in the field of VRP, the diversity of data sources 
affects the performance of algorithms, and the deployment of learning models and algo-
rithm integration is more complex to effectively adapt to real-time changes and dynamic 
conditions in VRP. 

For this reason, we use a combination of artificial intelligence and software testing to 
provide effective path optimization solutions for multiple motion patterns and time win-
dows. 

The main contributions of this paper are as follows: 
Provides the SAPTW approach, a new vehicle routing model that combines multiple 

student movement patterns (walking and riding motorized vehicles) and time window 
constraints, which handles complex movement patterns and time constraints in a dynamic 
campus environment. 

Provides a grid and rule-based Campus Map Random Generation (GMRG) method-
ology, which creates gridded maps containing roads, obstacles, and specific buildings. 

Extensive simulation experiments demonstrated the effectiveness of our method. Re-
sults showed that route planning considering scooter pickup significantly improved effi-
ciency, reducing average travel time by approximately 3% to 44%. 

2. Related Work 
Vehicle Routing Problems (VRP) face challenges in dynamic and uncertain environ-

ments. Recent research has explored various machine learning (ML) and deep reinforce-
ment learning (DRL) methods for dynamic path planning. This section focuses on deep 
learning-based approaches and traditional optimization algorithms. 

2.1. Deep Learning-Based Approaches 
Deep Learning (DL) methods solve VRP problems by leveraging their ability to 

model complex relationships within data. 
Reinforcement Learning (RL) is highly adaptable to dynamic environments by learn-

ing and improving from real-time feedback. 
Hybrid methods that combine RL and DL have advantages when dealing with VRP 

problems in real time. 

2.2. Traditional Optimization Algorithms 
Traditional optimization algorithms are still crucial in VRPs. Okulewicz et al studied 

optimization algorithms for dynamic VRPs with real-time data integration [21]. Hutter et 
al proposed parametric algorithms for VRPs, however, traditional methods are not able 
to adapt to rapidly changing conditions in real-time [22]. 

Methods using artificial intelligence present significant advantages in terms of adapt-
ability and performance in dynamic and stochastic environments. Shahbazian et al dis-
cussed deep learning methods for real-time VRP optimization [23]. 

3. Scooter-Aware Pathfinding with Time Windows Methodology 
Our model is composed of the way students move on campus combined with the 

time window constraints of path planning, an abstraction that extends the traditional VRP 
model for dealing with complex movement patterns and time constraints. We address the 
problem of pathfinding in a grid-based environment where agents, such as students, can 
optionally acquire scooters to travel faster. The challenge involves optimizing the travel 
time considering the acquisition time of scooters and navigating obstacles. 

3.1. Problem Formulation 
The environment is represented as a grid of size N × N, where each cell can either be 

an obstacle, free space, or a scooter storage location. The agents start at a given position s 
and aim to reach a specific goal position g. Agents can either walk or ride a scooter, with 
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walking and riding speeds defined as 𝑣𝑣𝑤𝑤 and 𝑣𝑣𝑠𝑠 respectively. The objective is to find the 
shortest path considering both travel and scooter acquisition times. 

3.2. Our Saptw Algorithm for Hfvrptw 
To solve the heterogeneous fleet vehicle routing problem with time windows 

(HFVRPTW), We propose a scooter-aware pathfinding with time windows (SAPTW) al-
gorithm that considers the time to acquire a scooter. The algorithm maintains a priority 
queue of states, each state represented as a tuple (f, p, h), where f is the estimated total 
cost from the start to the goal through the given state, p is the current position, and h is a 
boolean indicating whether the agent has a scooter. 

3.3. Algorithm Detailed Steps 
Algorithm 1 demonstrates the computation of SAPTW, and the following are its de-

tailed steps: 
_________________________________________________ 
Algorithm 1 Scooter-Aware Pathfinding with Time Windows Algorithm 
_________________________________________________ 
Require: 𝑠𝑠 (start), 𝑔𝑔 (goal)  
Ensure: Path from 𝑠𝑠 to 𝑔𝑔  
1:   Initialize O ← {(0, s, False)}                        {Open set} 
2:   Initialize C ← ∅                                           {Came from} 
3:   Initialize gscore ← {(s, False) ↦ 0}  
4:   Initialize fscore ← {(s, False) ↦ d(s, g)}    {Estimated cost function} 
5:   while not O = ∅    do 
6:      (f, p, h) ← pop min(O)              {State with lowest f} 
7:     if p=g then 
8:         return reconstruct path�C, (p, h)� 
9:    end if 
10:  for each n in neighbors (p)  do 
11:      h′ ← h ∨ is_scooter_storage(n)    {Update  scooter status} 
12:      t_g ← gscore[(p, h)] + 1                {Tentative gscore} 

13:      v ← �vs if h′
vw otherwise                       {Travel    speed} 

14:      if  h = False then 
15:          c ← min

s′∈S
�d(n,s′)

vw
+ d(s′,g)

vs
�           {Cost to nearest scooter storage} 

16:      else 
17:         c ← d(n,g)

v
                               {Direct cost to goal} 

18:      end if 
19:      if  (n, h′) ∉ gscore ∨ t_g < gscore[(n, h′)]  Then 
20:          gscore[(n, h′)] ←  t_g 
21:          fscore[(n, h′)] ← gscore[(n, h′)] + c 
22:          push(O,(fscore[(n, h′)], n, h′))  
23:          C[(n, h′)] ← (p, h)  
24:      end if 
25:  end for 
26:end while 
27:return ∅ 
_________________________________________________ 
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4. Grid-Based Campus Map Randomized Generation Methodology 
Traditional methods are difficult to effectively address the problem of optimizing 

student paths in grid-based campus environments, especially when considering multiple 
movement patterns, obstacles, and the need to efficiently plan routes. this paper intro-
duces the Grid-based Campus Map Randomized Generation (GMRG) method, to gener-
ate campus maps with various basic elements (e.g., destinations, obstacles, scooter storage 
areas, and student activity areas) and ensure that these elements do not overlap within 
buffer distances. 

We start by defining the grid size and constants used throughout the generation pro-
cess. These constants include the number of destinations (𝑁𝑁𝑑𝑑), obstacles (𝑁𝑁𝑜𝑜), scooter stor-
age regions (𝑁𝑁𝑆𝑆), and student generation areas (𝑁𝑁𝑔𝑔), as well as proximity buffers and size 
constraints for the various regions. Algorithm 3 below demonstrates the computational 
process of GMRG. 

To ensure no regions overlap, we use a function ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 to check if a given re-
gion 𝑅𝑅 overlaps with any regions in the set ℛ within a specified buffer distance 𝛿𝛿.Main 
input parameters include: 

R: The region to be checked, represented as (xmin, ymin, xmax, ymax). 
ℛ: A set of regions, Each element represented as (x′min , y′min, x′max, y′max). 
Algorithm 2 demonstrates how ℱoverlapping, works, and the following are its detailed 

steps: 
__________________________________________________ 
Algorithm 2 Check Overlapping Region with Buffer 
__________________________________________________ 
Require: 𝑅𝑅 = (𝑥𝑥min,𝑦𝑦min, 𝑥𝑥max,𝑦𝑦max), ℛ, 𝛿𝛿 
Ensure:  True if 𝑅𝑅 overlaps with any region in ℛ within buffer 𝛿𝛿, False otherwise  
1: for all R′ in R do 
2:    (x′min, y′min , x′max, y′max) ← R′  
3:    if  (xmin − δ < x′max < xmax)  and 
  (ymin − δ < y′max < ymax + δ)   then 
4:        return True 
5:    end if 
6:end for 
7:return False 
__________________________________________________ 
The overall algorithm for the GMRG algorithm (as shown in Algorithm 3) aims to 

generate a grid-based campus map comprising destinations (D), obstacles (O), scooter 
storage regions (S), student generation areas (G), and student positions (P). Initialization 
begins with empty sets for these elements. 

__________________________________________________ 
Algorithm 3 GMRG Algorithm 
__________________________________________________ 
Require: 𝐆𝐆, 𝐍𝐍𝐝𝐝, 𝐍𝐍𝐨𝐨, 𝐍𝐍𝐬𝐬, 𝐍𝐍𝐠𝐠, 𝐍𝐍𝐩𝐩, 𝛅𝛅, 𝐚𝐚min, 𝐚𝐚max  
Ensure: Map configuration  
1:   Initialize 𝒟𝒟←[],𝒪𝒪←[], 𝒮𝒮←[], 𝒢𝒢←[],𝒫𝒫←[] 
2:   while  |𝒟𝒟|< Nd  do 
3:       Generate (x,y)  
4:       if  not ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 ((x - δ, y - δ, x + δ, y + δ), 𝒟𝒟) then 
5:          𝒟𝒟←𝒟𝒟∪{(x,y)} 
6:       end if 
7:   end while 
8:   while  |𝒪𝒪| <No do 
9:      Generate 𝑅𝑅  
10:    if  not  ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 (R,𝒪𝒪) and not  ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 (R, 𝒟𝒟) then 
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11:         𝒪𝒪←𝒪𝒪∪ {𝑅𝑅}  
12:    end if 
13:  end while 
14:  while   |𝒮𝒮|<𝐍𝐍𝐬𝐬   do 
15:      Generate   𝑅𝑅 
16:      if  not  ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔  (R, 𝒮𝒮 ) and not  ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔  (R, 𝒪𝒪 )  and  not 

ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔(R, 𝒟𝒟)   then 
17:         𝒮𝒮←𝒮𝒮∪{𝑅𝑅}  
18:      end if 
19:   end while 
20:   while  | 𝒢𝒢|<Ng  do 
21:      Generate 𝑅𝑅   
22:      if  not  ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔  (R, 𝒢𝒢)  and   not  ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔  (R, 𝒪𝒪)  and  not  

ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 (R, 𝒟𝒟)  and  not   ℱ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 (R, 𝒮𝒮)                        
then 
23:             𝒢𝒢←𝒢𝒢∪{𝑅𝑅}   
24:      end if 
25:  end while 
26:  while |𝒫𝒫| <Np do 
27:     Generate (x,y) 
28:      if   not ℱobstacle((x, y), 𝒪𝒪)  then 
29:           𝒫𝒫←𝒫𝒫∪{(x,y)}  
30:     end if 
31:  end while 
32:  Save  𝒟𝒟, 𝒪𝒪, 𝒮𝒮, 𝒢𝒢, 𝒫𝒫  to map configuration 
__________________________________________________ 

5. Experiments 
This paper comprehensively evaluates the path planning performance of each algo-

rithm in complex campus environments through experiments and evaluation metrics, and 
verifies the effectiveness of the proposed method. 

5.1. Baselines 
In the context of Vehicle Routing Problem (VRP), several baseline methods include: 

Uniform Cost Search (UCS), Depth-First Search (DFS), Breadth-First Search (BFS), Dijks-
tra's Algorithm, Bidirectional Search, and A* Algorithm. 

5.2. Overall Experiments 
In the overall experiments (see below Table 1), our primary goal is to validate the 

effectiveness and performance of the proposed method across different scenarios, espe-
cially considering diverse modes of transportation and the impact of time windows on 
path planning efficiency. 

Table 1. Performance Comparison of Different Path Planning Methods on Various Maps. 

Map 
Parameters 

Method 
Total Path 
Distance 
(meters) 

Average 
Arrival Time 

(seconds) 

Average Speed 
meter/second 

Percentage of 
Students with 

Scooter(%) 

Grid Size: 
500 

Obstacles: 15 

UCS 217.4385 295.171 1.09 18.0 
Dijkstra 225.0817 283.2081 1.26 20.0 

Bidirectiona
l A* 

242.1616 293.3622 1.09 18.0 
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Scooter 
Storage: 5 

Generation 
Areas: 10 

SAPTW 
(Ours) 

308.2508 274.7574 1.64 42.0 

Grid Size: 
100 

Obstacles: 5 
Scooter 

Storage: 5 
Generation 

Areas: 5 

UCS 101.6957 184.1253 0.72 16.0 
Dijkstra 109.0261 198.8643 0.76 10.0 

Bidirectiona
l A* 

114.8945 201.382 0.72 16.0 

SAPTW 
(Ours) 

138.6231 112.7899 1.53 100.0 

Grid Size: 50 
Obstacles: 5 

Scooter 
Storage: 5 

Generation 
Areas: 5 

UCS 57.6759 92.1349 1.09 26.0 
Dijkstra 61.7015 79.9816 1.32 38.0 

Bidirectiona
l A* 

57.7847 90.049 1.13 32.0 

SAPTW 
(Ours) 

67.6651 44.132 2.01 98.0 

The experimental setup consists of simulating a 500 × 500 grid campus environment 
with roads, obstacles, and specific buildings (e.g., dormitories, classrooms, scooter stor-
age). By configuring multiple student groups of different sizes (e.g., 50, 100, 200) and ran-
domly assigning start and end points to cover different campus areas. The grid size, ob-
stacles, storage areas, Generation Areas, and Number of students can be dynamically var-
ied, and the experiment reflects the complexity of the real world. 

Regarding transportation modes, students can either walk or use electric scooters, 
each with predefined speeds (1.5"m/s" for walking, 6"m/s" for scooters). To increase com-
plexity, students must arrive at their destinations within specified time windows, e.g., 
with an upper limit of 30 minutes. Evaluation metrics include average arrival times, path 
lengths, and scooter utilization, providing comprehensive insights into the method's per-
formance under diverse transportation modes and time window restrictions. We addi-
tionally present the optimization results of different methods for 5 destinations when the 
grid size is 500. The results from Tables 1 show that our method SAPTW excels in speed, 
with the highest efficiency, making it ideal for rapid pathfinding. 

5.3. Visualization of Generated Maps 
In this paper, we have developed a rule-based method for automatic map generation 

and conducted a large number of simulations. The results validate the effectiveness of our 
algorithm in handling HFVRPTW, where the average arrival time of students is reduced 
by 3% to 44% during the simulations in Figure 1. With the use of scooters, the average 
time is reduced by 10.04%, and these visualizations support practical applications in terms 
of related optimization and overall efficiency while demonstrating the optimal path. 
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(a)Map before optimizing scooter storage areas. (b)Map after optimizing scooter storage areas. 

Figure 1. Comparison of Campus Maps before and after Optimizing Scooter Storage Areas. 

6. Conclusion and Future Work 
6.1. Summary 

This paper introduces a novel solution for optimizing paths in campus environments, 
considering multiple movement modes and time windows, particularly focusing on cam-
pus student path planning within the framework of the Heterogeneous Fleet Vehicle 
Routing Problem with Time Windows (HFVRPTW). The SAPTW method is proposed to 
optimize routes for students navigating grid-based campuses, allowing them to choose 
between walking and using electric scooters available at designated locations. The study 
demonstrates that integrating scooter availability significantly improves path efficiency, 
reducing average student travel times by approximately 3% to 44% compared to conven-
tional methods. 

Moreover, the paper underscores the potential of combining artificial intelligence 
with software testing to tackle complex routing problems under time constraints. It high-
lights the relevance of adaptive and real-time path-planning solutions in modern campus 
logistics and transportation management. Given the increasing complexity and diversity 
of student needs on campuses, traditional static path planning approaches often fall short. 
The SAPTW method offers a scalable and robust alternative capable of addressing the 
dynamic and heterogeneous nature of campus transportation systems. 

6.2. Future Work 
Future work should focus on the following aspects: Firstly, developing more robust 

algorithms to effectively handle diverse and sparse data is crucial. 
Additionally, improving the adaptability of these models to dynamic and real-time 

changing environments is essential. 
Furthermore, a comprehensive integration of these advanced algorithms into exist-

ing systems, along with thorough testing and validation, is imperative to ensure their sta-
bility and reliability. 

Finally, exploring interdisciplinary approaches that combine insights from software 
engineering and artificial intelligence can provide innovative solutions. 
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