

GBP Proceedings Series

Vol. 1 (2025) 1

Article

2024 International Conference on Art and Design, Education, Media
and Social Sciences (DEMSS 2024)

Design and Research on Evaluation System of Computer Pro-
gramming Code Quality
Yuchen Zhao 1,*

1 University of Southampton Southampton, SO17 3BD, United Kingdom
* Correspondence: Yuchen Zhao, University of Southampton Southampton, SO17 3BD, United Kingdom

Abstract: With the ongoing development of software engineering and programming education, the
demand for evaluating programming code quality is increasing. High-quality code not only en-
hances software maintainability and performance but also helps developers and learners optimize
their coding skills. This paper focuses on the design and implementation of an evaluation system
for computer programming code quality, proposing a multi-dimensional evaluation method that
includes readability, complexity, efficiency, and security. The system combines static analysis with
machine learning to automate code analysis and optimization recommendations, providing users
with objective feedback on code quality. Additionally, this paper explores application cases of the
system in programming education and software development, demonstrating its effectiveness in
improving code quality and enhancing users' programming skills. Finally, the research contribu-
tions are summarized, and directions for future improvements are proposed to further enhance the
system’s intelligence and applicability.

Keywords: code quality; code evaluation system; static analysis; machine learning; programming
education

1. Introduction
In modern software development and programming education, code quality signifi-

cantly impacts software reliability, maintainability, and user experience. High-quality
code not only reduces maintenance difficulty and costs but also substantially improves
software performance and security. Therefore, scientifically and objectively evaluating
code quality has become a topic of broad interest. Code evaluation encompasses multiple
dimensions, including readability, complexity, runtime efficiency, and security, which to-
gether determine the code's effectiveness in practical applications. However, traditional
evaluation methods largely rely on manual code reviews and static analysis tools, which
are often inefficient and insufficiently comprehensive, particularly in large and complex
codebases where manual review can be subjective and time-consuming.To address these
issues, this paper proposes a computer programming code quality evaluation system that
combines static analysis with machine learning. The system provides a multi-dimensional
evaluation that applies to both educational contexts, as feedback on code quality for stu-
dents, and software development environments, aiding in code review and optimization
efforts. By analyzing factors such as readability, logical complexity, execution efficiency,
and potential security risks, the system provides developers with detailed feedback and
improvement suggestions, helping them elevate their coding standards and overall code

Received: 08 December 2024

Revised: 21 December 2024

Accepted: 07 January 2024

Published: 09 January 2025

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

GBP Proceedings Series https://www.gbspress.com/index.php/GBPPS

Vol. 1 (2025) 2

quality. Moreover, this research examines specific applications of the system in program-
ming education and software development, showcasing its practical benefits in enhancing
code quality and supporting users’ programming skill development.This study aims to
deliver an automated, objective, and efficient solution for code quality evaluation to meet
the growing demand for high-quality code. The research results provide theoretical sup-
port for both academia and industry and offer important design insights and practical
references for future code quality evaluation tools [1].

2. Theoretical Foundation of Code Quality Evaluation
2.1. Definition and Standards of Code Quality

Code quality encompasses several key characteristics that serve as essential stand-
ards to determine if code meets development requirements and can be maintained and
extended over time. These characteristics are foundational to creating software that is not
only functional but also efficient, reliable, and adaptable to future changes. High-quality
code simplifies development processes, reduces maintenance costs, and enhances overall
software stability.The first critical characteristic of code quality is readability. Readability
refers to how easily developers can understand and work with code. High readability is
achieved through clear and consistent naming conventions, appropriate commenting, and
a well-organized structure. Code that is easy to read allows developers to grasp its func-
tionality quickly, facilitates collaboration, and reduces the likelihood of errors during
modifications. For instance, meaningful variable names, logical indentation, and compre-
hensive comments ensure that other developers or future team members can easily follow
the logic without extensive documentation. As a result, readability directly reduces the
learning curve for new contributors and simplifies communication within teams.Another
important aspect of code quality is maintainability, which indicates how easily code can
be modified, debugged, or enhanced [2]. Maintainable code is modular, follows best prac-
tices for design, and minimizes dependencies. This quality enables developers to make
quick updates when requirements change or when errors need fixing. A maintainable
codebase allows for efficient troubleshooting, lowers the risk of introducing new bugs
during modifications, and makes it simpler to add new features. Structuring code into
smaller, reusable components, for instance, enhances maintainability by isolating func-
tionality, making it easier to replace or update individual parts without affecting the entire
codebase.Execution efficiency is another crucial measure of code quality, especially for
applications that handle large volumes of data or require real-time processing. Efficient
code maximizes performance, ensuring tasks are completed promptly and resources are
utilized effectively. In scenarios requiring high concurrency or intensive data processing,
execution efficiency becomes essential for maintaining fast system response times and
managing computational resources, such as memory and CPU, more effectively [3]. For
example, well-optimized algorithms and efficient data handling can reduce processing
time significantly, contributing to a smoother user experience and cost savings in terms of
resource consumption.The fourth critical component is security, which has become a pri-
ority in modern software due to increasing cybersecurity threats. Quality code minimizes
vulnerabilities by adhering to security best practices, such as input validation, access con-
trol, and secure coding techniques. For example, preventing SQL injection attacks and
buffer overflows can safeguard against unauthorized data access and potential applica-
tion crashes. Ensuring code security is vital not only to protect sensitive data but also to
maintain system reliability and user trust.To comprehensively evaluate these aspects of
code quality, the industry has developed various standards and tools. Static analysis tools
assess code readability and maintainability by checking syntax, code structure, and ad-
herence to best practices. These tools, such as SonarQube and ESLint, allow developers to
identify issues early in the development process, reducing errors before code is deployed.
Complexity analysis tools help developers locate highly complex sections that may hinder
readability and maintainability, suggesting areas where simplification or refactoring

GBP Proceedings Series https://www.gbspress.com/index.php/GBPPS

Vol. 1 (2025) 3

could enhance code quality.Security standards like the CWE (Common Weakness Enu-
meration) framework help developers identify and mitigate common security risks. By
following CWE guidelines, developers can avoid vulnerabilities that could compromise
system stability and data protection. These standards and tools collectively provide a sys-
tematic framework for evaluating code quality, offering both theoretical and practical sup-
port to developers seeking to create secure, maintainable, efficient, and readable code.
Through the consistent application of these standards, developers can significantly en-
hance the robustness and longevity of software systems.

2.2. Existing Code Quality Evaluation Methods
Currently, code quality evaluation methods are mainly categorized into static analy-

sis, dynamic analysis, code review, and machine learning-based automated evaluation.
Each method has distinct features, enabling a multi-dimensional evaluation of code qual-
ity and offering developers quality improvement suggestions. The combination of these
methods helps achieve a comprehensive assessment of code quality [4].Static Analysis is
an evaluation method that detects potential issues without executing the code. It examines
syntax, structure, dependencies, and more, identifying defects, redundancies, and com-
plexity issues. Common static analysis tools include SonarQube, Checkstyle, and ESLint.
These tools automatically evaluate code quality based on predefined rules, generating de-
tailed quality reports that help developers identify readability and maintainability issues.
Additionally, static analysis can detect common security vulnerabilities, providing effi-
cient support for managing code quality, particularly in large projects.Dynamic Analysis
evaluates code performance and resource usage during execution, mainly identifying
runtime bottlenecks and anomalies. Dynamic analysis uncovers runtime issues, such as
memory leaks and processor overloads, which static analysis cannot capture. Popular dy-
namic analysis tools include JProfiler, VisualVM, and Dynatrace. By monitoring code ex-
ecution, these tools help developers identify and optimize low-efficiency sections. How-
ever, dynamic analysis results may vary based on hardware configuration and load con-
ditions, necessitating real production environments for accurate results.Code Review is a
traditional yet effective quality evaluation method, where team members review each
other’s code, identifying issues and suggesting improvements. Code reviews, often con-
ducted manually or through peer review, can identify business logic issues that tools
might miss. Platforms like GitHub and GitLab support code review, allowing developers
to perform reviews before code submission. Though dependent on team experience, code
reviews provide detailed feedback, particularly valuable in complex projects.Machine
Learning-based Automated Evaluation is a new and increasingly popular approach. By
training models, machine learning can automatically analyze code structure and logic to
judge quality. For example, Google’s Tricorder and Facebook’s Sapienz use machine
learning for automated quality evaluation and vulnerability detection. These systems
learn quality rules from extensive data, providing intelligent evaluation support. How-
ever, machine learning-based evaluation typically requires large datasets, and model ac-
curacy depends on data quality, posing some challenges to its widespread application.In
summary, existing code quality evaluation methods each have strengths. Static and dy-
namic analysis focus on code structure and performance, code review offers flexibility
through human feedback, and machine learning-based automated evaluation holds
strong potential for intelligent analysis. In practical applications, combining multiple
methods achieves comprehensive and accurate code quality assessments, effectively en-
hancing evaluation results [5].

3. System Design and Architecture
3.1. System Architecture

The system architecture consists of four core modules: the front-end display module,
back-end processing module, data storage module, and analysis engine module. Each

GBP Proceedings Series https://www.gbspress.com/index.php/GBPPS

Vol. 1 (2025) 4

module is responsible for specific functions and works collaboratively to create a compre-
hensive code quality evaluation system. This architecture supports static analysis, dy-
namic analysis, and intelligent evaluation, ensuring users receive multi-dimensional feed-
back on code quality.The front-end display module provides an interactive interface for
users, featuring code input, result displays, and optimization feedback. Through a simple
and intuitive interface, users can upload code, view quality reports, and receive improve-
ment suggestions. The evaluation results are presented in charts, scores, and textual de-
scriptions, enabling users to easily understand the strengths and weaknesses of their code
[6]. The front-end communicates in real time with the back-end to ensure a smooth user
experience and fast response.The back-end processing module is the core of the system,
handling code files received from the front end. This module includes code parsing and
task scheduling. Code parsing converts user-submitted code into structured data for sub-
sequent analysis, while task scheduling allocates tasks based on system resources to en-
hance overall processing efficiency.The data storage module stores code evaluation re-
sults, user code samples, and model training data. Using a distributed database, it ensures
data persistence and rapid querying, supporting historical data comparison analysis. This
module is also responsible for data backup and security management, ensuring stable
system operation and protecting user data privacy.The analysis engine module is the pri-
mary computational component, responsible for code quality evaluation tasks. This mod-
ule includes a static analysis engine, a dynamic analysis engine, and a machine learning
analysis engine. The static analysis engine checks code readability, structure, and security;
the dynamic analysis engine assesses performance and resource usage in a simulated
runtime environment; and the machine learning analysis engine predicts code defects and
optimization opportunities based on training data. These engines work together to ensure
accurate and comprehensive evaluation results. The overall architecture employs a mod-
ular and distributed design, allowing each module to be independently extended and up-
dated to adapt flexibly to changing code quality evaluation requirements [7].

3.2. Evaluation Algorithm Design
The design of evaluation algorithms is the core of the entire system, utilizing a com-

bination of multi-dimensional, layered algorithms to perform a comprehensive analysis
of code quality. The primary components of the evaluation algorithms include static anal-
ysis, dynamic analysis, and machine learning-based intelligent evaluation, each comple-
menting the others to ensure scientific and accurate results.Static analysis algorithms eval-
uate the code without execution, focusing on structure, naming conventions, logical com-
plexity, and potential security vulnerabilities. Static analysis follows a rule-based ap-
proach, checking code issues against predefined coding standards and quality metrics. To
ensure thorough analysis, the design incorporates metrics such as cyclomatic complexity,
code duplication, and variable naming consistency. For example, cyclomatic complexity
quantifies code logic complexity, helping to identify segments that may be difficult to
maintain and test; duplication detection uses hashing to identify repeated code blocks,
reducing redundancy and enhancing maintainability. These static analysis algorithms can
detect readability and structural issues in the early stages of development.Dynamic anal-
ysis algorithms assess code performance and resource usage during execution, monitor-
ing performance metrics such as memory usage, CPU load, and I/O operation frequency.
Dynamic analysis is designed to simulate real execution environments, using probe tech-
nology to gather resource consumption data in real time. For instance, memory leak de-
tection uses heap monitoring and garbage collection analysis to identify unreleased
memory blocks, while CPU usage detection analyzes thread frequency and task distribu-
tion to pinpoint resource-heavy code sections. Dynamic analysis helps developers identify
performance bottlenecks and provides a foundation for optimization.Machine learning-
based intelligent evaluation is a key innovation, using large datasets to train models that

GBP Proceedings Series https://www.gbspress.com/index.php/GBPPS

Vol. 1 (2025) 5

automatically assess code quality. This module includes two main models: a quality scor-
ing model and a defect prediction model. The quality scoring model uses labeled code
samples to learn how to assign quality scores to new code, employing regression algo-
rithms for scoring predictions; the defect prediction model applies classification algo-
rithms such as decision trees, random forests, or neural networks to predict potential is-
sues based on historical code and defect data. Before inputting data, the system performs
feature engineering on the code, extracting features like length, complexity, and comment
density to ensure model effectiveness. The evaluation results are validated through cross-
validation and test sets to guarantee prediction accuracy and robustness.To provide com-
prehensive and accurate evaluation results, the system integrates multiple algorithms,
combining outputs from static analysis, dynamic analysis, and machine learning models
with weighted aggregation. The system dynamically adjusts weights based on code type
and user needs; for example, dynamic analysis is prioritized in performance-sensitive
code, while static analysis is weighted higher for readability-focused code. This multi-
algorithm approach generates an overall score and provides detailed recommendations
and optimization directions.Overall, the evaluation algorithm design emphasizes a multi-
dimensional, layered evaluation approach, combining foundational static and dynamic
analysis with intelligent machine learning predictions. This design enhances system accu-
racy and adaptability, meeting users’ diverse needs for code quality improvement [8].

4. System Functional Modules
The system functional modules form the core of the code quality evaluation system,

handling everything from analysis to feedback and optimization. Each module works in
concert to deliver a comprehensive quality report and actionable suggestions through
static analysis, dynamic performance evaluation, and security assessment. These modules
provide multi-dimensional quality assessments and streamline the review process
through automation, ensuring high-quality code across various dimensions.The code
quality analysis module is the central part responsible for evaluating quality metrics, di-
vided into static code analysis, dynamic performance analysis, and security detection.
Static analysis checks syntax structure, naming conventions, comment completeness, and
complexity to improve readability and maintainability. Dynamic performance analysis
monitors runtime data such as memory, CPU, and I/O to identify performance bottlenecks
and provide optimization guidance [9]. Security detection focuses on identifying vulner-
abilities, such as SQL injection and buffer overflow, ensuring code safety in real-world
execution. This module synthesizes the evaluation results into a quality report with rec-
ommendations, giving developers clear directions for improvement.The user feedback
and learning module connects the system to users, helping them understand evaluation
results while enhancing their coding skills. This module presents the quality report in an
accessible format, including sub-scores, graphical analyses, and textual suggestions to
help users grasp the evaluation details. Additionally, the system offers optimization tips
and reference examples, guiding users in making effective improvements. Through feed-
back and learning, users gradually adopt better coding practices and improve their
skills.The historical data storage and comparison module stores evaluation records and
historical data, offering quality comparison across time periods. After each analysis, re-
sults are saved to the database, allowing users to track progress over time. The module
supports quality comparisons between multiple versions, helping users identify quality
changes before and after optimization. This long-term data storage and comparison func-
tion provides developers with a reference for ongoing quality improvement, encouraging
sustainable code optimization practices.The machine learning model update module en-
sures that machine learning-based evaluation algorithms remain effective as data accu-
mulates. This module periodically updates and retrains models based on historical eval-
uation data and user feedback, ensuring the accuracy and timeliness of code quality as-
sessments. For example, the system can use labeled user feedback to fine-tune models,

GBP Proceedings Series https://www.gbspress.com/index.php/GBPPS

Vol. 1 (2025) 6

maintaining high accuracy in quality scoring and defect prediction. Automated model
updates allow the system to adapt to changing code quality requirements, maintaining
strong competitiveness and relevance.The result synthesis and scoring module consoli-
dates evaluation results from different modules, creating a comprehensive code quality
score and report. Using weighted aggregation, this module combines static, dynamic, and
security assessment scores, adjusting weights based on the dimensions most relevant to
user needs. For instance, dynamic analysis weight increases for users focused on perfor-
mance, ensuring the score aligns with user priorities. The final score and report include
both an overall score and detailed sub-scores with suggestions, helping users understand
their code's strengths and weaknesses from multiple perspectives, guiding them toward
effective optimization.The functional modules in the system provide comprehensive, in-
telligent code quality evaluation services through multi-dimensional analysis, user feed-
back, historical data tracking, and model updating. This complete design helps users en-
hance code quality, promotes their coding skill development, and ensures the system’s
accuracy and practicality in code evaluation.

5. Data Processing and Machine Learning Applications
Data processing and machine learning applications are central to achieving intelli-

gent evaluation within the system. Through data collection, preprocessing, and feature
extraction, the system builds and refines machine learning models to provide precise qual-
ity predictions and assessments. Data collection gathers multi-dimensional samples from
user-submitted code,including complexity, line count, naming conventions, and com-
ments, creating a rich set of code features. To ensure data diversity, the system also pulls
samples from open-source code repositories, particularly annotated segments with high
and low quality, which enriches the dataset for training models.In data preprocessing, the
system cleans and normalizes data, removing irrelevant information and ensuring feature
consistency. For instance, variable naming conventions and length are standardized to
enable uniform analysis. The system uses feature extraction techniques, transforming data
into a format suitable for machine learning, focusing on core attributes like code length,
complexity, and semantic structure. This process leverages NLP techniques to analyze
comments for completeness and accuracy, thereby capturing logical and structural char-
acteristics that aid in quality assessment.The machine learning model applies two primary
models for quality scoring and defect prediction. The quality scoring model uses regres-
sion algorithms to assign a quality score to new code, trained on labeled examples. For
instance, if a code sample exhibits proper naming conventions, logical structure, and con-
cise comments, the model may predict a score of 85, indicating high quality. The defect
prediction model employs classification algorithms to predict potential vulnerabilities
and issues, such as resource leaks or boundary overflow, providing targeted suggestions
for improvementWith advanced data processing and machine learning, the system deliv-
ers precise, data-driven evaluations and continuously refines model accuracy to maintain
relevance. This approach enables the system to flexibly handle diverse code samples,
providing developers with scientific and effective guidance for improving code quality
[10].

6. System Implementation and Case Analysis of Application
The implementation of the code quality evaluation system integrates each core mod-

ule to deliver comprehensive and accurate assessments. By combining front-end interface
design, back-end processing capabilities, data storage solutions, and intelligent analysis
engines, the system provides a full workflow from code submission to quality evaluation
and feedback. The front-end interface, designed with a user-friendly approach, enables
users to upload code, access evaluation results, and view detailed suggestions for im-
provement. In the back-end, the processing module efficiently handles code parsing and

GBP Proceedings Series https://www.gbspress.com/index.php/GBPPS

Vol. 1 (2025) 7

task scheduling, ensuring smooth data flow across modules.The data storage module en-
sures secure and efficient storage of user-submitted code, evaluation results, and model
training data using distributed databases. This module supports rapid querying and his-
torical data comparison, enabling users to track code quality improvements over time.
The analysis engine module leverages static and dynamic analysis engines to assess read-
ability, performance, and security, while machine learning algorithms predict potential
issues and generate quality scores. The integration of these engines provides users with a
thorough and actionable evaluation report.

In a practical application scenario, a software development team used the system to
evaluate a newly developed module for readability, maintainability, and performance.
After uploading the code, the static analysis engine flagged areas with high complexity
and duplicate code blocks, recommending refactoring to improve readability and reduce
redundancy. The dynamic analysis engine further identified a memory leak issue through
real-time resource monitoring, which allowed the developers to address the issue before
deployment.Additionally, the machine learning-based defect prediction model detected a
potential boundary overflow vulnerability, providing specific lines of code for review and
suggesting preventive measures. The comprehensive feedback helped the team optimize
the module’s structure and performance while mitigating security risks. Over subsequent
iterations, the historical comparison feature enabled the team to track improvements,
demonstrating the system's effectiveness in fostering continuous quality enhance-
ment.Through the seamless integration of multi-dimensional analysis and data-driven
feedback, the system effectively supports both educational and practical software devel-
opment environments, offering robust solutions for code quality management and opti-
mization.

7. Conclusion
The system achieves multi-dimensional, intelligent code quality evaluation by inte-

grating static analysis, dynamic performance evaluation, and machine learning. The mod-
ular design ensures comprehensive analysis across structure, performance, and security,
providing developers with accurate scores and optimization suggestions. Data-driven
machine learning applications enable continuous improvement, enhancing evaluation
precision and adaptability. Overall, this system effectively improves the efficiency and
scientific rigor of code quality evaluation, providing developers with solid support for
code optimization and offering an innovative solution for quality management in pro-
gramming education and software development.

References
1. Chen, Hsi-Min, Bao-An Nguyen, and Chyi-Ren Dow. "Code-quality evaluation scheme for assessment of student contributions

to programming projects." Journal of Systems and Software 188 (2022): 111273, doi: 10.1016/J.JSS.2022.111273.
2. Chen, Hsi-Min, et al. "Analysis of learning behavior in an automated programming assessment environment: A code quality

perspective." IEEE access 8 (2020): 167341-167354, doi: 10.1109/ACCESS.2020.3024102.
3. Lu, Yao, et al. "Improving students’ programming quality with the continuous inspection process: a social coding perspective."

Frontiers of Computer Science 14 (2020): 1-18, doi: 10.1007/s11704-019-9023-2.
4. Hijazi, Haytham, et al. "Quality evaluation of modern code reviews through intelligent biometric program comprehension."

IEEE Transactions on Software Engineering 49.2 (2022): 626-645, doi: 10.1109/TSE.2022.3158543.
5. Wedyan, Fadi, and Somia Abufakher. "Impact of design patterns on software quality: a systematic literature review." IET Soft-

ware 14.1 (2020): 1-17, doi: 10.1049/iet-sen.2018.5446.
6. Mekterović, Igor, et al. "Building a comprehensive automated programming assessment system." IEEE access 8 (2020): 81154-

81172, doi: 10.1109/access.2020.2990980.
7. Rani, Pooja, et al. "A decade of code comment quality assessment: A systematic literature review." Journal of Systems and

Software 195 (2023): 111515, doi: 10.1016/J.JSS.2022.111515.
8. Kanika, Shampa Chakraverty, and Pinaki Chakraborty. "Tools and techniques for teaching computer programming: A review."

Journal of Educational Technology Systems 49.2 (2020): 170-198, doi: 10.1177/0047239520926971.

GBP Proceedings Series https://www.gbspress.com/index.php/GBPPS

Vol. 1 (2025) 8

9. Afzali, Hammad, et al. "Towards verifiable web-based code review systems." Journal of Computer Security 31.2 (2023): 153-184,
doi: 10.3233/JCS-210098.

10. Combéfis, Sébastien. "Automated code assessment for education: review, classification and perspectives on techniques and
tools." Software 1.1 (2022): 3-30, doi: 10.3390/SOFTWARE1010002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	1. Introduction
	2. Theoretical Foundation of Code Quality Evaluation
	2.1. Definition and Standards of Code Quality
	2.2. Existing Code Quality Evaluation Methods

	3. System Design and Architecture
	3.1. System Architecture
	3.2. Evaluation Algorithm Design

	4. System Functional Modules
	5. Data Processing and Machine Learning Applications
	6. System Implementation and Case Analysis of Application
	7. Conclusion
	References

