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Abstract: The problem of the optimal investment strategy has always been a key research content 
in modern finance. Since stock prices in real financial markets often experience jumps, and the ran-
domness of investors' labor income contributes to risks that cannot be completely hedged, it is nec-
essary to consider these factors in investment strategy design. This paper studies the continuous-
time dynamic mean-variance portfolio selection problem when the risk is not hedged. It is assumed 
that the price of risky assets follows a jump-diffusion process. The investor's goal is to minimize the 
variance of the wealth at the terminal time under the condition of a given expected terminal wealth. 
By solving the corresponding Hamilton-Jacobi-Bellman equation of the model, the viscosity solution 
of the optimal investment strategy is obtained. The results show that the jump factors in the price 
process and the unhedged risk have an impact on the optimal investment strategy that cannot be 
ignored. 
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1. Introduction 
In 1952, an American economist, innovatively proposed the concept of "portfolio", 

financial mathematics began to develop rapidly, and has produced many research results 
under mean-variance models based on various risk measures [1]. At the same time, it has 
introduced numerous valuable tools in financial theory, such as risk appetite and utility 
functions. In the field of modern portfolio research, the optimal portfolio is always a very 
important problem. The optimal portfolio problem refers to the reasonable allocation of 
risk-free assets and risky assets, so as to maximize the expected utility of investors' wealth 
at the terminal moment. 

Merton made a pioneering and systematic study on how to maximize the expected 
utility at the terminal moment by optimizing investment strategies under continuous time 
frame [2]. This problem is called the classic Merton problem, and discusses the optimal 
asset allocation under the additional assumption of investors with fixed relative risk aver-
sion or absolute risk aversion utility function. Fleming and Rishel used Markov dynamic 
programming method to solve the model and get the analytical solution of the optimal 
decision [3]. On the basis of this, the paper gives the solution of the optimal investment 
strategy problem by using martingale and convex duality theory for more general pricing 
process under perfect market conditions. This solution applies when the constraint con-
dition of the utility function selected by the investor is monotonically increasing and 
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strictly concave. Longo and Mainini studied the portfolio optimization problem of HARA 
(hyperbolic absolute risk-averse utility) investors [4]. By comparing the optimal portfolio 
under partial observation with the corresponding short-sighted strategy, they proved that 
for the situation where the risk is constant, The ratio between a portfolio under partial 
observation and its shortsighted portfolio increases as risk tolerance increases. 

This paper also studies the dynamic mean-variance portfolio selection problem, Be-
cause of the existence of unhedged risk, the martingale method cannot be directly applied. 
In this paper, the optimal strategy is obtained by using the HJB method and the concept 
of viscous solution. 

Section 2 develops a dynamic model of asset prices with jumps when risks are un-
hedged, in which risk asset prices follow the jump-diffusion process. Optimization prob-
lems are formulated with the goal of minimizing the risk of terminal wealth under a given 
expected value. Section 3 solves the optimal investment strategy by HJB equation and 
viscous solution. Section 4 summarizes the main findings of this paper. 

2. Model Construction: Asset Assumption 
This section assumes the investor's investment objective is to maximize the wealth at 

the end of the investment term with a certain risk tolerance. The price process of risky 
securities at the time of 𝑡𝑡 follows the stochastic differential equation with jumps: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑑𝑑(𝑡𝑡−){𝜇𝜇(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎(𝑡𝑡)𝑑𝑑𝑊𝑊1(𝑡𝑡) + 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡)}, 𝑡𝑡 ∈ [0,𝑇𝑇] 
The investor's random labor income is subject to a random differential equation: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑑𝑑(𝑡𝑡){𝑎𝑎(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝑏𝑏(𝑡𝑡)𝑑𝑑𝑊𝑊2(𝑡𝑡)}, 𝑡𝑡 ∈ [0,𝑇𝑇] 
Assume that the risk-free rate is 𝑟𝑟(𝑡𝑡), 𝑟𝑟(𝑡𝑡), μ(𝑡𝑡),σ(𝑡𝑡), 𝑎𝑎(𝑡𝑡), 𝑏𝑏(𝑡𝑡)are deterministic, Borel 

measurable, positive, bounded functions on [0,𝑇𝑇]. 𝑑𝑑(𝑡𝑡) is a Poisson process for {ℱ𝓉𝓉}𝑡𝑡≥0 
adaptation on a probability space (Ω,ℱ,𝑃𝑃) with a strength of λ. 𝑊𝑊1(𝑡𝑡) and 𝑊𝑊2(𝑡𝑡) are 
{ℱ𝓉𝓉}𝑡𝑡≥0 adaptive Brownian motion on probability space (Ω,ℱ,𝑃𝑃). The correlation coeffi-
cient between the two is ρ. 

Both 𝑊𝑊1(𝑡𝑡)  and 𝑊𝑊2(𝑡𝑡)are independent of 𝑑𝑑(𝑡𝑡) .  π(𝑡𝑡)𝑋𝑋(𝑡𝑡) is a wealth invested in 
risky assets at time t. One strategy π(𝑡𝑡) is feasible. If it is ℱ𝓉𝓉 sequentially measurable, 
and at any time 𝑡𝑡 ≥ 0 it is satisfied 𝐸𝐸 �∫ π2(𝑡𝑡)𝑋𝑋2(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇

0 � < +∞. At the same time, because 
investors are rational, excessive jump in risk assets may lead to the bankruptcy of inves-
tors, so investors are not allowed to short risk assets, that is, they must be satisfied π(𝑡𝑡) ≥
0. Denote all policy feasible sets as Π. So, the investor's wealth process 𝑋𝑋(𝑡𝑡) satisfies the 
stochastic differential equation: 

𝑑𝑑𝑋𝑋(𝑡𝑡) = 𝑋𝑋(𝑡𝑡)𝑟𝑟𝑑𝑑𝑡𝑡 + (𝜇𝜇(𝑡𝑡) − 𝑟𝑟)𝜋𝜋(𝑡𝑡)𝑋𝑋(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎(𝑡𝑡)𝜋𝜋(𝑡𝑡)𝑋𝑋(𝑡𝑡)𝑑𝑑𝑊𝑊1(𝑡𝑡)
+ 𝜈𝜈(𝑡𝑡)𝜋𝜋(𝑡𝑡)𝑋𝑋(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) 

The goal of the investor is to find a feasible strategy in the set of feasible strategies 
where the end-time wealth meets 𝐸𝐸�𝑋𝑋(𝑇𝑇)� = 𝑑𝑑, while minimizing the risk of terminal 
wealth: 𝑉𝑉𝑎𝑎𝑟𝑟[𝑋𝑋(𝑇𝑇)] = 𝐸𝐸[𝑋𝑋(𝑇𝑇) − 𝐸𝐸𝑋𝑋(𝑇𝑇)]2 = 𝐸𝐸[𝑋𝑋(𝑇𝑇) − 𝑑𝑑]2 , Therefore, the above problems 
can be expressed as optimization problems: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑎𝑎𝑟𝑟[𝑋𝑋(𝑇𝑇)] = 𝐸𝐸[𝑋𝑋(𝑇𝑇) − 𝑑𝑑]2 

𝑠𝑠. 𝑡𝑡. �𝐸𝐸[𝑋𝑋(𝑇𝑇)] = 𝑑𝑑,
𝜋𝜋(⋅) ∈ Π  

This convex optimization problem can be solved by introducing the Lagrange factor 
α ∈ 𝑅𝑅. According to the reference, the problem is equivalent to the following problem [1]: 

min 𝐸𝐸[𝑋𝑋(𝑇𝑇) − 𝑘𝑘]2 
Here 𝑘𝑘 = 𝑑𝑑 − α, just ask for the optimal solution of the auxiliary problem, and then 

use the Lagrange duality theorem to get the optimal strategy and the optimal value func-
tion of the original problem, so here only solve the optimal solution of the auxiliary prob-
lem, first, define the optimal value function: 

𝑉𝑉(𝑡𝑡, 𝑥𝑥,𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋∈Π

 [𝐸𝐸(𝑋𝑋(𝑇𝑇) − 𝑘𝑘)2|𝑋𝑋(𝑡𝑡) = 𝑥𝑥] 

Since the solution of the HJB equation corresponding to the above random problem 
does not have the required smoothness conditions, the concept of viscous solution must 
be used [5]. The following HJB equation is studied: 
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𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋≥0

 {𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑥𝑥[𝑟𝑟(𝑡𝑡)𝑥𝑥 + (𝜇𝜇(𝑡𝑡) − 𝑟𝑟(𝑡𝑡))𝜋𝜋𝑥𝑥 + 𝑑𝑑] +
1
2
𝑉𝑉𝑥𝑥𝑥𝑥𝜎𝜎2(𝑡𝑡)𝜋𝜋(𝑡𝑡)2𝑥𝑥2

+
1
2
𝑉𝑉𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) + 𝑉𝑉𝑦𝑦𝑏𝑏(𝑡𝑡) + 𝑉𝑉𝑥𝑥𝑦𝑦𝜌𝜌𝑎𝑎(𝑡𝑡)𝜎𝜎(𝑡𝑡)𝜋𝜋(𝑡𝑡)𝑥𝑥

+𝜆𝜆𝐸𝐸[𝑉𝑉(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝑉𝑉(𝑡𝑡, 𝑥𝑥,𝑑𝑑)]} = 0.

 

The boundary conditions are: 
𝑉𝑉(𝑇𝑇, 𝑥𝑥,𝑑𝑑) = (𝑥𝑥 − 𝑘𝑘)2 

Here the optimally valued function 𝑉𝑉(𝑡𝑡, 𝑥𝑥,𝑑𝑑) is not twice continuously differentiable. 
So the concept of viscous solution is used to study the optimization problem. Now, the 
concept of viscous solution is given. 

Definition 2.1:  
1) The continuous function v defined on (𝑡𝑡, 𝑥𝑥, 𝑑𝑑) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅 is the viscosity 

subsolution of the above equation, if for any quadratic continuously differenti-
able function φ: [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅, At any point (𝑡𝑡̅, �̅�𝑥,𝑑𝑑�) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅 is satisfied: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋≥0

 {𝜑𝜑𝑡𝑡(𝑡𝑡̅, �̅�𝑥, 𝑑𝑑�) + 𝜑𝜑𝑥𝑥[𝑟𝑟(𝑡𝑡̅)�̅�𝑥 + (𝜇𝜇(𝑡𝑡̅) − 𝑟𝑟(𝑡𝑡̅))𝜋𝜋�̅�𝑥 + 𝑑𝑑�] +
1
2
𝜑𝜑𝑥𝑥𝑥𝑥𝜎𝜎2(𝑡𝑡)𝜋𝜋2�̅�𝑥2 +

1
2
𝜑𝜑𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) +

𝜑𝜑𝑦𝑦𝑏𝑏(𝑡𝑡) + 𝜑𝜑𝑥𝑥𝑦𝑦𝜌𝜌𝑎𝑎(𝑡𝑡)𝜎𝜎(𝑡𝑡)𝜋𝜋�̅�𝑥 + 𝜆𝜆𝐸𝐸[𝜑𝜑(𝑡𝑡̅, �̅�𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑�) − 𝜑𝜑(𝑡𝑡̅, �̅�𝑥,𝑑𝑑�)]} ≥ 0
 

Where (𝑡𝑡̅, �̅�𝑥, 𝑑𝑑�) is the maximum point of the function 𝑣𝑣 − φ defined on [0,𝑇𝑇] × 𝑅𝑅 ×
𝑅𝑅, and 𝑣𝑣(𝑡𝑡̅, �̅�𝑥,𝑑𝑑�) = φ(𝑡𝑡̅, �̅�𝑥, 𝑑𝑑�). 

2) The continuous function v defined on (𝑡𝑡, 𝑥𝑥,𝑑𝑑) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅 is the viscosity 
supersolution of the above equation, if for any quadratic continuously differen-
tiable function φ: [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅, At any point (𝑡𝑡̅, �̅�𝑥,𝑑𝑑�) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅 is satis-
fied: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋≥0

 {𝜑𝜑𝑡𝑡(𝑡𝑡̅, �̅�𝑥, 𝑑𝑑�) + 𝜑𝜑𝑥𝑥[𝑟𝑟(𝑡𝑡̅)�̅�𝑥 + (𝜇𝜇(𝑡𝑡̅) − 𝑟𝑟(𝑡𝑡̅))𝜋𝜋�̅�𝑥 + 𝑑𝑑�] +
1
2
𝜑𝜑𝑥𝑥𝑥𝑥𝜎𝜎2(𝑡𝑡)𝜋𝜋2�̅�𝑥2 +

1
2
𝜑𝜑𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) +

𝜑𝜑𝑦𝑦𝑏𝑏(𝑡𝑡) + 𝜑𝜑𝑥𝑥𝑦𝑦𝜌𝜌𝑎𝑎(𝑡𝑡)𝜎𝜎(𝑡𝑡)𝜋𝜋�̅�𝑥 + 𝜆𝜆𝐸𝐸[𝜑𝜑(𝑡𝑡̅, �̅�𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑�) − 𝜑𝜑(𝑡𝑡̅, �̅�𝑥,𝑑𝑑�)]} ≤ 0
 

3) The function 𝑣𝑣  defined on (𝑡𝑡, 𝑥𝑥, 𝑑𝑑) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅 is the viscous solution of 
the equations if it is both the viscosity subsolution and the viscosity super solu-
tion. Symbols are introduced for convenience: 

Φ(𝑡𝑡) = [𝜎𝜎2(𝑡𝑡) + 𝜆𝜆𝜈𝜈(𝑡𝑡)]𝑥𝑥2,𝐵𝐵(𝑡𝑡) = [𝜇𝜇(𝑡𝑡) − 𝑟𝑟(𝑡𝑡) + 𝜆𝜆𝜈𝜈(𝑡𝑡)]𝑥𝑥 

𝜙𝜙(𝑡𝑡) =
𝐵𝐵2(𝑡𝑡)
Φ(𝑡𝑡)

,𝑃𝑃1(𝑡𝑡) = 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝜙𝜙(𝑠𝑠)−2𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠,𝛼𝛼1(𝑡𝑡) = 𝑄𝑄1(𝑡𝑡)𝑑𝑑 −
𝑄𝑄12(𝑡𝑡)
4𝑃𝑃1(𝑡𝑡)

𝜙𝜙(𝑡𝑡) 

𝑄𝑄1(𝑡𝑡) = 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝜙𝜙(𝑠𝑠)−𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 �−�  
𝑇𝑇

𝑡𝑡
2𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 − 2𝑘𝑘� 

𝑅𝑅1(𝑡𝑡,𝑑𝑑) = [𝑘𝑘 + �  
𝑇𝑇

𝑡𝑡
𝛼𝛼1(𝑠𝑠)𝑒𝑒−𝑟𝑟(𝑠𝑠)(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑠𝑠]2,𝑃𝑃2(𝑡𝑡) = 𝑒𝑒−2∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 

𝑄𝑄2(𝑡𝑡) = 𝑒𝑒∫  𝑇𝑇𝑡𝑡 −𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠[−�  
𝑇𝑇

𝑡𝑡
2𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 − 2𝑘𝑘],𝑅𝑅2(𝑡𝑡,𝑑𝑑) = [𝑘𝑘 + �  

𝑇𝑇

𝑡𝑡
𝑄𝑄(𝑠𝑠)𝑑𝑑𝑒𝑒−𝑟𝑟(𝑠𝑠)(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑠𝑠]2 

𝑄𝑄1(𝑡𝑡)
2𝑃𝑃1(𝑡𝑡)

=
𝑄𝑄2(𝑡𝑡)
2𝑃𝑃2(𝑡𝑡)

= −𝑒𝑒∫  𝑇𝑇
𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 ��  

𝑇𝑇

𝑡𝑡
𝑑𝑑𝑒𝑒∫  𝑇𝑇

𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘� 

3. Model Solution 
3.1. Theorem 1 

𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) =

⎩
⎪
⎨

⎪
⎧𝑃𝑃1(𝑡𝑡)𝑥𝑥2 + 𝑄𝑄1(𝑡𝑡)𝑥𝑥 + 𝑅𝑅1(𝑡𝑡, 𝑑𝑑), 𝑥𝑥 − 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 ��  

𝑇𝑇

𝑡𝑡
𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘� < 0

𝑃𝑃2(𝑡𝑡)𝑥𝑥2 + 𝑄𝑄2(𝑡𝑡)𝑥𝑥 + 𝑅𝑅2(𝑡𝑡,𝑑𝑑), 𝑥𝑥 − 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 ��  
𝑇𝑇

𝑡𝑡
𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘� ≥ 0

 

It is the viscous solution of HJB equation, and the optimal investment strategy is: 
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𝜋𝜋∗(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) =

⎩
⎪⎪
⎨

⎪⎪
⎧−�𝑥𝑥 − 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 ��  

𝑇𝑇

𝑡𝑡
𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘��

𝐵𝐵(𝑡𝑡)
Φ(𝑡𝑡)

,

𝑥𝑥 − 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 ��  
𝑇𝑇

𝑡𝑡
𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘� < 0

0, 𝑥𝑥 − 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 ��  
𝑇𝑇

𝑡𝑡
𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘� ≥ 0

 

Proof. Guess that 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) = 𝑃𝑃(𝑡𝑡)𝑥𝑥2 + 𝑄𝑄(𝑡𝑡)𝑥𝑥 + 𝑅𝑅(𝑡𝑡,𝑑𝑑).𝑃𝑃(𝑡𝑡),𝑄𝑄(𝑡𝑡),𝑅𝑅(𝑡𝑡,𝑑𝑑) are adapta-
tion functions, assuming∀𝑡𝑡 ∈ [0,𝑇𝑇],𝑃𝑃(𝑡𝑡) > 0 was established. According to the boundary 
conditions, we can obtain 𝑃𝑃(𝑇𝑇) = 1,𝑄𝑄(𝑇𝑇) = −2𝑘𝑘,𝑅𝑅(𝑇𝑇,𝑑𝑑) = 𝑘𝑘2, the above form generation 
can get into the HJB equation: 

2𝑃𝑃(𝑡𝑡)𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋≥0

 �
1
2
Φ(𝑡𝑡)𝜋𝜋2 + �𝑥𝑥 +

𝑄𝑄(𝑡𝑡)
2𝑃𝑃(𝑡𝑡)

�𝐵𝐵(𝑡𝑡)𝜋𝜋� +

[2𝑃𝑃(𝑡𝑡)𝑥𝑥 + 𝑄𝑄(𝑡𝑡)](𝑟𝑟(𝑡𝑡)𝑥𝑥 + 𝑑𝑑) +
1
2
𝑅𝑅𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) + 𝑅𝑅𝑦𝑦𝑏𝑏 + 𝑃𝑃𝑡𝑡𝑥𝑥2 + 𝑄𝑄𝑡𝑡𝑥𝑥 + 𝑅𝑅𝑡𝑡 = 0

 

Since 𝑃𝑃(𝑡𝑡) > 0, when the investment strategy π(𝑡𝑡) is unconstrained, the above for-
mula reaches its minimum at the following points: 

𝜋𝜋0(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) = −�𝑥𝑥 +
𝑄𝑄(𝑡𝑡)

2𝑃𝑃(𝑡𝑡)
�
𝐵𝐵(𝑡𝑡)
Φ(𝑡𝑡)

 

If the right side of the above formula is less than 0, it is truncated with a zero value. 
Therefore, the following areas are defined: 

𝐴𝐴1 = {(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅,𝜋𝜋0 > 0}
𝐴𝐴2 = {(𝑡𝑡, 𝑥𝑥,𝑑𝑑) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅,𝜋𝜋0 ≤ 0} 

First analyze the situation in the region 𝐴𝐴1. At this point, the minimum value π0 is 
substituted into the above formula, which can be obtained: 

[𝑃𝑃𝑡𝑡(𝑡𝑡) + 2𝑟𝑟(𝑡𝑡)𝑃𝑃(𝑡𝑡) − 𝜙𝜙(𝑡𝑡)𝑃𝑃(𝑡𝑡)]𝑥𝑥2 + [2𝑃𝑃(𝑡𝑡)𝑑𝑑 + 𝑄𝑄(𝑡𝑡)𝑟𝑟(𝑡𝑡) + 𝑄𝑄𝑡𝑡(𝑡𝑡) − 𝜙𝜙(𝑡𝑡)𝑄𝑄(𝑡𝑡)]𝑥𝑥 +

�𝑄𝑄(𝑡𝑡)𝑑𝑑 + 𝑅𝑅𝑦𝑦𝑏𝑏 + 𝑅𝑅𝑡𝑡 +
1
2
𝑅𝑅𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) −

𝑄𝑄2(𝑡𝑡)
4𝑃𝑃(𝑡𝑡)

𝜙𝜙(𝑡𝑡)� = 0
 

Using the comparison coefficient method, it can be inferred that 𝑃𝑃(𝑡𝑡),𝑄𝑄(𝑡𝑡),𝑅𝑅(𝑡𝑡) sat-
isfy the differential equation: 

�𝑃𝑃𝑡𝑡
(𝑡𝑡) + 2𝑟𝑟(𝑡𝑡)𝑃𝑃(𝑡𝑡) − 𝜙𝜙(𝑡𝑡)𝑃𝑃(𝑡𝑡) = 0,

𝑃𝑃(𝑇𝑇) = 1,  

�2𝑃𝑃
(𝑡𝑡)𝑑𝑑 + 𝑄𝑄(𝑡𝑡)𝑟𝑟(𝑡𝑡) + 𝑄𝑄𝑡𝑡(𝑡𝑡) − 𝜙𝜙(𝑡𝑡)𝑄𝑄(𝑡𝑡) = 0,

𝑄𝑄(𝑇𝑇) = −2𝑘𝑘,  

�𝑄𝑄(𝑡𝑡)𝑑𝑑 + 𝑅𝑅𝑦𝑦𝑏𝑏 + 𝑅𝑅𝑡𝑡 +
1
2
𝑅𝑅𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) −

𝑄𝑄2(𝑡𝑡)
4𝑃𝑃(𝑡𝑡)

𝜙𝜙(𝑡𝑡) = 0,

𝑅𝑅(𝑇𝑇) = 𝑘𝑘2,
 

By solving the above three equations, we can get: 
𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) = 𝑃𝑃1(𝑡𝑡)𝑥𝑥2 + 𝑄𝑄1(𝑡𝑡)𝑥𝑥 + 𝑅𝑅1(𝑡𝑡,𝑑𝑑) 

Therefore, 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) is the solution of the region 𝐴𝐴1, the first part is proved, and the 
second part is proved below. When (𝑡𝑡, 𝑥𝑥, 𝑑𝑑) ∈ 𝐴𝐴2, the HJB equation can be rewritten as: 

[𝑃𝑃𝑡𝑡(𝑡𝑡) + 2𝑟𝑟(𝑡𝑡)𝑃𝑃(𝑡𝑡) − 𝑃𝑃(𝑡𝑡)]𝑥𝑥2 + [2𝑃𝑃(𝑡𝑡)𝑑𝑑 + 𝑄𝑄(𝑡𝑡)𝑟𝑟(𝑡𝑡) + 𝑄𝑄𝑡𝑡(𝑡𝑡)]𝑥𝑥

+ �𝑄𝑄(𝑡𝑡)𝑑𝑑 + 𝑅𝑅𝑦𝑦𝑏𝑏 + 𝑅𝑅𝑡𝑡 +
1
2
𝑅𝑅𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡)� = 0 

Using the comparison coefficient method, it can be inferred that 𝑃𝑃(𝑡𝑡),𝑄𝑄(𝑡𝑡),𝑅𝑅(𝑡𝑡) sat-
isfy the differential equation: 

�𝑃𝑃𝑡𝑡
(𝑡𝑡) + 2𝑟𝑟(𝑡𝑡)𝑃𝑃(𝑡𝑡) = 0,

𝑃𝑃(𝑇𝑇) = 1,  

�2𝑃𝑃
(𝑡𝑡)𝑑𝑑 + 𝑄𝑄(𝑡𝑡)𝑟𝑟(𝑡𝑡) + 𝑄𝑄𝑡𝑡(𝑡𝑡) = 0,

𝑄𝑄(𝑇𝑇) = −2𝑘𝑘,  

�𝑄𝑄(𝑡𝑡)𝑑𝑑 + 𝑅𝑅𝑦𝑦𝑏𝑏 + 𝑅𝑅𝑡𝑡 +
1
2
𝑅𝑅𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) = 0,

𝑅𝑅(𝑇𝑇) = 𝑘𝑘2,
 

By solving the above three equations, we can get: 
𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) = 𝑃𝑃2(𝑡𝑡)𝑥𝑥2 + 𝑄𝑄2(𝑡𝑡)𝑥𝑥 + 𝑅𝑅2(𝑡𝑡,𝑑𝑑) 
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Let's verify that 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) is continuously differentiable and define the boundary sur-
face: 

𝐴𝐴0 = �(𝑡𝑡, 𝑥𝑥,𝑑𝑑) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅, 𝑥𝑥 − 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠 ��  
𝑇𝑇

𝑡𝑡
𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘� = 0� 

It is easy to verify that in 𝐴𝐴1 ∪ (𝐴𝐴2 ∖ 𝐴𝐴0), 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) is continuously differentiable, and 
we will only prove the case of (𝑡𝑡, 𝑥𝑥,𝑑𝑑) ∈ 𝐴𝐴0. When (𝑡𝑡, 𝑥𝑥,𝑑𝑑) ∈ 𝐴𝐴0, it is calculated directly to 
obtain that 𝑃𝑃1(𝑡𝑡)𝑥𝑥2 + 𝑄𝑄1(𝑡𝑡)𝑥𝑥 + 𝑅𝑅1(𝑡𝑡, 𝑑𝑑) = 𝑃𝑃2(𝑡𝑡)𝑥𝑥2 + 𝑄𝑄2(𝑡𝑡)𝑥𝑥 + 𝑅𝑅2(𝑡𝑡,𝑑𝑑) = 0, 𝑣𝑣𝑡𝑡− ′ = 𝑣𝑣𝑡𝑡+

 ′ ,𝑣𝑣𝑥𝑥− ′ =
𝑣𝑣𝑥𝑥+

 ′ , 𝑣𝑣𝑦𝑦− ′ = 𝑣𝑣𝑦𝑦+
 ′ .This shows that for any (𝑡𝑡, 𝑥𝑥,𝑑𝑑) ∈ 𝐴𝐴0, 𝑣𝑣(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) is also continuously differ-

entiable. But because 𝑃𝑃1(𝑡𝑡) ≠ 𝑃𝑃2(𝑡𝑡), So in 𝐴𝐴0, 𝑣𝑣𝑥𝑥𝑥𝑥′  does not exist. This shows that 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) 
does not have a sufficiently smooth property to be second-order non-differentiable, and 
therefore the problem needs to be solved in the framework of viscous solutions. Let 𝜓𝜓 ∈
𝐶𝐶1,2([0,𝑇𝑇],𝑅𝑅,𝑅𝑅),𝑉𝑉 − 𝜓𝜓  reaches its maximum value at 𝐴𝐴0.𝜓𝜓 = 𝜓𝜓𝑡𝑡′ = 𝜓𝜓𝑥𝑥′ = 𝜓𝜓𝑦𝑦′ = 𝜓𝜓𝑥𝑥𝑦𝑦′ =
𝜓𝜓𝑦𝑦𝑦𝑦′ = 0. At the same time, 𝜓𝜓𝑥𝑥𝑥𝑥″ ≥ 2𝑃𝑃1(𝑡𝑡). So, in the HJB equation, replacing 𝑉𝑉 with ψ can 
be obtained: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋≥0

 {𝜓𝜓𝑡𝑡(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) + 𝜓𝜓𝑥𝑥[𝑟𝑟(𝑡𝑡)𝑥𝑥 + (𝜇𝜇(𝑡𝑡) − 𝑟𝑟(𝑡𝑡))𝜋𝜋𝑥𝑥 + 𝑑𝑑] +
1
2
𝜓𝜓𝑥𝑥𝑥𝑥𝜎𝜎2(𝑡𝑡)𝜋𝜋2𝑥𝑥2 +

1
2
𝜓𝜓𝑦𝑦𝑦𝑦𝑎𝑎2(𝑡𝑡) +

𝜓𝜓𝑦𝑦𝑏𝑏(𝑡𝑡) + 𝜓𝜓𝑥𝑥𝑦𝑦𝜌𝜌𝑎𝑎(𝑡𝑡)𝜎𝜎(𝑡𝑡)𝜋𝜋𝑥𝑥 + 𝜆𝜆𝐸𝐸[𝜓𝜓(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝜓𝜓(𝑡𝑡, 𝑥𝑥, 𝑑𝑑)]}

=
1
2
𝜓𝜓𝑥𝑥𝑥𝑥𝜎𝜎2(𝑡𝑡)𝜋𝜋2𝑥𝑥2 + 𝜆𝜆𝐸𝐸[𝜓𝜓(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝜓𝜓(𝑡𝑡, 𝑥𝑥, 𝑑𝑑)]

≥ 𝑃𝑃1(𝑡𝑡)𝜎𝜎2(𝑡𝑡)𝜋𝜋2𝑥𝑥2 + 𝜆𝜆𝐸𝐸[𝜓𝜓(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝜓𝜓(𝑡𝑡, 𝑥𝑥,𝑑𝑑)] = 0

 

Thus 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) is a viscosity supersolution of the HJB equation. Similarly, it can be 
shown that 𝑣𝑣(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) is a viscosity subsolution of the HJB equation, so by Definition 2.1, 
𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) is a viscous solution of the HJB equation. End Proof. 

3.2. Theorem 2 
(Verification theorem) 𝑣𝑣 (𝑡𝑡, 𝑥𝑥,𝑑𝑑) is the viscosity solution of HJB equation. We set 

𝑉𝑉(𝑡𝑡, 𝑥𝑥,𝑑𝑑) as value function, for any (𝑡𝑡, 𝑥𝑥,𝑑𝑑) ∈ [0,𝑇𝑇] × 𝑅𝑅 × 𝑅𝑅, 𝑉𝑉(𝑡𝑡, 𝑥𝑥,𝑑𝑑) = 𝑣𝑣(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) are cor-
rect. 

Proof. Firstly, consider the initial wealth 𝑥𝑥 − 𝑒𝑒∫  𝑇𝑇𝑡𝑡 𝑟𝑟(𝑠𝑠)𝑑𝑑𝑠𝑠[∫  𝑇𝑇𝑡𝑡 𝑑𝑑𝑒𝑒∫  𝑇𝑇𝑠𝑠 −𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 + 𝑘𝑘] < 0, for 
any 𝜋𝜋 ∈ Π, by Ito’s lemma, we can get:  

𝑣𝑣(𝑇𝑇,𝑋𝑋𝑇𝑇𝜋𝜋,𝑑𝑑𝑇𝑇) = 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) + �  
𝑇𝑇

𝑡𝑡
{𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑥𝑥[𝑟𝑟(𝑠𝑠)𝑥𝑥 + (𝜇𝜇(𝑠𝑠) − 𝑟𝑟(𝑠𝑠))𝜋𝜋𝑥𝑥 + 𝑑𝑑] +

1
2𝑉𝑉𝑥𝑥𝑥𝑥𝜎𝜎

2(𝑡𝑡)𝜋𝜋(𝑠𝑠)2𝑥𝑥2

+
1
2
𝑉𝑉𝑦𝑦𝑦𝑦𝑎𝑎2(𝑠𝑠) + 𝑉𝑉𝑦𝑦𝑏𝑏(𝑠𝑠) + 𝑉𝑉𝑥𝑥𝑦𝑦𝜌𝜌𝑎𝑎(𝑠𝑠)𝜎𝜎(𝑠𝑠)𝜋𝜋(𝑠𝑠)𝑥𝑥 + 𝜆𝜆𝐸𝐸[𝑉𝑉(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝑉𝑉(𝑡𝑡, 𝑥𝑥,𝑑𝑑)]}𝑑𝑑𝑠𝑠

+�  
𝑇𝑇

𝑡𝑡
𝜎𝜎(𝑠𝑠)𝜋𝜋(𝑠𝑠)𝑋𝑋(𝑠𝑠)𝑑𝑑𝑊𝑊1(𝑠𝑠) + �  

𝑇𝑇

𝑡𝑡
[𝑣𝑣(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑)]𝑑𝑑𝑑𝑑�(𝑡𝑡)

 

Compensated Poisson Process 𝑑𝑑�(𝑡𝑡) = 𝑑𝑑(𝑡𝑡) − ∫  𝑇𝑇
0 𝜆𝜆(𝑠𝑠)𝑑𝑑𝑠𝑠 is a ℱ𝑡𝑡  adapted martingale 

process, Thus, the above formula can be simplified to:  

𝑣𝑣(𝑇𝑇,𝑋𝑋𝑇𝑇𝜋𝜋,𝑑𝑑𝑇𝑇) ≥ 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑) + �  
𝑇𝑇

𝑡𝑡
[𝑣𝑣(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑)]𝑑𝑑𝑑𝑑�(𝑡𝑡) 

We notice 𝑣𝑣(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) + ∫  𝑇𝑇𝑡𝑡 [𝑣𝑣(𝑡𝑡, 𝑥𝑥 + 𝜈𝜈𝜋𝜋,𝑑𝑑) − 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑)]𝑑𝑑𝑑𝑑�(𝑡𝑡)  is a martingale process, 
the mathematical expectation is equal to zero, and because 𝑣𝑣(𝑇𝑇, 𝑥𝑥,𝑑𝑑) = (𝑥𝑥 − 𝑘𝑘)2, Taking 
mathematical expectations on both sides of the above expression, we get: 

[𝐸𝐸(𝑋𝑋𝑇𝑇𝜋𝜋
∗ − 𝑘𝑘)2 ∣ 𝑋𝑋(𝑡𝑡) = 𝑥𝑥] ≥ 𝑣𝑣(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) 

That means 𝑉𝑉(𝑡𝑡, 𝑥𝑥,𝑑𝑑) ≥ 𝑣𝑣(𝑡𝑡, 𝑥𝑥, 𝑑𝑑), when the optimal investment strategy 𝜋𝜋 = 𝜋𝜋∗.The 
equals sign in the inequality is true: 𝑉𝑉(𝑡𝑡, 𝑥𝑥, 𝑑𝑑) = 𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝑑𝑑).We can prove it in the same way 
for the other case. End Proof [6]. 

4. Summary 
This paper studies a basic issue based on the stochastic optimal control theory. The 

specific research content is summarized as follows: The optimal investment strategy prob-
lem of stock price with jump when risk is unhedged under mean-variance target criterion. 
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This also fully demonstrates the validity of the viscous solution theorem for dealing with 
random IQ problems with non-negative constraints. The results of this paper show that 
the short selling constraint of risk assets and the jump in the price process cannot be ig-
nored on the effective strategy. 
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