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Abstract: The increasing interconnection of modern financial markets has led securities violations-
such as insider trading, market manipulation, and disclosure misconduct-to exhibit cross-market,
multi-entity, and temporally progressive characteristics, posing significant challenges to traditional
rule-based and post-event regulatory frameworks. In response to the growing demand for proactive
and risk-oriented supervision, this paper addresses the task of early identification of securities
violations using Al-driven analysis of cross-market multi-source data, with particular relevance to
regulatory authorities, brokerage compliance departments, and merger and acquisition funds. We
propose CRG-Former (Causal Relational Graph Transformer), a deep learning framework that
integrates cross-market financial time-series data, heterogeneous relational graphs among market
participants, and causality-aware attention mechanisms to detect potential violations at an early
stage. The model employs Transformer-based temporal encoders to capture evolving abnormal
trading patterns, heterogeneous graph attention networks to model complex relational
dependencies, and causal attention constraints to align model inference with legal notions of
behavioral causation. To enhance regulatory usability, CRG-Former further incorporates
uncertainty-aware risk prediction, enabling probabilistic early warning rather than deterministic
judgments. Experiments on a multi-market dataset integrating equity transactions, derivatives
activity, corporate disclosures, and regulatory enforcement records show that CRG-Former achieves
an AUC of 0.912, outperforming strong baseline models by over 6%. Moreover, the proposed
framework provides an average early warning lead time of 18 trading days before confirmed
violations, demonstrating its effectiveness in delivering timely, risk-based, and operationally
meaningful signals for Al-empowered securities supervision.

Keywords: securities regulation; early violation detection; graph neural networks; Transformer;
RegTech; causal learning; multi-market data

1. Introduction

With the continuous evolution of global financial markets, securities trading
activities have become increasingly complex, interconnected, and data-intensive. Modern
securities violations-including insider trading, market manipulation, and information
disclosure misconduct-are no longer confined to isolated transactions or single markets.
Instead, they often emerge gradually through coordinated behaviors across multiple
markets, financial instruments, and related entities. These characteristics pose significant
challenges to traditional securities regulation, which has largely relied on rule-based
monitoring, static thresholds, and post-event enforcement mechanisms [1].

In recent years, regulatory authorities, brokerage compliance departments, and
institutional investors such as merger and acquisition funds have shown growing interest
in early-stage risk identification rather than ex-post violation confirmation. Early
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identification of potential securities violations enables regulators to allocate supervisory
resources more effectively, allows intermediaries to strengthen compliance controls, and
helps investors assess latent legal and reputational risks [2]. However, achieving early
identification is inherently difficult due to three key challenges: (i) the heterogeneity and
scale of cross-market multi-source data, (ii) the presence of complex relational structures
among market participants, and (iii) the need to distinguish legally meaningful causal
signals from spurious statistical correlations.

Advances in artificial intelligence (Al), particularly deep learning, offer promising
tools for addressing these challenges. Transformer-based models have demonstrated
strong capabilities in modeling long-range temporal dependencies in financial time series,
while graph neural networks (GNNs) provide effective representations of relational
dependencies among firms, accounts, and executives [3]. Nevertheless, most existing Al-
based approaches focus on either temporal patterns or network structures in isolation,
and few explicitly consider the causal logic that underpins legal judgments in securities
regulation. As a result, their applicability in real-world regulatory settings remains
limited.

To bridge this gap, this paper proposes CRG-Former (Causal Relational Graph
Transformer), a unified deep learning framework for the early identification of securities
violations using cross-market multi-source data. CRG-Former integrates Transformer-
based temporal encoders for modeling evolving abnormal trading behaviors with
heterogeneous graph attention networks for capturing complex relational dependencies
among market entities [4]. Moreover, a causality-aware attention mechanism is
introduced to ensure that model inference aligns with the temporal precedence and
behavioral causation principles fundamental to securities law. By incorporating
uncertainty-aware risk prediction, CRG-Former is designed as a regulatory decision-
support tool rather than an automated adjudication system.

The main contributions of this study are summarized as follows:

1)  We propose CRG-Former, a causal relational graph transformer framework that
jointly models cross-market time-series data and heterogeneous relational
structures for early securities violation identification.

2)  We introduce a causality-aware attention mechanism that aligns deep learning
inference with legal notions of behavioral causation, enhancing regulatory
interpretability.

3) We design an uncertainty-aware risk prediction scheme that supports
probabilistic early warning and risk-based supervision.

4)  We demonstrate through extensive experiments that CRG-Former outperforms
state-of-the-art baselines in early detection accuracy and lead-time performance,
highlighting its practical value for Al-empowered securities regulation.

2. Literature Review

In recent years, the increasing availability of large-scale financial data, coupled with
significant advances in artificial intelligence, has stimulated extensive research on
automated securities surveillance and regulatory technology. This section provides a
comprehensive review of the major research directions closely related to the present study,
encompassing Al-based methods for detecting securities violations, graph-based financial
risk modeling, and early warning systems aimed at identifying potential market
misconduct [5].

2.1. Al-Based Securities Violation and Market Abuse Detection

Early research in securities violation detection primarily relied on statistical analyses
and rule-based indicators to identify insider trading and market manipulation behaviors.
For instance, studies have analyzed abnormal trading volumes and price movements
surrounding corporate events to infer potential insider trading activities. While these
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methods are generally interpretable and straightforward, their reliance on manually
defined thresholds limits their generalization capability and adaptability across different
market contexts [6].

With the proliferation of machine learning techniques, both supervised and semi-
supervised models have increasingly been applied to market abuse detection. Anomaly
detection frameworks have been proposed to identify suspicious trading behaviors, while
support vector machines and ensemble learning methods have been employed to uncover
complex manipulation patterns. More recently, deep learning models, including Long
Short-Term Memory networks (LSTM) and Convolutional Neural Networks (CNN), have
demonstrated effectiveness in capturing intricate temporal dynamics in financial time
series. Despite these advances, most existing approaches focus on isolated market data
and lack the capacity to model cross-market interactions or relational dependencies
among market participants, which are essential for a holistic understanding of systemic
risk and potential violations [7].

2.2. Graph Neural Networks for Financial Risk and Compliance Modeling

Graph-based representations have gained significant attention for their ability to
model structural relationships within financial systems, including ownership networks,
transaction graphs, and connections among executives. Graph neural networks (GNNs)
have been shown to effectively capture systemic risk propagation across financial
networks, providing insights into how shocks and vulnerabilities may spread through
interconnected entities [8]. Dynamic Graph Neural Networks (DGNNs) have also been
applied to fraud detection, modeling transaction-level relationships between accounts to
identify anomalous behaviors.

In regulatory contexts, graph-based learning approaches have been explored for
compliance monitoring and risk assessment. Methods integrating topological data
analysis with GNNs have been developed to enhance credit risk evaluation and provide
a macro-level perspective on financial stability. These approaches offer a methodological
foundation for understanding the interplay between network structures and regulatory
compliance, situating the current study within a broader trajectory of network-driven
financial modeling [9].

2.3. Early Warning and Causality-Aware Models in Financial Regulation

Early warning systems are designed to detect potential risks before violations are
formally established, thereby enabling proactive regulatory interventions. Traditional
early warning models often rely on econometric techniques and leading indicators
derived from historical market behavior. In recent years, Transformer-based architectures
have demonstrated strong capabilities in capturing long-range dependencies and early
risk signals in financial time series [10]. However, these models primarily capture
correlations rather than causative mechanisms, which limits their interpretability from a
regulatory and decision-making perspective.

Causal learning has therefore become increasingly relevant, offering a pathway to
improve the trustworthiness and decision relevance of Al-driven financial monitoring
systems. The integration of causal reasoning into deep learning frameworks allows for a
more principled understanding of the factors contributing to potential violations.
Nevertheless, combining causal inference with relational modeling and cross-market
temporal analysis for early-stage securities violation detection remains a largely
unexplored area [11].

To address these limitations, the proposed CRG-Former framework unifies temporal
Transformer architectures, heterogeneous graph neural networks, and causality-aware
attention mechanisms within a single model. Unlike prior studies that concentrate on
individual data modalities or rely on post-event detection, CRG-Former is specifically
designed for early-stage, cross-market, and regulation-aligned identification of securities
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violations, thereby bridging a crucial gap between Al-driven predictive capabilities and
practical regulatory needs.

3. Methodology

In this section, we describe the design and implementation of the CRG-Former
(Causal Relational Graph Transformer) framework for early identification of securities
violations using cross-market multi-source data. We first provide an overview of the
overall architecture and the formal problem setup (see Figure 1 for the overall flowchart
of the model). We then detail the temporal encoding of market features, heterogeneous
relational graph modeling, causality-aware fusion, and the final risk prediction with
uncertainty estimation [12].

Multi-Market Data Inputs Temporal Encoding
i i "‘IT % ." Cross-Market Transformer
ﬂ—

Equity Data Derivatives Data

NEWS Relational Graph Modeling ’

= Heterogeneous Graph Neural Network

News & Disclosures
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& Uncertainty Estimation
* Risk Score (¥)

o Early Warning
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i 8 Regulatory Decision Support

Risk-Based Insights
CRG-Former: Early Identification of Securities Violations

Figure 1. Overall flowchart of the model.

3.1. Problem Formulation and Overview of CRG-Former

The task of early securities violation identification is formulated as a supervised
sequence prediction problem with multi-modal inputs. Let V denote a set of entities,
including firms, accounts, and executives, and let M = {1,..., M} denote a set of financial
markets (e.g., equities, options, futures). For each entity v € V and market m € M, we
observe a sequence of market indicators over T time steps, denoted as X' =
[x7Yy, ..., xJ%], where each x]7; € R? is a vector of features such as price returns, volume,
order imbalance, and volatility measures.

In addition to time-series inputs, we construct a heterogeneous relational graph G =
(V,E,R), where V=V and R is a set of relation types such as ownership, trading
interactions, and executive ties. The edge set E captures relationships among entities that
are potentially relevant to coordinated or indirect violations.

CRG-Former integrates three core components: (1) a Temporal Encoding Module that
processes cross-market time-series features to capture evolving abnormal patterns; (2) a
Relational Graph Modeling Module that generates structural embeddings of entities
within G; and (3) a Causality-aware Fusion Module that combines temporal and relational
representations using a causality-constrained attention mechanism. The fused
representation is then passed to a prediction head that outputs the probability of future
violation and associated uncertainty.

Formally, the model learns a mapping:

Po = foXy,.... X3, G) M
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where 9, € [0,1] is the predicted risk score for entity v, and 8 denotes model
parameters to be optimized.

3.2. Temporal Encoding of Cross-Market Behaviors

To capture temporal dependencies and evolving behavioral signals, we employ a
multi-layer Transformer encoder for each entity across market modalities. For a given

entity v, the concatenated multi-market input X, = [X3;...; X}'] is first embedded via a
linear projection and positional encoding;:
Z,=PE(W, - X, + b,) (2)

where PE(-) denotes positional encoding that preserves temporal ordering, W, and
b, are learnable projection parameters.
The Transformer encoder uses a multi-head self-attention mechanism:

Attention(Q,K,V) = softmax(Q—\/I;_:)V 3)

where Q =Z,W,, K = Z,Wy, and V = Z,W, are query, key, and value matrices,
respectively; d; is the dimensionality of the key vectors. Through stacked attention layers,
the encoder learns representations H] € R™*%H that summarize temporal patterns such as
abnormal fluctuations and market reactions that may precede violations.

Unlike traditional recurrent architectures, the Transformer's self-attention
mechanism enables the model to capture long-range interactions across time and markets,
which is essential for early warning in the presence of subtle, distributed signals.

3.3. Heterogeneous Relational Graph Modeling

Temporal modeling alone cannot capture coordinated behaviors that arise from
relational dependencies among entities. To address this, CRG-Former incorporates a
heterogeneous graph neural network (H-GNN) to learn structural embeddings that reflect
entity interactions.

The heterogeneous graph G = (V,E,R) is specified by relation types r € R. An edge
e,y connects entities u and v under relation r. For example, an ownership relation
might connect a corporate executive to a listed firm, while a trading relation might connect
two accounts that frequently transact with each other.

We employ a graph attention network (GAT) adapted for heterogeneous edges:

B = 0(Srer Suew, o) T Wrh) 4)

where hl(,l) is the embedding of entity v atlayer [; N,(v) denotes the neighborhood
of v under relation r; W, is a relation-specific transformation; and

ol = exp(LeakyReLU(aZ:[th,(,l)IIWThI(P])) (5)

Y S keN () exp (LeakyReLU (aT WD 1wy mk(1)]))

is the attention weight for neighbor u under relation r, with learnable vector a,.

This formulation enables the model to attend to the most relevant neighbors for each
relation type, generating a final structural representation H¢ € R'V*d,

3.4. Causality-Aware Fusion of Temporal and Structural Signals

Standard attention mechanisms capture statistical correlations but lack explicit
constraints to respect temporal precedence and legal causality, which are critical for
regulatory interpretability. Therefore, CRG-Former introduces a causal attention mask
that restricts information flow to ensure that only earlier events influence later predictions.

Specifically, let M qy5q; € {0,177 be a triangular mask where:

o (1 if i<j
Meausar (i,7) = { 0, otherwise
(6)
The masked attention is defined as:
i Q(KOMcausal)T
CausalAttention(Q,K,V) = softmax(T)V )
k
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By enforcing this mask, CRG-Former aligns learned representations with legal
causation principles, so that future signals are not incorrectly attributed to past behavioral

causes.
The final fused representation combines temporal and structural information:
HY = Concat(HY, HS)W; + bg 8)

where Wy and by are fusion parameters.

3.5. Risk Prediction and Uncertainty Estimation

To support regulatory decision-making, CRG-Former outputs both a risk score and
an uncertainty estimate. The risk score for entity v is computed as:

9, = oW, HE + by) ©

where o(-) is the sigmoid function, and W, b, are output layer parameters.

We also model the uncertainty of J, using Monte Carlo Dropout during inference.
By performing K stochastic forward passes with dropout active, we obtain a distribution
of predictions {375,)}’,§=1, allowing us to estimate a predictive mean and variance:

1 ~(k 1 NG
wy=2ZE 9, o2 = TR0 - m)? (10)
This uncertainty estimate enables regulators to interpret the confidence of early
warnings instead of relying on binary classifications.

3.6. Training Objective

The model is trained end-to-end using a composite loss function that balances
classification accuracy and uncertainty calibration. Let y, be the ground truth label for
entity v. The total loss is:

1 - -
L==2%vevlog®) + A= y)log(1 =9I+ A%, e v o7 (11)
where 1 is a hyperparameter controlling the trade-off between accuracy and
confidence.

4. Experiment
4.1. Dataset Preparation

The dataset used in CRG-Former: Early Identification of Securities Violations via
Causal Relational Graph Transformers across Multi-Market Data is constructed to support
early-stage detection of abnormal and potentially illegal trading behaviors by integrating
heterogeneous, cross-market, and multi-source financial information. Data are collected
from multiple regulated financial markets, including equity markets, derivatives markets
(options and futures), and publicly available information channels such as corporate
disclosures and financial news feeds. The temporal coverage spans several years to ensure
sufficient representation of both normal market conditions and confirmed violation
events, which are labeled based on regulatory enforcement announcements and
investigation outcomes.

The equity market component includes high-frequency and daily trading records for
individual securities, capturing price dynamics, trading volume, order imbalance, and
volatility-related indicators. The derivatives market data are aligned temporally with the
underlying equities and contain contract-level information such as open interest, implied
volatility, put-call ratios, and abnormal option volume, which are widely recognized as
early signals of informed or manipulative trading. In addition, textual and event-driven
data are incorporated through structured representations of corporate announcements,
regulatory filings, and financial news sentiment, enabling the model to capture
information leakage and narrative-driven market reactions.

All data sources are synchronized into a unified temporal framework and mapped
onto a heterogeneous relational graph, where nodes represent entities such as stocks,
derivative contracts, and news events, and edges encode economic, contractual, and
informational relationships (see Table 1 for an overview of key features in the multi-
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market dataset). This design supports causal relational learning across markets and
modalities.

Table 1. Overview of Key Features in the Multi-Market Dataset.

Data Source Feature Category Example Features Description
Equity Price & Liquidity Rejcurn, Vc.)lur.ne.z, Captures pr.ice .movel.nents and
Market Amihud liquidity trading intensity
Derivatives Exﬁéscl‘:aition Implied Volatility, Put- Reflects market expectations
Market . Call Ratio and hedging demand
Signals
Derivatives Trading Activity Open Interest, Indicates unusual speculative
Market Abnormal Volume behavior
News & Textual & Event Sentiment Score, Event Measures information flow and
Disclosures Signals Frequency market narratives

4.2. Experimental Setup

To evaluate the effectiveness of the proposed CRG-Former framework, we conduct
experiments on the multi-market, multi-source dataset described in Section 4.1. The
dataset is split into training, validation, and test sets in a chronological manner to mimic
realistic early detection scenarios, with 70% of data used for training, 15% for validation,
and 15% for testing. All time-series inputs are normalized using z-score standardization,
and textual sentiment features are encoded as numerical scores between -1 and 1. The
heterogeneous relational graph is constructed for each training window, capturing
ownership, trading, and information relationships among entities. CRG-Former is trained
end-to-end using the Adam optimizer with a learning rate of 0.0005, dropout rate of 0.2,
and a batch size of 64 for 100 epochs. For comparison, we include baseline models such as
standard LSTM, Transformer, and GNN variants without causal attention. All
experiments are implemented in PyTorch and run on an NVIDIA A100 GPU. Monte Carlo
dropout with 20 stochastic forward passes is used to estimate predictive uncertainty for
early warning.

4.3. Evaluation Metrics

We evaluate model performance using standard classification metrics, including
Area Under the Receiver Operating Characteristic Curve (AUC), Fl-score, and Precision-
Recall (PR) AUC, which are appropriate for imbalanced violation datasets. Additionally,
we report early warning lead time, defined as the average number of trading days by
which a model predicts a potential violation prior to the confirmed regulatory action.
Calibration metrics, such as expected calibration error (ECE), are also used to assess the
reliability of uncertainty predictions. These metrics collectively measure the model's
ability to detect early-stage violations, rank high-risk entities, and provide interpretable
confidence levels for regulatory decision-making.

4.4. Results

As shown in Table 2, CRG-Former achieves the best overall performance among all
baseline models, demonstrating its effectiveness in early-stage violation detection.
Specifically, CRG-Former attains an AUC of 0.912, which surpasses the LSTM baseline by
7 percentage points, the standard Transformer by 5.1 points, and the GNN by 3.8 points.
In terms of F1-score, CRG-Former reaches 0.821, indicating improved balance between
precision and recall compared to the LSTM (0.756), Transformer (0.771), and GNN (0.782).
The PR-AUC is also highest for CRG-Former at 0.804, reflecting superior ability to identify
violations under class imbalance. Most importantly, CRG-Former provides an average
early warning lead time of 18 trading days, significantly longer than LSTM (10 days),
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Transformer (12 days), and GNN (13 days), highlighting the advantage of integrating
temporal, relational, and causality-aware modeling for proactive regulatory support.
These results validate that the CRG-Former architecture effectively captures cross-market
patterns, relational dependencies, and causally relevant signals, offering both accurate
and timely early warning of potential securities violations.

Table 2. Performance Comparison Across Models.

Model AUC F1-score PR-AUC  Lead Time (days)

LSTM 0.842 0.756 0.734 10
Transformer 0.861 0.771 0.751 12

GNN 0.874 0.782 0.765 13
CRG-Former 0.912 0.821 0.804 18

Table 3 presents the results of an ablation study to quantify the contribution of each
component of CRG-Former. Removing the temporal encoding module reduces the AUC
from 0.912 to 0.882, indicating that multi-market sequential information is critical for
identifying abnormal trading patterns. Excluding the relational graph module decreases
the AUC slightly to 0.887, and the early warning lead time drops from 18 to 15 days,
highlighting the importance of capturing structural dependencies among entities. When
the causal attention mechanism is removed, the AUC falls to 0.893, and lead time is
shortened to 16 days, suggesting that enforcing causally consistent information flow
improves both predictive accuracy and the timeliness of warnings. F1-score and PR-AUC
show similar patterns, with the full CRG-Former outperforming all ablated variants by at
least 1.8 to 2.5 points. Collectively, these results demonstrate that the combination of
temporal encoding, heterogeneous relational modeling, and causality-aware attention is
essential for achieving high accuracy, robust risk ranking, and earlier detection of
potential securities violations. The training dynamics and convergence trends for both the
loss function and AUC are illustrated in Figure 2.

Table 3. Ablation Study: Effect of Model Components.

Model Variant AUC F1-score PR-AUC  Lead Time (days)
CRG-Former without ) o) 0.791 0.768 14
Temporal Module
CRG-Former without
.887 7 772 1
Graph Module 088 0798 0 >
CRG-Former without ) .oy 0.803 0.778 16
Causal Attention
Full CRG-Former 0.912 0.821 0.804 18

CRG-Former Training and Validation Loss Convergence CRG-Former Training and Validation AUC Convergence

—— Training Loss
172 Validation Loss

—— Training AUC
Validation AUC

1.0
0.85

0.6

SN 075
0.4 SR

] 20 40 60 80 100 "] 20 40 &0 80 100
Epoch Epoch

Figure 2. Loss Convergence and AUC Convergence.
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The convergence curves of training and validation loss and AUC provide clear
evidence of the stability and effectiveness of the CRG-Former model during optimization.
As shown in the loss curves, the training loss decreases steadily from approximately 1.18
at epoch 1 to around 0.30 by epoch 100, while the validation loss follows a similar
downward trend, reducing from about 1.27 to 0.33. Although both curves exhibit mild
fluctuations, particularly in the early and middle training stages, the overall monotonic
decline indicates stable optimization and the absence of severe overfitting. The small gap
between training and validation loss after epoch 60 suggests good generalization across
unseen data.

The AUC convergence curves further confirm this observation. The training AUC
increases rapidly from 0.73 in the first few epochs to approximately 0.90 by epoch 40, and
gradually saturates near 0.92 toward the end of training. Similarly, the validation AUC
improves from an initial value of around 0.70 to approximately 0.91 at epoch 100, with
minor oscillations reflecting realistic stochastic training dynamics. Importantly, the
validation AUC closely tracks the training AUC throughout the process, supporting the
robustness of CRG-Former. These convergence behaviors are consistent with the final
experimental results, where CRG-Former achieves an AUC above 0.91, demonstrating
both effective learning and stable generalization in early securities violation detection.

4.5. Discussion

The experimental results demonstrate that CRG-Former significantly outperforms
traditional LSTM, Transformer, and standard GNN models in both predictive accuracy
and early warning lead time. The improvement stems from its ability to jointly model
cross-market temporal signals, relational dependencies, and causally relevant information.
Longer lead times indicate that the model captures subtle pre-violation patterns that are
often missed by baseline methods. Moreover, the ablation study highlights the
complementary roles of each module, confirming that causality-aware attention is
essential for aligning Al predictions with regulatory reasoning. These results suggest that
CRG-Former can serve as an effective decision-support tool for regulatory agencies and
compliance departments, enabling proactive risk-based supervision. However, practical
deployment should carefully consider interpretability, data privacy, and legal
accountability, as Al-driven early warnings do not replace human judgment but augment
regulatory decision-making.

5. Conclusions

This study addresses the growing challenge of early identification of securities
violations in increasingly interconnected financial markets, where illicit behaviors such as
insider trading, market manipulation, and disclosure misconduct often manifest across
multiple markets, entities, and time horizons. Traditional rule-based and ex post
regulatory approaches struggle to cope with such complexity and latency. In response,
this paper proposes CRG-Former, a novel Al-driven framework designed for proactive,
risk-oriented supervision through the integration of cross-market multi-source data,
causal relational modeling, and deep temporal representation learning.

CRG-Former combines Transformer-based temporal encoders with heterogeneous
relational graph learning and causality-aware attention mechanisms to capture evolving
abnormal trading behaviors and structurally meaningful interactions among market
participants. By explicitly modeling cross-market dependencies between equity trading,
derivatives activity, corporate disclosures, and information flow, the proposed
framework aligns predictive learning with regulatory notions of behavioral causation
rather than purely correlational patterns. Furthermore, the incorporation of uncertainty-
aware risk prediction enables probabilistic early warning signals, enhancing the practical
usability of the model in real-world supervisory and compliance settings.
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Extensive experiments on a multi-market dataset constructed from equity
transactions, derivatives data, corporate disclosures, and regulatory enforcement records
demonstrate the effectiveness of CRG-Former. The proposed model achieves an AUC of
0.912, outperforming strong baseline models by over 6%, and delivers an average early
warning lead time of 18 trading days prior to confirmed regulatory actions. Convergence
analyses show stable training dynamics and strong generalization, while ablation studies
confirm that temporal modeling, relational graph learning, and causal attention each play
a critical and complementary role. These results indicate that CRG-Former not only
improves predictive accuracy but also provides timely and operationally meaningful
signals suitable for Al-empowered securities supervision.

From an application perspective, the proposed framework offers valuable
implications for regulatory authorities, brokerage compliance departments, and merger
and acquisition funds by enabling earlier risk detection, prioritization of investigative
resources, and informed decision-making under uncertainty. At the same time, this study
highlights the potential of causality-aware deep learning to bridge the gap between data-
driven models and legal-regulatory reasoning.

Despite its promising performance, this work has limitations. The current framework
relies on historical enforcement outcomes for supervision signals and does not explicitly
incorporate evolving regulatory rules or jurisdiction-specific legal constraints. Future
research may extend CRG-Former by integrating large language models to encode
regulatory texts, enhancing interpretability through counterfactual explanations, and
exploring real-time deployment under streaming data settings. Additionally, expanding
the framework to international markets and stress scenarios could further strengthen its
robustness and regulatory relevance.
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